
NORDSEC 2005

Proceedings of the 10th Nordic Workshop on Secure IT Systems

October 20-21, 2005, Tartu, Estonia

Helger Lipmaa, Dieter Gollmann (eds.)

In cooperation with

ISBN 9949-11-153-6

Tartu University Press

http://www.tyk.ee

Preface

You are reading the proceedings of NordSec 2005, the 10th Nordic Workshop on Secure IT-systems. The
workshop was organized by Cybernetica AS and University of Tartu, and sponsored by the United States
Army Research Laboratory European Research Office and Hansapank. The organizing committee was
responsible for the local organization. We thank the members of organizing committee (Jan Willemson,
Uuno Puus, Peeter Laud and Liina Kamm) for all their work and for the pleasant collaboration.

A total of 32 papers were submitted of which 15 were accepted for presentations at the workshop.
The program also lists invited talk by Peter Landrock (“PKI — Past, Present and Future”). Also, there
was a student session, which Jan Willemson kindly agreed to chair.

During the reviewing process, every paper was reviewed by at least four members of the program
committee, and papers co-authored by a member of the committee were reviewed by at least six other
members. It was a pleasure for us to work with the program committee.

We are very grateful to the additional reviewers who contributed with their expertise: Jong Youl Choi,
Igor Semaev, Margus Freudenthal, Magnus Almgren, Christian Probst, Steve Myers, Matthew Parker,
Arne Ansper, Minaxi Gupta, Liu Yang, Alexander Kholosha, Rene Rydhof Hansen, Terkel Tolstrup,
Carlos Cid, H̊avard Raddum.

My work as program chair was made a lot easier by the electronic submission software written by
Chanathip Namprempre for Crypto 2000 with modifications by Andre Adelsbach for Eurocrypt 2001,
and by the reviewing software developed and written by Bart Preneel, Wim Moreau, and Joris Claessens
for Eurocrypt 2000. We would like to thank Veiko Tõeleid for setting up all this software locally and for
the help with the problems we encountered.

Finally, a thank-you goes to all who submitted papers to the workshop.

October 2005 Helger Lipmaa and Dieter Gollmann

Program Committee

Helger Lipmaa (Co-Chair) Cybernetica AS and University of Tartu
Dieter Gollmann (Co-Chair) TU Hamburg-Harburg

Tuomas Aura Microsoft Research
Ahto Buldas Cybernetica AS and University of Tartu
Catharina Candolin Helsinki University of Technology
Mads Dam SICS and Royal Institute of Technology
Pasi Eronen Nokia Research Center
Viiveke F̊ak Linköping University
Tor Helleseth University of Bergen
Markus Jakobsson Indiana University at Bloomington
Christian Damgaard Jensen Technical University of Denmark
Erland Jonsson Chalmers University of Technology
Svein Knapskog Norwegian University of Science and Technology
Peeter Laud University of Tartu and Cybernetica AS
Sven Laur Helsinki University of Technology
Jussipekka Leiwo Nanyang Technological University
Chris J. Mitchell Royal Holloway, University of London
Hanne Riis Nielson Technical University of Denmark
Einar Snekkenes Gjøvik University College
Jan Willemson Playtech and University of Tartu

i

Contents

PKI — Past, Present and Future

Peter Landrock . 1

A Security Architecture for an Open Broadband Access Network
Martin Gilje Jaatun, Inger Anne Tøndel, Maria Bartnes Dahl, Thomas J. Wilke 4

A Security Analysis on JADE(-S) V. 3.2
Regine Endsuleit, Jacques Calmet . 20

Digital signature in automatic analyses for confidentiality against active adversaries
Ilja Tshahhirov, Peeter Laud .29

Secure Dynamic Program Repartitioning
Rene R. Hansen, Christian W. Probst . 42

A Vulnerability Taxonomy Methodology applied to Web Services
Chris Vanden Berghe, James Riordan, Frank Piessens . 49

Vulnerabilities in Online Banks
Thomas Tjøstheim, Vebjørn Moen . 63

Exponentiation to the power p in Fpk using Variants of Montgomery Modular Arithmetic
Christophe Negre . 71

Algebraic Test Case Generation of Security Policies in Communication Networks
Mohamed Hamdi, Jihène Krichène, Noureddine Boudriga . 84

Attack on Sun’s MIDP Reference Implementation of SSL
Kent Inge Fagerland Simonsen, Vebjørn Moen, Kjell Jørgen Hole . 96

ESAF - an Extensible Security Adaptation Framework
Andreas Klenk, Marcus Masekowsky, Heiko Niedermayer, Georg Carle . 104

Transparent Anonymization of IP Based Network Traffic
Lexi Pimenidis, Tobias Kölsch . 116

Reducing system call logs with selective auditing
Ulf Larson, Erland Jonsson. .122

Some security problems raised by open multiapplication smart cards
Serge Chaumette, Damien Sauveron . 132

Use of Rijndael Block Cipher on J2ME Devices for Encryption and Hashing
Serdar S. Erdem, Aysel Uyar, Hacı H. Kılınç, Mustafa Toyran. .144

Forensic Geolocation of Internet Addresses using Network Measurements

Espen A. Fossen, André Årnes . 156

ii

PKI — Past, Present and Future

Peter Landrock
Cryptomathic

How it all started

PKI, Public Key Infrastructure, is the enabler of two significant features: Key Exchange without sharing a
secret key beforehand and Digital Signatures potentially even Non-Repudiation for Transaction Security
which can be verified by anybody in principle using a non-secret (consequently called Public) Key.
Nothing more, nothing less per se. One of the first attempts to develop a framework architecture for the
use of public key techniques was the X.509 standard, which has been with us ever since and convinced
most potential users that certificates always are necessary and essential for digital signatures, even though
this is not quite the case, the obvious exception being electronic banking. But X.509 was not designed
to provide an architecture for Electronic Commerce (EC) however, and this is one of the main reasons
why EC based on X.509 has never taken off. The legal implications are too complicated; in particular if
we have to protect the user as we usually do e.g. in Western Europe. After all, he is a voter, too!

There is no doubt that you need a trusted authority of some kind, a so-called Trusted Third Party, to
handle the—essential and unavoidable—registration of users, and the administration of the public keys.
There is a small opposition who believe that this is not necessary. Their suggested alternative is to rely
on PGP (which is basically nothing but a syntax for the use of keys, just as S/MIME) and a Trust model
where you issue your own certificates and share this with your friends. This would be just as ineffective
as sharing telephone numbers with your friends instead of using directories, and will only work in (very)
small closed user groups with an extensive trust relationship.

PKI in the past

One of the first unfortunate PKI solutions we saw was the SET protocol, which—at least so it seems—was
designed by security-nerds with no feelings for the limitations of ordinary users. Exit SET.

The announcement of the expected explosion of EC almost a decade ago created enormous activity
in companies dealing in security. Many companies grew dramatically large virtually overnight, if not so
much due to large sales, then at least due to heavy investment and marketing. And the dilemma these
companies all faced was that their customers knew nothing about security—and had no interest—whilst
their designers knew very little about commerce.

The main problem was that basically the X.509 approach was offered for all PKI-solutions, and thus
the applications had to be adjusted—non-trivially—to the security architecture and not the other way
around. The number of PKI-solutions exploded, but pilots quickly revealed the shortcomings and the
unresolved challenges.

In fact the experience gained so far from various pilots by the end of the previous millennium were
so bad, that some banks and companies declared PKI dead and useless. This of course is completely
wrong. The new generation of debit- and credit chipcard (EMV) technology is based entirely on PKI
and is already a success. Why? Because the PKI provided is transparent to the user.

Why Certificates?

Once you receive a certificate of another user, your first thought ought to be: Is it still valid? This is why
the concept of Certificate Revocation Lists (CRL) were introduced: The idea behind CRLs comes from
the method used for magnetic credit cards: At regular intervals, CRLs are submitted to subscribers, and

1

whenever users receive a digitally signed message with an embedded certificate, they should check if the
certificate is on the list (just imagine the average user doing that!). These lists may be broadcasted on
a regular basis, and the processing at the end-users becomes tedious and complicated, as the lists grow
in number.

However, even worse, if a particular valuable digital signature is received, it does not suffice to rely
on the last received CRL. What if the certificate was revoked after the last broadcast?

The superior solution of course is to immediately request a new version of the certificate (a so-called
instant certificate) from the CA/Directory using an appropriate protocol, such as one of the PKIX CMP
messages, although this is a move cumbersome solution. The user application may then have a cache
available of certificates of entities he communicates with, and may even have a security profile integrated
which automatically updates information on a certificate. It should be the user’s responsibility to inquire,
not the Directory’s responsibility to broadcast. Or even better, it should be the responsibility of the
user’s software to inquire, because the typical user can’t be bothered.

A certificate by definition is history. It is absurd to think of the expiry date as anything but the last
possible expiry date. When you receive a certificate, you will never know if it has already expired. It
would therefore make perfect sense never to include a certificate in a message, but a reference number to
the public key, rather. It is then up to the receiver how often he will inquire at the appropriate directory
about the status of the corresponding public key e.g. using OCSP (On-line Certificate Status Protocol),
which then should be called OPKSP (On-line Public Key Status Protocol). The answer will of course be
a signed statement, which we may choose to call a certificate, perhaps an instant certificate. Moreover,
this should all be parsed by the application, not the user.

Present solutions

Meanwhile, in a much more quiet manner, the EMV-standard was developed for the use of chipcard
based debit- and credit cards all over the world. It is a full-blown PKI solution, but the beauty of it
is that the end-user doesn’t know and doesn’t have to know. He uses his card just as in the magnetic
stripe days.

Other areas of large scale solutions are TPM (Trusted Platform Module) and DRM (Digital Rights
Management). The main purpose of these applications is to issue various chips in various devices with
public key pairs in order to be able to verify the devices properly, control installation of authorised SW
and protect Intellectual Property Right. This is an area where the basic X.509 architecture works well
as there are no legal implications as such of revoked keys.

Another area where we—finally—see some growth in Europe is national PKI solutions with the
primary purpose of securing communication between government and citizens. Again, the legal challenges
here are typically very limited, and it will help the introduction of e-government, which potentially could
be very cost-efficient.

Future Solutions

One path forward here which is flexible, mobile, secure and—not to be forgotten—is to make a secure
back-end available for each user, his virtual smartcard. This secure back-end is a fast tamper resistant
HW-unit, which may service a number of users at the same time with each their individual key pair.
Each user has secure access to his own key pair in the unit by means of a secure token. He is also
responsible for his own key generation. This is particularly appealing to employees at public offices, as
they are then not confined to one work station.

The basic idea is the following: When the user engages himself from any workstation connected to the
Internet, he carries out his business as usual. Once he is ready to have a message or document digitally
signed, a hash value is calculated and send to his secure-backend, where it is signed at his instruction
using his token to provide the signature instruction. His private key NEVER LEAVES the back-end.

Obviously, as the user is carrying his business out from an insecure workstation, it would be unac-
ceptable to use any access control mechanism via this workstation. In stead, the user is given a token
which could be a traditional token based on a challenge-response protocol using a symmetric algorithm.
Alternatively, he could use his mobile phone to exchange one-time passwords, thus providing a separate

2

secure channel to the back-end for authorization of his signature, one of the oldest and most secure tricks
in the trade.

But the main feature we propose is to use the token to authorize the generation of a signature, not
to authorise a transaction. So solutions are now in place, e.g. in Denmark.

In addition, in view of our past experience, the next step for adequate PKI in EC could be not to
use certificates, but credentials only with a public key reference number. If I receive e.g. a signed e-
mail—and I can be bothered to verify the signature, my application will automatically contact the TTP
responsible for the registration of his public key and receive an instant certificate which states that at
the time of request the public key had not been revoked (yet ,)

It has been anticipated that signatures in addition will find a widespread use in e-mails, e.g. amongst
citizens. We do not believe that. To use a digital signature, there must be a motivation, e.g. an
application. Consequently, the way forward for governments who want to promote digital signatures is
to offer interesting applications. Citizens have no other use for them.

3

A Security Architecture for

an Open Broadband Access Network

Martin Gilje Jaatun,
Inger Anne Tøndel,

and Maria Bartnes Dahl
SINTEF ICT

Trondheim, Norway
Email: Martin.G.Jaatun@sintef.no

Thomas J. Wilke
PRZ

Technische Universität Berlin
Berlin, Germany

Email: tjw@prz.tu-berlin.de

Abstract

Europe is experiencing a rapid growth in residential broadband coverage, but due to usage pat-
terns and cost structures, only a fraction of the available bandwidth is actually being consumed. This
implies that most residential broadband subscribers have excess capacity, and the idea of the Open
Broadband Access Network (OBAN) project is that this capacity can be shared with passers-by.

In order for the residential broadband subscribers to open up their networks, and for the potential
wireless customers to sign up for OBAN service, the security of both parties must be ensured. OBAN
needs to solve the problems posed by the fact that a visiting OBAN user and a residential access
point operator have no pre-existing trust relationship. This paper describes an architecture that
achieves this. In addition, the architecture ensures that all participating parties are able to prove the
amount of traffic transferred in any given OBAN session. This enables a broader range of business
models with respect to charging of visiting OBAN users, remuneration of residential subscribers, and
cooperation between service providers. This may in turn result in new business opportunities.

Keywords—Authentication, Excess Capacity, Security Architecture, Wireless Access Networks

1 Introduction

The world is experiencing increased broadband coverage in residential areas, but due to usage patterns
and pricing models, only a fraction of the available bandwidth is actually being consumed [1]. The excess
capacity could be put to good use, however, if residential installations were to share their bandwidth
through public wireless access points [2]. In a nutshell, this is what OBAN [3] is all about. The general
background for the project is discussed in detail in e.g. [4] and [5]; in this introductory section we will
give a brief overview of OBAN, but otherwise concentrate on security aspects.

1.1 The OBAN Concept

The idea of OBAN is to place publicly available wireless access points in homes (and possibly business
premises). These access points are operated by an Access Point Operator (APO), which may or may not
be the owner of the premises. The available bandwidth is shared between residential users and visiting
OBAN users, in the following referred to as IPCs (IP Customers). The bandwidth may be shared in
different ways, either with a fixed amount reserved for the residential user, or by the use of various
priority schemes (see [6]).

There are various possible scenarios for OBAN deployment, but a solution that will be applicable to
many markets is illustrated in Figure 1(a). In this scenario, we assume that a residential broadband user
is offered the use of a Residential Gateway (RGW1) from his Internet Service Provider (ISPRGW). This
RGW could be designed as a replacement for any existing broadband router, and will contain wireless

1Also referred to as simply “RG” in other documentation

4

Internet

RGW

ISPRGW

ISPIPCIPC

APO

(a) OBAN Parties

ISPIPCA

Internet
IPCA

RGW

ISPRGW

RGW

RGW

RGW

ISPRGW

RGW

RGW

RGW

ISPRGW

RGW

RGW

RGW

ISPRGW

RGW

RGW

(b) An OBAN Community

Figure 1: Overview of OBAN Parties, and the Big Picture

access point functionality. The RGW will be administered by the APO, which in this scenario may be
the residential user or ISPRGW. Even in the latter case the residential user will always have opportunity
for limited local configuration.

IPCs are required to have a subscription with a participating ISP, known as ISPIPC in this context.
When an IPC is in range of an RGW, a connection will be established with ISPRGW, which in turn will
forward the IPC’s credentials to ISPIPC. The ISPIPC then acknowledges that the IPC is indeed a valid
customer, and promises to honour any obligations made by this user while visiting this particular RGW.

Once authenticated, the IPC can use wireless IP services much like a residential user. Should the
IPC wander out of the range of the current RGW, OBAN supports roaming if another RGW is within
range (but see also section 2). As indicated by Figure 1(b), a single ISPRGW will typically have several
RGWs under its administrative control.

All ISPs participating as OBAN Service Providers will typically play two roles in the OBAN com-
munity, as illustrated in Figure 1(b). On one hand, they will serve as ISPRGW to their residential users,
but also as ISPIPC for their users on the move.

1.2 Business Models

Many different business models can be envisaged for OBAN, both when it comes to organisation and
accounting.

Regarding accounting, IPCs could be billed based on the amount of services consumed, or simply
based on a flat monthly fee, to name a couple of alternatives. The solution proposed in this paper
will be able to support billing based on service consumption, but this does not exclude simpler options.
Flexibility in accounting is also relevant for the residential users, since the remuneration strategy chosen
will depend on how these pay for their IP services. Note that there will be a significant incentive for
residential users to join the OBAN concept; either increased bandwidth, reduced subscription cost, or
both. It is even conceivable that in certain high-volume locations, the residential user may make a net
profit on the OBAN participation, in effect getting broadband access for free and making extra money.

For residential users in down-town locations, usage patterns are likely to be the inverse of visiting
OBAN users, i.e. visiting users are likely to be active during business hours, while residential users
primarily are active after-hours. This can result in a win-win situation, where a residential user can earn
money on a 100% of spare broadband capacity without suffering reduced performance.

The most interesting organisational aspects relate to the administration of the RGW; several parties
are candidates for the role of APO. The simplest approach would be to let ISPRGW assume this role,
since the APO and the ISPRGW then would be the same party. However, there are also advantages in
delegating this role to other parties. This way one may have pure ISP organisations that are specialized

5

in providing connectivity at larger distances, while other parties may specialize in administering end-
user equipment. ISPs may also see the advantage in letting the residential user perform more of the
management duties, thus reducing the ISP’s maintenance costs. The case where the APO is a separate
entity from the ISPRGW will therefore be supported.

1.3 Novel Contributions

Offering public wireless access is certainly not new, as anyone who has spent some time in major airports
or hotels can verify. Using private residences as a platform for offering such services has also been done
before, e.g. as implemented by LinSpot [7].

Roaming between hotspots has however only been possible on a limited scale, and certainly not
between different service providers. Furthermore, public hotspots have to a large extent been vulnerable
to so-called “evil twin” attacks [8], where a rogue access point may pose as a legitimate hotspot in order
to steal username/password combinations or credit card information. Hype aside, it remains a fact that
when arriving in a hotel in a strange city, the average user will have no way of determining whether a
given access point accepting credit card information is a legitimate hotspot or a “phishing pond”[9].

Supporting roaming and secure use of public access points is an important part of the suggested
security architecture, but just as important is the support of the new actor APO, which enables OBAN
to handle more complex business structures. With the suggested security architecture, this can be done
without sacrificing security requirements. We believe this may open up new business opportunities.

How OBAN addresses these issues will be described in the following.

1.4 Paper Outline

The rest of the paper is structured as follows:

• Section 2 sketches some mobility and QoS aspects of OBAN.

• Section 3 presents the primary security requirements for OBAN.

• Section 4 describes the relations between OBAN parties.

• Section 5 analyses threats that emerge specifically as a result of OBAN.

• Section 6 presents the security architecture for OBAN, focusing on session establishment and
handover.

• Section 7 presents a discussion of our contribution.

• Section 8 concludes the paper.

2 Mobility and QoS

Mobility and quality of service (QoS) aspects of OBAN are described in [10] and [6], and while important,
these will not be discussed in any detail here. However, for completeness we would like to direct the
reader’s attention to two specific features: Roaming to other networks, and a two-level Mobile IP [11]
scheme.

2.1 Roaming

In a sparsely populated country such as Norway, any access network solution relying solely on wireless
LAN access points will be unable to offer the required QoS and session mobility anywhere but select
neighbourhoods – for the majority of locations, the service would degenerate to a “Hot Spot Service”
as described in [7]. For this reason, the OBAN approach aims towards interoberability and roaming
with other access networks, notably GSM/GPRS [12], UMTS [13] and WiMax [14] (the last, although
not mentioned in [10], will be a natural extension as it becomes generally available). [10] describes how
seamless mobility over heterogenous networks can be achieved; a handover to a different access network
technology should not be noticeable for the OBAN user (except for reduced bandwidth when roaming

6

from e.g. WiFi [2] to GPRS). The preferred choice of access technology will be influenced both by
available bandwidth and cost. As new wireless access technologies become available to the end-user,
they will naturally find their place in the hierarchy of preferred OBAN access methods: WiFi, WiMax,
UMTS, GPRS, etc.

2.2 Home Away From Home

OBAN specifies a two-level Mobile IP scheme, where an IPC is assigned a “home-away-from-home”2

address by the ISPRGW it is currently visiting (i.e. the ISP of the RGW it is currently connected to).
The “home-away-from-home” address is naturally in the domain of the ISPRGW, and will represent the
end-point of a secure tunnel from the terminal to the ISPRGW. This adds a measure of privacy for the
IPC with respect to its ISPIPC, since the latter will not be able to identify the specific locations the IPC
has visited without the cooperation of ISPRGW.

Also note that the use of Mobile IP paves the way for accountability and metering of transmitted
traffic, since all traffic to the IPC is tunnelled from the IPC’s home address to the home-away-from-home
address in ISPRGW’s network, and from there forwarded to the current care-of-address of the IPC. In
contrast to traditional Mobile IP, the traffic from IPC to “the world” is tunnelled back to the Home Agent
via the home-away-from-home address. This also satisfies traditional regulatory concerns regarding the
origin of communications, since the traffic generated by the IPC is first tunnelled to ISPIPC before being
let loose on the global Internet.

3 Requirements

An OBAN implementation should fulfil some basic security requirements. The security requirements
that have been considered most important in our work are listed below.

R1: It should be possible to uniquely identify each party.

R2: Each party should be able to verify the correctness of the information relevant for their activities,
and should have enough information to prove their case.

R3: Each party should only get the information necessary to fulfil their particular tasks.

R4: Signalling data should be protected when it comes to confidentiality, integrity and non-repudiation.

R5: Roaming should be both secure and efficient.

R6: Personal equipment placed at the premises of the residential user should not be available for use by
IPCs.

Note the conspicious absence of availability requirements – availability is considered an integral part
of QoS, and is documented further in [6].

4 Relations Between Parties

For OBAN to be useful, all parties need to contribute towards the common goal of providing IP services
to visitors. Consequently, the necessary trust relations and the different intentions of the parties are of
high importance. Part of what makes OBAN special compared to other alternatives is the introduction
of the party APO. When discussing relations between parties, the primary focus will be given to relations
resulting from introducing this party. Note that in the protocol, the APO is not a communicating party
per se, but will be represented by the RGW.

2In [10], the term “Gateway Foreign Agent” is used.

7

4.1 The Relation IPC – APO

The RGWs make it possible for IPCs to connect to their ISPs. In case an IPC acts illegally and/or
creates technical problems the APO should be able to disconnect the terminal of this IPC. In case the
IPC’s behaviour results in financial losses for the APO, the APO should also be able to prove the course
of events and the identities of the involved parties. On the other hand, the IPC wants privacy and
anonymity. APOs should not have access to all communication of an IPC and should not know the true
identity of the IPC.

4.2 The Relation APO – ISP

The APO will have a contract with an ISP that pays the APO for bridging services between terminals
and this ISP. The conditions for payment may vary, but if the APO is to receive payment based on the
amount of traffic that has been bridged by its RGW, they will both wish to be able to prove the amount
of traffic that has been bridged.

It will also be in the APOs interest to get cost absorption confirmations from ISPs when delivering
services to IPCs, since APOs normally do not have any contractual relationship with IPCs.

4.3 The Relation IPC – Residential User

Residential users have physical access to the RGW, and may also be the operator of the RGW. It should
therefore be assured that residential users do not have the ability to influence the sessions of IPCs, for
instance to earn more money.

4.4 The Relation APO – APO

The APOs may be paid based on the amount of traffic that is bridged between terminals and ISPs. To
maximise revenue, the APOs want their RGWs to handle the traffic load as efficiently as possible. It
should however be ensured that APOs cannot manipulate their RGWs in such a way the algorithm for
distribution of terminals between RGWs becomes unfair, and other RGWs are excluded.

4.5 The Relation IPC – ISP

This is a traditional customer - supplier relationship. But in the case of OBAN, the IPC may also desire
that the ISP is not able to determine the IPC’s location while the latter is using the OBAN services.

4.6 The Relation ISP – ISP

This is a common relationship when intercommunication is required. In such cases ISPs may consume
services from other ISPs and they may therefore both want to prove the amount of consumed services.

5 Threat Analysis

A fundamental premise of OBAN is that it should offer the same degree of security as seen in wired
broadband connections to the Internet, and thus the threat analysis has only focused on threats specific
to OBAN. This means that threats that relate to e.g. common Internet security have not been considered.
The following aspects of OBAN seem to have a significant influence on the threat situation:

• Equipment is placed in the homes of individuals

• The structure of the network may be complicated, which will result in management challenges

• Wireless communication plays an important part

Threats that result from these factors will be discussed in the following subsections.

8

5.1 Equipment is Placed in the Homes of Individuals

The RGW will be placed in the homes of individuals, or on the premises of some enterprise. This means
that no ISP is able to control the physical protection of the RGW, i.e. who has physical access to the
RGW, how it is protected, etc. This results in increased probability for:

• Unauthorised theft or manipulation of the RGW

• Unauthorised access to data and operations on the RGW

• Unauthorised manipulation of the data or software of the RGW

Regarding residential users, one possible motivation for tampering with the device could be to increase
the amount of traffic generated by IPCs, as seen from the ISPRGW. Access to information on the
communication of IPCs may also be one possible motivation for the residential users, as well as for
intruders. Lack of physical control over the equipment may also result in reduced availability of service.
Residential users may simply switch off the RGW, its power or its connection to the ISPRGW at any
time. To increase the level of protection one should consider using special protection of the most critical
parts of the RGW, i.e. logs, keys, algorithms etc. Possible mechanisms to achieve this includes using
tamper-proof equipment, using hardware instead of software for critical functions3, removing interfaces
that are not strictly needed, enforcing proper access control, encrypting content, and utilizing integrity
checks.

Since equipment of the residential user will be connected to the RGW it is also important to protect
the equipment already present, and make sure it can function as before. For instance, it should not be
possible for IPCs to use a network printer of the residential user.

It may be in the interest of a rogue APO to let the RGW falsely assume the identity of an ISP. If
successful, other RGWs will communicate with the RGW as if it was an ISP. This could result in the
owner of the RGW getting hold of a lot of information that may be used to his advantage, for instance to
earn more money at the expense of other RGW owners. Authentication and encryption are appropriate
security measures also in this case.

APOs may also want to manipulate their RGW for other reasons. If APOs are paid based on the
amount of traffic that is bridged between terminals and ISPs, they may wish to manipulate their RGWs
in such a way that the algorithm for distribution of terminals between RGWs becomes unfair, and other
RGWs are excluded. If the APO is the same person as the residential user, the APO may also have easy
physical access to the RGW.

5.2 Complex Structure of the Network

Managing a network consisting of equipment placed in extremely diverse physical locations may be a
major challenge for the ISPs involved. All RGWs will need updates of functionality, security features,
etc. from time to time. These updates should be performed in a manner that is as automated as possible,
since it is inconvenient that the users hosting the RGW should be responsible for this task. The ISPs
will accordingly need to make sure the active RGWs are in working order and functioning as specified
at all times. To ease this task it is important to have a good overview of the network. It should be
clear who is responsible for managing the network, the network should be well documented, and network
management plans should be in place.

5.3 Wireless Communication

Wireless communication is important in many other systems than OBAN, for instance within GSM and
UMTS, and in regular wireless networks. As for all wireless networks, there may be problems with
interference, uncontrolled resource consumption and jamming. But in addition there may be a problem
with false access points. As an example a terminal of an IPC or a residential user may be used to
fake an access point. Other terminals will then communicate with this terminal as if it were an access
point, possibly resulting in the fake access point getting access to personal information, for instance on
the OBAN subscription of the terminal owner. Among other things, this could make it possible to use
OBAN services at the expense of the IPCs.

3This will, however, have adverse impact on the maintainability of the equipment.

9

RGW ISPRGW

ISPIPCIPC

6. Session Request

7. SessionTicket

4. Service
R
equest

5. Ticket_ISPipc

1
.
IS

P
 I
n
fo

8
. S

e
s
s
io

n
A

c
c
e
p
t

3
.
T

ic
k
e
t_

IS
P

rg
w

2
. T

ID

9. Service Accept

Figure 2: Session Establishment

To increase the protection from such forms of attacks, one should require authentication of access
points. In addition one should encrypt any transmitted information that may be used to fake the identity
of users.

5.4 Security of the Residential User Revisited

In order to convince residential users to participate in OBAN, security of the residential user’s peripherals
and other equipment is of paramount concern. However, the OBAN business model also depends on the
residential user preserving strict access control to the “residential portion” of the wireless network. After
all, who would want to run up charges on their OBAN account if there is an absolutely free residential
network readily available from the same access point?

From this we may conclude that even in cases where the residential user also is the APO, steps
must be taken to ensure that the RGW maintains a certain minimum of security, also with respect to
the residential user. Among other things, this involves preventing the residential user from turning off
encryption of the wireless traffic.

Residential users should be distinguished from IPCs, and only residential users should get access to
their own local network. This can be achieved by using one Virtual Local Area Network (VLAN) for
residential users and one VLAN for IPCs. As mentioned above, the VLAN of residential users need to
be secured by the residential user. The use of such a VLAN solution implies that the residential user is
not really an OBAN party, and is thus not considered further.

6 Security Architecture

The architecture is based on [15], but has been refined in order to concentrate on the authentication
aspects.

6.1 Basic Mechanisms

The OBAN security architecture requires a Public Key Infrastrucure (PKI) where all parties are issued
certificates from a universally trusted Certificate Authority4.

Trust confirmations relayed via parties with which the recipient doesn’t have a direct trust relation
are transmitted in the form of confirmation tickets, inspired by the Kerberos authentication system [16].
However, since the use of shared symmetric keys would not be viable in an OBAN context, the tickets are
instead created using a digital signature scheme. In similarity to Kerberos, we also assume the existence
of “loosely syncronized” clocks.

4Or at least a CA universally trusted within OBAN. In theory, each ISPIPC could have operated a “unilateral” CA,
relying on the direct security relationship between ISPs to generate cross signatures. We would maintain, however, that
this is less maintainable and more complicated than having a single top-level CA.

10

1. ISP info = IPISPRGW
, CERTISPRGW

, IDRGW

2. TIDRGW = signIPC(EPKISPIP C
(IDIPC , subIDRGW), IDISPIP C

)

3. T icketISPRGW
= signRGW (TIDRGW , IPterminal, IDRGW , T imestamp1)

4. ROT = EPKISPRGW
(TIDRGW , IPterminal, PKIPC , T imestamp2)

ServiceRequest = signIPC(ROT, T icketISPRGW
, T imestamp3)

5. AST = signISPRGW
(SessionKeyV alidity,EPKIP C

(SessionKey), T imestamp4)

SLD = ROT, T icketISPRGW

AcceptReject = EPKISPIP C
(AST, PKIPC , SLD)

T icketISPIP C
= signISPRGW

(MIPah, T icketV alidity, AcceptReject, T IDRGW , T imestamp5)

6. SessionRequest = signIPC(T icketISPIP C
, CERTISPRGW

)

7. SSC = signISPIP C
(IDsession, T imestamp6)

SessionT icket = signISPIP C
(IDsession, EPKIP C

(SSC), AST, T imestamp7)

8. SessionAccept = signISPIP C
(AST, SessionV alidity, EPKISPRGW

(SSC), T imestamp8)

9. ServiceAccept = signISPRGW
(AST, SessionV alidity, T icketISPRGW

, EPKRGW
(SSC), T imestamp9)

Figure 3: Detailed Session Initiation Messages

Certain characteristics of the RGW should be unalterable by the residential user, or any other unau-
thorized party. To achieve this, some sort of tamper-proof equipment should be considered for relevant
parts of the RGW.

Since the RGW also bridges all traffic from the residential network, the RGW should authenticate
itself to ISPRGW before any traffic is accepted by ISPRGW. However, this is completely analogous to the
situation with current broadband routers, and is thus considered out of scope for our protocol.

Since all application traffic is tunnelled first to the home-away-from-home agent in ISPRGW’s network,
the protocol will negotiate a session key to encrypt the traffic in this tunnel. No special provisions are
made for encrypting the application traffic between ISPRGW and ISPIPC; this is left to the application.

In the following, encryption with the public key of party “X” will be denoted EPKX
(. . .), while

creating a digital signature with the private key of “X” is denoted signX(. . .) (for brevity, this notation
shall be interpreted to mean that both the signature and the signed data is transmitted).

6.2 Session Initiation

The session initiation process is illustrated in Figure 2, and the session initiation messages are written
out in detail in Figure 3 (see Table 1 for a description of the protocol elements). As mentioned, it is
assumed that the RGW has authenticated itself to ISPRGW in a conventional manner before the session
initiation commences, but this is not considered part of the protocol.

Note that timestamps are used to ensure freshness of messages, in addition to control expiration of
tickets. Each timestamp in the protocol is thus unique and created at the time of message compilation;
this is indicated by an enumeration suffix. The numbering of timestamps has no other significance.

1. When wireless connectivity to the RGW has been established, the RGW will send IPC an ISP
Information Token, containing the IP address and public key certificate of ISPRGW. For conve-
nience, the RGW also includes its own ID in the token. The token itself is not signed, since it will
be followed later by a ticket.

2. IPC replies to the RGW with a signed token containing the ID of the IPC and the ID of ISPIPC.
The information identifying the IPC is combined with a descriptor chosen by the IPC (so that the
IPC has a unique descriptor for each RGW it has been in contact with), and encrypted with the
public key of ISPIPC. This prevents the RGW from learning the true identity of the IPC, and also
from tracking the IPC when it roams to other RGWs, but enables the RGW to recognise the IPC
as a previous visitor if the IPC should return at a later time. We refer to this identifier token sent
by IPC as TIDRGW , since it in effect is a temporary ID for this IPC while connected to this RGW.

Note that since the identity of the IPC is encrypted with the public key of ISPIPC, no other actors
have access to this information.

11

3. The RGW responds with a ticket, TicketISPRGW
, which enables the IPC to contact ISPRGW. This

ticket is signed by RGW, but otherwise sent in clear text, since it basically only is a confirmation
that the RGW has capacity to spare and is accepting connections.

4. The IPC sends a service request containg a Request Origin Token (ROT) and TicketISPRGW

to ISPRGW. The ROT contains information about the IPC (e.g. TID, public key and current
temporary IP address), and is encrypted with the public key of ISPRGW in order to prevent the
RGW from tracking the IPC. ISPRGW can extract the ID of ISPIPC from the TID in the ticket, and
IPC’s public key from ROT. ISPRGW will use IPC’s public key to encrypt the session key which
later will protect the tunnel between IPC and ISPRGW.

5. ISPRGW transmits to the IPC a signed TicketISPIP C
containing among other things the home-

away-from-home address of IPC (MIPah). Buried in this ticket is also an Access Service Ticket
(AST), which is encrypted with the public key of ISPIPC. The AST will be returned to IPC once
the session establishment is approved by ISPIPC (see below). Since the sensitive information in
this ticket already is encrypted, the ticket itself is unencrypted.

6. The IPC sends ISPIPC a signed Session Request containing TicketISPRGW
and the certificate of

ISPRGW.

7. ISPIPC replies with a Session Ticket, containing a session ID and a timestamp. It also contains an
encrypted and signed Service Session Close (SSC) ticket (which the IPC is to use later when closing
the connection), and the Access Service Ticket (AST) which contains the session key between IPC
and ISPRGW. The Session Ticket itself is not encrypted, since further communication is dependent
on knowledge of the session key, not the session ticket.

8. ISPIPC also creates a Session Accept message by signing a combination of the AST, SSC and a
timestamp. The Session Accept message is then sent to ISPRGW.

9. Upon receiving the Session Accept message, ISPRGW transmits a Service Accept message to the
RGW, at which point the RGW allows the IPC to communicate freely toward ISPIPC

5 according
to its Access Service Ticket and Session Ticket.

6.3 Failure Scenarios

Note that in all steps in the above described protocol that involve some kind of verification, a failure will
result in a “deny” (NAK) message that will abort the session establishment.

In the following we describe some examples of possible failure in session establishment. Most of these
failures represent a breach of the security policy.

6.3.1 Capacity of RGW Exceeded

The session establishment proceeds normally until RGW receives the TID (step 2). Upon receiving the
TID, the RGW determines that its capacity has been exceeded, and that it can no longer offer meaningful
service to new customers. Instead of replying with a ticket, it thus transmits a NAK message, and
terminates the connection to IPC.

In case the APO for some reason has decided that it will not do business with a certain ISPIPC, it
will exhibit similar behaviour when it receives a TID which names the ISPIPC in question.

6.3.2 Unrecognized Customer

The session establishment proceeds normally until ISPIPC receives the Session Request (step 6), and
extracts the public key of IPC. This is compared with the public key ISPIPC has on file for IPC, and
in case of a mismatch, ISPIPC transmits a NAK and closes the connection. If, on the other hand, the
public key matches, the signature of the TIDRGW is checked. If the signature is invalid, ISPIPC likewise
sends a NAK and closes the connection. In both cases, it also transmits a Service Level Deny (SLD)
message extracted from the ticket to ISPRGW.

5But remember that the traffic is first tunneled to the home-away-from-home address before being forwarded to ISPIPC.

12

Table 1: Explanation of Protocol Elements

Term Description

ISP info ISP information token;

TIDRGW Temporary ID for an IPC at a given RGW, created by IPC

subIDRGW “Personal” ID for an RGW, chosen by IPC

T icketISPRGW
Ticket allowing the ISP to communicate with ISPRGW

ROT Request Origin Ticket

AST Access Service Ticket

SessionKeyValidity
Specification of how long a session key is valid. This is configurable by ISPRGW, and may
be less than SessionValidity. If a session key expires before the session itself, it will have to
be re-negotiated. This will result in the generation of a new AST.

SLD Service Level Deny

AcceptReject
Structure used by ISPIPC when accepting or rejecting an attempted session initiation. In the
latter case it will extract the SLD and transmit to ISPRGW, otherwise the AST and public
key of IPC is used to create a session ticket.

MIPah

“Home away from home” Mobile IP address. Upon completion of the protocol, traffic from
the terminal will be tunneled securely to this address, and then forwarded to the Home
Agent.

TicketValidity Specification of how long a ticket is valid.

SSC Service Session Close ticket; used by IPC to terminate session

SessionValidity Specification of how long a session is valid. This is configurable by ISPIPC.

6.3.3 Fake Access Point

This is the situation if someone should introduce a fake access point (RGW) with connection to a genuine
ISPRGW.

The session establishment proceeds normally until ISPRGW receives the Service Request (step 4).
ISPRGW will examine TicketISPRGW

, and determine that it has not been signed by an RGW with which
it has a contract. ISPRGW will then send a NAK and close the connection.

6.3.4 Fake Access Point and ISP

A fake access point (i.e. fake RGW), having no relationship with a real ISPRGW, may try to also act as
a fake ISPRGW. The session establishment proceeds normally until ISPIPC receives the Session Request
(step 6). It will first verify the correctness of ISPRGW’s certificate (also checking that it belongs to an
ISPRGW with which it has a contractual agreement), and then the signature of TicketISPIP C

. If either
fails, it will send a NAK and close the connection (there is no point in sending an SLD here, since the
Session Request did not come via a legitimate ISPRGW).

6.3.5 Expired Ticket

All tickets have a predefined expiration time, after which the recipient will reply to the ticket with a NAK,
and close the connection. All other messages that are determined to be too old are treated similarly.

6.4 Handover

The handover process between RGWs will exhibit different characteristics depending on whether or not
the old and the new RGW use the same ISPRGW.

We first describe what happens when an IPC arrives at a new RGW connected to same ISPRGW as
the previous RGW (see Figure 4(a) and 5):

1. As with regular session establishment, the new RGW transmits the ISP Info upon completing the
basic connectivity steps.

13

RGW ISPRGW

ISPIPCIPC

2
. T

ID

3
.
T

ic
k
e
t_

IS
P

rg
w 4. H

andover Service
R
equest

5. H
andover AC

K

6. Service Accept

1
.
IS

P
 I
n
fo

(a) Handover Within Same ISPRGW

RGW ISPRGW

ISPIPCIPC

3
.
T

ic
k
e
t_

IS
P

rg
w

4. Service
R
equest

5.Ticket_ISPipc

6. Session Handover Request

7. Handover Accept

1
.
IS

P
 I
n
fo

8
. S

e
s
s
io

n
A

c
c
e
p
t

2
. T

ID

9. Service Accept

(b) Handover Involving Different ISPRGWs

Figure 4: Handover

1. ISP info

2. TIDRGW

3. T icketISPRGW
= signRGW (TIDRGW , IPterminal, T imestamp10)

4. HandoverServiceRequest = signIPC(ISP info, ASTorig , T icketISPRGW
, T imestamp11)

5. HandoverACK = signIPCRGW
(ASTorig , T imestamp12)

6. ServiceAccept = signISPRGW
(ASTorig , SessionV alidity, T icketISPRGW

, EPKRGW
(SSC), T imestamp13)

Figure 5: Detailed Handover Messages

6. SessionHandoverRequest = signIPC(T icketISPIP C
, SessionT icketorig , T imestamp14)

7. HandoverAccept = signISPIP C
(AST, T imestamp15)

Figure 6: New Messages (with respect to Figure 3) for Handover, Different ISPRGW

2. Since the new RGW doesn’t really need to know that this is a handover, the IPC replies as usual
with TIDRGW .

3. The new RGW replies with a customary ticket for access to ISPRGW.

4. Since the IPC is aware that it already has a connection with a previous RGW, and can see from
the ISP Information Token that the new RGW belongs to the same ISPRGW as before, it then
sends a Handover Service Request to ISPRGW, containing the ISP token, the original AST and the
new TicketISPRGW

.

5. ISPRGW replies to IPC with a Handover Acknowledge.

6. ISPRGW sends a Service Accept to the new RGW.

If the IPC arrives at a new RGW that is not connected to the same ISPRGW as the previous RGW,
the handover process becomes more complicated, and will basically require the same amount of messages
as a session initiation. The only difference is that the IPC does not need to set up a new session with
its ISPIPC. This can be seen in Figure 4(b). The new messages required for this type of handover are
listed in Figure 6. Note that the element named SessionT icketorig in step 6 of Figure 6 is the original
session ticket the IPC received when it first initiated the session.

14

6.5 Faster Handovers

Efficiency is important when it comes to handover, and the solution proposed here may be too time-
consuming in many cases. Fortunately, there is room for improvement. One alternative is to do authen-
tication in advance, prior to the actual handover. This might require the terminal to authenticate to all
access points as soon as they are within range. Another alternative is utilizing delayed authentication; i.e.
accepting unauthenticated connections, but tearing them down if they are not authenticated/confirmed
by a set deadline. The effective time for unauthenticated communication will be limited, resulting in
only a minimal risk of loss of income for the APO.

Due to restrictions in wireless network standards, terminals are not allowed to be connected to two
different access points at the same time. Authentication in advance can therefore not be dependent
on terminals requesting authentication at RGWs using the wireless network. However, other (as yet
unspecified) mechanisms may be used for this purpose. Alternatively, RGWs may be responsible for
pre-authentication. Each RGW could keep a list of neighbour RGWs which are to be contacted for pre-
authentication, for instance by using the wired network. These options, and their security implications,
are to be investigated in future work.

6.6 Session termination

Any party can terminate a session by sending a service session close ticket.

7 Discussion

In the following, we summarize our achievements and discuss our results in reference to other possible
solutions.

7.1 Achievements

Based on the messages involved in session initiation, handover and session termination, trust between
the involved parties is achieved. In general, actors who have a contractual relationship before any
communication takes place will by definition trust each other. Trust establishment between these actors
will therefore not be necessary, but they will need to authenticate each other.

7.1.1 IPC – RGW

The IPC does not need to trust the RGW. The only identity information provided to the RGW is a
temporary ID and the ID of the ISP of the IPC. Without a proper agreement with an ISP, the RGW will
not be able to handle the request and get paid. It may (in theory) function as a ”man in the middle”,
but this will not result in any advantage. It cannot get to the confidential information that is transferred
because it is encrypted, and it cannot communicate at the expense of the IPC since it does not have the
necessary session key.

The RGW has the temporary ID of the IPC, and the APO will thus be able to prove the traffic
sent by this IPC. In theory, if the IPC behaves badly, the RGW would later be able to recognise the
IPC and deny access to communication. However, since the IPC chooses the temporary ID used for
the RGW (subIDRGW), a rogue IPC would likely choose a new subIDRGW for the next visit, and
continue misbehaving with impunity. In order to effectively block misbehaving IPCs without sacrificing
anonymity, some mechanism must be introduced that controls how subIDRGW is selected. This remains
an area for further study.

If the behaviour of the IPC justifies this, the APO will initiate action towards its ISPRGW, which in
turn will use its contractual relationship with the relevant ISPIPC in order to determine the real identity
of the IPC. The specific procedures related to such “abuse-cases” will be subject to rules from relevant
regulatory bodies.

The APO will have access to the home-away-from-home address of the IPC, MIPah, and will thus
be able to track the IPC if it roams to a nearby RGW belonging to the same ISPRGW. MIPah is a
dynamic address, however, and will not be reused in future sessions.

15

7.1.2 IPC – ISPRGW

The IPC knows which ISPRGW is bridging its traffic, and knows that ISPIPC accepts this ISP. The IPC
is also able to prove the amount of traffic that has been sent via this ISPRGW, and has confirmation that
the ISP has approved the communication. The ISPRGW will not know the true identity of the IPC, but
will know the public key of the IPC. This means that it will be able to recognise the customer.

ISPRGW has proof that the IPC is a customer of ISPIPC and that ISPIPC will honour any obligations
made by this customer. ISPRGW will also be able to prove the amount of traffic that has been sent by
the customer.

7.1.3 IPC – ISPIPC

These actors will have a contractual relationship. Authentication is performed using digital signatures
in accordance with the chosen PKI.

Both actors will be able to prove the amount of traffic that has been sent, but ISPIPC will not know
the real location of its customers.

7.1.4 RGW – ISPRGW

These actors will have a contractual relationship. Both actors will be able to prove the amount of traffic
that has been bridged, and the RGW has confirmations that the IPCs that are served are accepted by
ISPRGW.

7.1.5 RGW – ISPIPC

These actors have no special relationship.

7.1.6 ISPRGW – ISPIPC

These actors will have a contractual relationship. They will be able to authenticate each other based
on the knowledge of private and public keys. Both actors will be able to prove what services have been
offered.

7.2 Fulfilment of Requirements and Mitigation of Threats

The architecture suggested seems well suited to the task of securing all OBAN partners. The requirements
stated above are fulfilled:

• Each party has an identity descriptor that can be used to uniquely identify the party. (R1)

• Each party gets the information they need to be able to perform their task and prove their case
in the event of a dispute. This is described in section 7.1. Tickets and acceptance messages are
signed by the issuing party to achieve non-repudiation. (R2)

• The different parties only get access to the information that is necessary to fulfill their tasks. As
an example, ISPIPCs do not get the exact location of their customers, they are only able to know
which ISPRGW the customers are connected to. Similarly, RGWs and ISPRGWs do not know the
true identities of IPCs. (R3)

• Signalling data is protected with signatures and encryption where needed, to achieve confidentiality,
integrity and non-repudiation. (R4)

• Handover is supported, and is made efficient when roaming between RGWs connected to the
same ISPRGW. Handover may be cumbersome if roaming between RGWs connected to different
ISPRGWs, so further effort should be spent exploring the options for fast handover described in
section 6.5. (R5)

• Personal equipment of residential user is protected. IPCs are only allowed to communicate via
ISPRGW, and are not allowed access to the local network. This local network must also be protected
by other means by the residential user. (R6)

16

Regarding threats, protecting the core functionality of RGWs reduces the risk inherent in placing the
RGW in premises that are not controlled by an ISP. At the same time, the degree of required trust in
RGWs is reduced since no valuable data is sent through the RGW unencrypted. But the problem with
complex configurations, and thereby complex maintenance has not been addressed. ISPs may choose to
put this responsibility on residential users, if they have the role of an APO. However, residential users
may not have the necessary skills to perform this task, resulting in lower quality of the service offered.
Some sort of ISP involvement would therefore be beneficial.

7.3 Comparison to Common Security Mechanisms

We realize that an OBAN network has sufficiently many points of similarity with existing computer and
telecommunications networks that one could have considered employing commonly available technologies
for Authentication, Authorization and Accounting (AAA), as exemplified by [17] and [18]. Unfortunately,
space does not permit a rigorous comparative analysis between the OBAN security architecture and
commonly available alternatives, but in order to highlight some of the advantages of our architecture,
we present a brief description of one concrete alternative below.

An alternative to our architecture could be to utilize 802.1X [19] and EAP-TTLS [20] for authentica-
tion. Using this solution, authentication of IPCs can still be performed. IPCs wishing access to OBAN
services would send a request to the RGW. This request for service will be tunnelled to a TTLS server
at the ISPRGW which forwards the request to the ISPIPC, which ultimately makes the decision. In many
ways this is a viable solution. The problem with fake access points (“evil twins”) can still be handled,
the IPC will only get access to OBAN services if a relationship with a proper ISPIPC is in place, and
RGWs and ISPRGWs will know that ISPIPC will honour any obligations made by this customer. This
solution has, however, some weaknesses compared to the security architecture suggested in this paper,
particularly when it comes to proof of events. This is related to the introduction of the new party APO.

The advantages of the security architecture suggested for OBAN are as follows (these advantages
relate to the description above, but are also relevant with respect to e.g. Diameter [18]) :

• ISPRGW will not know the true identity of the IPCs that are served.

• The identities of IPCs are available in a form that can be used for identification in case of dispute.

• IPCs are able to know which RGW that has been used.

• RGWs are able to prove which IPCs have been served and how much resources have been consumed
by each IPC. This can be done without relying on logs of other parties.

• All the parties will have access to all tickets and acceptances that will be relevant in case of dispute.
As an example, the RGW receives an acceptance message that confirms that ISPRGW has accepted
the customer’s request for service. In the same way the ISPRGW receives an acceptance message
that confirms that ISPIPC has accepted the request and serves the IPC involved. These messages
have been signed by the relevant party and can be saved for later use.

• The signed tickets and confirmations provide non-repudiation.

• Data is encrypted all the way to the ISPRGW, not only to the access point.

• There is no need for a shared secret between ISPs and RGWs.

7.4 Business Opportunities

As a result of the work with OBAN, one now has a security architecture that is able to support a
completely new party within communication services, namely the APO. This opens up new business
opportunities. There is no longer a need to connect directly to some ISP to be able to roam. One can
still use well known charging mechanisms, and this is possible without lowering security requirements. For
ISPs this means possibilities for faster provision of higher capacity networks with a reduced need for heavy
investments. Resources controlled by other parties can be utilized; this may also reduce maintenance
costs. Some companies may specialize on administering end equipment like RGWs, while others may
specialize in providing connectivity at larger distances. This may yield more effective communication
provision, resulting in lower cost for all.

17

8 Conclusion

This paper has presented a security architecture for an Open Broadband Access Network. The idea of
Open Broadband Access Networks is in itself appealing, since already available capacity can be used more
efficiently. The architecture suggested is able to fulfil the security requirements in an OBAN environment.
In addition, the architecture makes it possible to introduce a new party between the customer and the
ISPs, without sacrificing security. This may again open up new business opportunities.

Acknowledgment

This paper is based on joint research in the EU 6th framework programme. The authors would like to
thank all the participating OBAN partners for their contribution to the discussions leading up to the
security architecture.

References

[1] E. Edvardsen, T. G. Eskedal, and A. Årnes, “Open access networks.” in INTERWORKING, ser.
IFIP Conference Proceedings, C. McDonald, Ed., vol. 247. Kluwer, 2002, pp. 91–107.

[2] Information technology – Telecommunications and information exchange between systems – Local
and metropolitan area networks – Specific requirements – Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std. 802.11-1999, 2003.

[3] OBAN Consortium. [Online]. Available: http://www.ist-oban.org

[4] E. Edvardsen. (2004) Fixed and Mobile Convergence. BroadBand Europe 2004. [Online]. Available:
https://medicongress.be/UploadBroad/Session%2009/Paper%2009-01.pdf

[5] T.-G. Eskedal, R. Venturin, I. Grgic, R. Andreassen, J. C. Francis, and C. Fischer, “Open Access
Network Concept, a B3G Case Study,” in Proceedings of 13th IST Mobile & Wireless Communication
Summit, 2003.

[6] G. Hoekstra, O. Østerbø, R. Schwendener, J. Schneider, F. Panken, and J. van Bemmel, “Quality of
Service Solution for Open Wireless Access Networks,” in Proceedings of 14th IST Mobile & Wireless
Communications Summit, 2005.

[7] LinSpot. [Online]. Available: http://www.linspot.com

[8] G. Fleischmann. (2005) “My Evil Twin”. [Online]. Available: http://wifinetnews.com/archives/
004718.html

[9] G. Ollmann. (2004, September) “The Phishing Guide – Understanding & Preventing
Phishing Attacks”. NGS Software. [Online]. Available: http://www.ngssoftware.com/papers/
NISR-WP-Phishing.pdf

[10] F. Steuer, M. Elkotob, S. Albayrak, H. Bryhni, and T. Lunde, “Seamless Mobility over Broadband
Wireless Networks,” in Proceedings of 14th IST Mobile & Wireless Communications Summit, 2005.

[11] C. E. Perkins, “Mobile IP,” IEEE Communications Magazine, vol. 40, no. 5, pp. 66–82, 2002.

[12] J. Cai and D. J. Goodman, “General packet radio service in GSM,” IEEE Communications Maga-
zine, vol. 35, no. 10, pp. 122–131, 1997.

[13] J. F. Huber, D. Weiler, and H. Brand, “UMTS, the mobile multimedia vision for IMT 2000: a focus
on standardization,” IEEE Communications Magazine, vol. 38, no. 9, pp. 129–136, 2000.

[14] IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed Broadband
Wireless Access Systems, IEEE Std. 802.16-2004, 2004.

18

[15] T. J. Wilke and T. H. Johannessen, “Multilateral Security for IP-Service Provisioning in Open
Broadband Access Networks,” in BWAN 2005, International Workshop on Broadband Wireless
Access Network on fixed network. IEEE COMSOC, June 2005.

[16] B. C. Neuman and T. Ts’o, “Kerberos: an authentication service for computer networks,” IEEE
Communications Magazine, vol. 32, no. 9, pp. 33–38, 1994.

[17] C. T. de Laat, G. M. Gross, L. Gommans, J. R. Volbrecht, and D. W. Spence, “Generic AAA
Architecture,” RFC 2903, August 2000.

[18] P. R. Calhoun, J. Loughney, J. Arkko, E. Guttman, and G. Zorn, “Diameter Base Protocol,” RFC
3588, September 2003.

[19] Port-Based Network Access Control, IEEE Std. 802.1X-2001, 2001.

[20] P. Funk and S. Blake-Wilson, “EAP Tunneled TLS Authentication Protocol Version 1 (EAP-
TTLSv1),” Internet-Draft (Work in progress – expired), February 2005.

19

A Security Analysis on JADE(-S) V. 3.2

Regine Endsuleit and Jacques Calmet
Universität Karlsruhe (TH)

IAKS
Germany

Abstract

In this paper we present a security analysis on the multi-agent platform JADE in its version 3.2
as well as on its security plug-in JADE-S. Besides a classification of possible and well-known attacks
on the system we also provide a discussion on what is still missing in JADE-S and which parts of the
implementation appear to be at least obscure if not insecure. We also present some Denial-of-Service
attacks which we have implemented and successfully tested.

Key Words: JADE, Multi-Agent System, Security Analysis, Denial-of-Service Attacks

1 Introduction

JADE [6] is the better known and most often used platform to implement multi-agent systems. The
question whether JADE is a secured platform is often asked and routinely answered as “it is not yet
secure but works to this aim, such as JADE-S, are under way”. Moreover, as in other systems there is
still the opinion that security is achieved on another system level and that it is not the responsibility
of the platform to defend against attacks. We do not agree with this opinion since only attacks from
outside the system are considered in this case.

The project [3] leading to this paper did aim at assessing the JADE security features and possibly
to suggest a new architecture for a new platform, better suited to security needs. The assessment part
is already so involved that the latter part of the program has been postponed.

The word “security” when standing alone has a few meanings, indeed security is always with respect
to well-identified threats. In most cases there is a trend to identify security with authorization and
authentication. These concepts are bounded, with additional features, into firewalls. Then, cryptography
delivers very efficient methods to secure messages or bases of data or knowledge. All these aspects are
obviously part of agent security mechanisms but agents are sometimes mobile and this leads to specific
threats. There have already been publications suggesting to define several classes of security for IT
methodologies. In the context of agent technology we consider three main classes.

1. External security: This is the usual concept of security for any software system. It covers the
keywords mentioned above such as firewall, authentication, authorization and encryption. In a
classical architecture approach to system design, this level is shown as a security layer of the
architecture. Its goal is the protection against attacks from outside the system.

2. Internal security: This refers to the integrity of the components of the software once its external
security has been enforced but broken. Some facets are for instance intruder detection and/or
neutralization. In a system architecture representation of agent systems, this level would translate
into software modules and methodology but not into a layer of the architecture.

3. Integrity and Privacy: This class contains methods to protect the system’s state’s integrity. It is a
kind of second layer on external security which should allow the system to degrade gracefully once
the external security has been broken or malicious parties are part of the system. The necessary
methods are pretty efficient given the state-of-the-art of the algorithms used in cryptography (AES,

20

hash functions, digital signatures). This level does not show up in any system architecture except
possibly as a cryptography module.

Since we want to assess whether JADE is “secure” in the sense of those three classes, we specify
security to threats specific to agents. They are listed in the body of the paper. We purposely omit the
level of protocol security although work on this topic is going on in our group. At present, available
methods allow checking, for instance, the integrity of circuits but are not generic enough to be included
into a general classification. A motivation for this investigation is that we have designed new methods
to enforce security concepts for mobile agents [4, 5] and are working on concepts of virtual knowledge
societies and corporate knowledge [8] that are implemented mostly on JADE. It is required to assess
how secure is the platform used to implement security features or company management concepts. It is
surprising that no such assessment has been published within the last years, or at least we could not find
any. The attacks we will present refer to JADE version 3.2. While writing this paper a new version has
been published, but we expect the main security riks to be still existing. As the reader will see later-on,
the elimination of those risks requires fundamental changes of the system’ design.

The paper is structured as follows. Section 2 presents the facets of JADE that are relevant when
analyzing possible attacks. Moreover, we give a classification of attacks which are possible when using
JADE without JADE-S. Then, in section 3 security in JADE-S is outlined, at least what is known as of
today. We continue in this section with an overview on the threats classified in section 2 that are still
possible when JADE-S is installed. The following section 4 presents two attacks on JADE which we have
successfully implemented. Finally, we discuss the main results of our analysis and an give an evaluation
of JADE-S.

2 A Classification of Attacks on a JADE platform

Although having been announced, JADE 3.2 does not provide a security plug-in for mobile agents. Indeed,
the implemented plug-in JADE-S supports authentication of users and agents, rights management as well
as encryption and signature of messages, but exclusively in a static scenario. If one wishes to use mobile
agents, there is no security available. However, it is worth it to make an analysis of the possible threats
in JADE since mobility is a desirable and favored feature in a multi-agents system and one can count
on numerous platform operators taking the risks of using JADE without the security plug-in. Therefore,
this section is devoted to a classification of possible threats arising in an unprotected system.

We do not consider dependencies on Java Virtual Machines (JVM) because there is no direct con-
nection to JADE. But one should keep in mind that running different programs in one JVM may cause
security problems as those programs share their memory. Instead, we will concentrate on Java Reflec-
tions, a powerful tool used by JADE to load and execute agents. However, it enables malicious parties
to spy on other agents and to manipulate them.

Before presenting possible attacks we briefly review the possible consequences of being able to access
classes and interfaces of the currently running JVM [1]:

• One can determine the class of an object.

• It is easy to gain information about fields, methods, constructors and modifiers of a class and its
super class.

• One can find out which constants and method declaration belong to the same interface.

• One can generate instances of a class whose names become public only at runtime.

• One can look onto and change the content of a class’ field although the field’s name is only known
at runtime.

• It is possible to call methods of an object, whichs name is unknown at compile time.

• Arrays with unknown size at compile time can be manipulated.

JADE uses the Reflection API to load and execute agents, filters and other dynamic objects at runtime.
Without any security all mechanisms mentioned above can be applied to private classes, fields and

21

methods. An attacker needs a reference on the specific instance only. He can get a proxy instance
for the current container and read the private field myImpl which contains a valid reference on the
attacked agent’s container by calling this.getContainerController(). Now, the attacker may access
and manipulate all data. Likewise, the call of private methods is possible. Most of the following attacks
make use of this technique.

Agent vs. Platform

• Denial of Service: One component that is vulnerable to DoS attacks is the JADE message system.
The addresses of the latest message receivers are buffered locally in the sending container. On
a large platform an agent could produce a cache overflow by permanently sending messages to
numerous (different) agents. In this case addresses of the receiver must be asked for at the agent
management system (AMS) of the platform. This slows down the message transmission of the
attacked container and also results in a distributed DoS (DDos) attack on the AMS if several
attackers in different containers attack their container. In [9] it has been shown that even for
undisturbed communication between different containers communication complexity is growing
fast with the number of agents. Later-on in this paper we will show that a DoS attack causes
significant delays in message transportation.

• Trojan Horse: Usually, an agent is executed with the operating system priviledges of the user that
started the system. In case those rights have been set up professionally, JADE settings only can be
changed and program file (.jar archives) can be compromised. But in case the platform is started
by a user with administrator privileges (which is not unusual on a Windows PC e.g.) an arbitrary
agent could use those privileges to corrupt the whole system.

• Weed: Weeds are agents with no meaningful functionality which could be used for a DDoS attack
just by existing in large numbers and thus cause a high system load. Detecting such agents is very
difficult in JADE. There is a graphical user interface available that primarily aims on searching
for errors during programming. Besides the problem to decide whether an agent has a meaningful
functionality, monitoring a large number of agents causes an information overload that cannot be
managed by the administrator. Thus, it is not helpful in getting overview of the executing agents
properties.

• Flying Dutchman: An agent that cannot be terminated is called a flying Dutchman. Without the
security plug-in JADE-S there are no restrictions for agent mobility or cloning of agents. In JADE
the state of an agent is manipulated by methods of the basic class Agent. For instance the method
Agent.doDelete() contains instructions to change the agent’s state and to end the agent’s thread.
As many other methods and fields of this class this one is not declared final. This implies that
the agent is able to overwrite this method and neither to change his state nor to terminate itself.
This attack has been successfully implemented as we will present later-on.

Agent vs. Agent This class of attacks also contains the possibility of indirect attacks which means
that a malicious agent first manipulates the platform, and then attacks other agents.

• Denial of Service: There are two kinds of attacks

1. Direct attacks: In this case an agent is flooded with messages and queries which bars it from
following its original task. Another possibility is to modify e.g. behaviours or internal data of
an agent. In case of terminating the functionality of the agent this counts as DoS attack, too.

2. Indirect attacks: This includes to manipulate the platform in order to disturb an agent. For
example it is possible to suspend or to terminate the agent.

• Spoofing/Man-in-the-middle: This class of attacks is difficult for parties which are outside of the
platform since it is necessary to intercept message packages on the level of TCP/IP. Within the
platform messages can be intercepted and manipulated by the container. This attack has been
implemented and the results will be shown in section 4.

22

• Takeover: By means of Java Reflections one can add arbitrary new behaviours to an agent. Those
stay part of the agent even if it migrates to another container. This implies that the agent is
still under foreign control after having left the host on which it has been infected. Adding a new
behaviour only requires an object reference on the attacked agent as provided by the public method
agent.addBehaviour(). The basic class Agent does not check any additional requirements. A
simple solution to this problem could be the restriction to allow new behaviours only within the
same thread since each JADE agent is represented by one specific thread.

Platform vs. Agent

• Code/Data Alteration: A meaningful manipulation of an agent’s code or data requires an analysis
of the agent’s functionality. Since JADE is based on Java this is not really problematic. Java byte-
code can be nearly lossless recompiled into its source code. If one just wishes to create another
functionality this is even simpler.

• Code/Data Peeping: These attacks are a subset of the code and data alteration. They work
passively by spying on code and data and do not change anything.

• Replay Attacks: Messages can be delayed, deleted, stored, changed and sent repeatedly. This
attack, too, will be presented in detail in section 4.

• Malicious Routing: In case an agent wishes to migrate he asks the responsible platform service
for a transfer to the designated new host. The service may respect this wish or ignore it. When
arriving somewhere the agent can ask for the identity of the current host but it must trust the
integrity of the local implementation. It is very easy to mislead an agent by substituting its wished
destination. Moreover, an agent using the mobility service deallocates and reinitializes components
like GUI or other local resources automatically. This enables to initiate an ”external” migration
without the agent’s knowledge. This can only be prevented by overwriting the responsible methods
in his super class Agent and thus behaving non-compliant.

• Misinformation/Denial of Service: This class of attacks contains a variety of possibilities to disturb
an agent in completing his task. The agent management system (AMS) could be used to suspend
or terminate agents. Also disturbing an agent’s communication is part of this class. Wrong infor-
mation could be provided to the agent through manipulated messages or direct manipulation of its
database.

3 The Security of JADE with JADE-S

As mentioned above, JADE version 3.2 provides a security add-on, JADE-S. When announced JADE-
S was supposed to support mobility. In fact, it does not. Only message encryption, signing and the
introduction of a security policy for users and their agents have been included. A security manager aims
at preventing agents from manipulating each other or the platform. This goal is not fully reached because
both JADE and JADE-S do not use signed .jar archives and lack an integrity check of their code. This
introduces the danger of ordinary attacks compromising the JADE installation via viruses, worms or
with other means. Most of the security mechanisms JADE-S offers fail to take into account internal
attackers with access to the platform who run ”their” host maliciously. The only thing preventing more
damage in this scenario is the lack of mobility support in combination with JADE-S. But, since JADE-S
is not usable together with mobility there is still no security in the mobile scenario at all. As discussed
before, the latter will be the most popular since mobility is a very powerful feature. As a consequence
most of the started platforms will still remain completely unsecured.

In the remainder of this section we will first discuss some existing risks that could be used by an
attacker to acquire rights within the platform which are necessary for a successful attack. Then, we
continue with a listing of attacks similar to that of section 2 that are still possible when using JADE-S.

3.1 Weaknesses of JADE(-S)

1. JADE(-S) archives are not signed. This implies that malicious hosts can join the platform with a
manipulated installation without being detected.

23

2. There is a JADE login module plaintext which allows to store passwords unencrypted. This ”fea-
ture” is meant only for the installation and test phase. But assuming a non-professional administra-
tor it is thinkable that for reasons of simplicity, ignorance or even laziness this setting is maintained.
The consequences are fatal.

3. Login is possible via command line in a shell or via plaintext storage in a configuration file. This
enables an attacker to spy on passwords by having a look at the shell history or into the configuration
file. Even if one uses the password modules Kerberos, Unix or NT instead of plaintext the passwords
are temporarily unencrypted and accessible.

4. Weak passwords are a widespread problem. But as other systems do not allow more than three
unsucessfull attempts to login, JADE only logs such events. It is questionable whether those log
files are checked in time or even regularly.

5. The JADE rights management could cause problems in case one computer is used by several
persons. This mainly happens if

• the operating system does not enforce ownership rights as for example with FAT16/32,

• the user is not used to handle ownership rights correctly (mainly a problem with Windows
users since they are nearly forced to login with administrator rights),

• JADE or configuration files are stored in group directories.

6. Depending on the task assigned to an agent it may be necessary to provide it with some extended
rights with regard to program execution, network access and hard drive access. While the latter
can be easily restricted to some specific files or directories, the right to execute programs is too
dangerous to be ever granted.

7. As any other system, JADE(-S) is in danger of viruses, worms and Trojan horses. Such attacks
are very common nowadays and hard to fight (see e.g. [7]).

3.2 Attacks on JADE(-S)

Agent vs. Platform

• Denial of Service: With JADE-S all DoS attacks which aim on flooding agents or containers with
messages are still possible. There is only one restriction: The attacker must have a valid account
for the platform. There is no protocol instance dealing with such security problems. This means
an attack as well as its source must be detected manually which is nearly impossible in case of a
distributed DoS attack.

• Weed: There is still no possibility to detect such attacks.

• Flying Dutchman: JADE-S does not check whether an agent obeys to a termination order. Still,
the only possibility to force an agent to terminate itself is to put each agent in its own container and
to end the container. This very ”naive” solution causes a significant increase in communication
complexity since for each communication the AMS must be asked for the receivers’ addresses.
Moreover, for each container a new JVM must be started which requires a lot of resources. The
only solution would be a new implementation of the class Agent in which all critical system functions
are declared final.

In version 3.2 the rights management at least prohibits cloning of agents. This prevents a part of the
original attacks on JADE. In a future version of JADE-S one should not forget to refuse a migration
during the termination process.

Agent vs. Agent

• Denial of Service: Besides an access control JADE-S has no tools against DoS attacks from within
the system. For instance, there is no limitation for the bandwidth of agents. The only way to
prevent from such attacks would be to prohibit communication at all.

24

Platform/Host vs. Agent In the previous paragraphs we could assume the JADE-S mechanisms
itself as uncorrupted because possible attackers had only limited rights on the platform. Now, we have
to change this view. There are two possible scenarios:

1. The container owner or host is malicious

2. The container or host have been corrupted

Both cases imply that a containers security installation may deviate from that of the platform and that
configuration files, passwords or even JADE system files could be corrupted. Anyway, every attack one
could think of is possible since JADE-S does not provide any means to check the system’s integrity.

4 Implemented Attacks

In this section we will present in detail two attacks that we have successfully accomplished.

4.1 Manipulated Communication

Assuming either a malicious host or a successful external modification of the JADE installation the
communication between all local hosts can be compromised. The only presumption necessary is either
to temporarily deactivate the security manager or to be able to execute code with Reflections. How this
could be achieved is described in section 3.1.

In our attack we have inserted an additional filter into the filter chain processing all communication
to and from the current container. The original filter chain is depicted in figure 1.

Filter 1

Filter N

CommandSink

CommandSink
GenericCommand GenericCommand

Filter N

Filter 1

ACL message from

agent A

contains ACL
message

outgoing

outgoing

incoming

incoming

contains ACL
message

ACL message from

agent B

Figure 1: JADE message processing

The message encryption and signature mechanisms offered by JADE-S are implemented as filters
in this chain. No message gets signed or encrypted before passing through the appropriate filter. The
filter, however, will sign/encrypt whatever is passed to him. All messages reach those filters in plaintext.
By inserting one filter each for both directions one can manipulate messages before they get signed/en-
crypted. There are no means for an agent to check whether a message has been tampered in this fashion.
Therefore, the attacker has the ability to

• arbitrarily change the content of incoming messages,

• arbitrarily change the content of outgoing messages,

• drop messages,

• copy a message and resend it changed/unchanged at a later time.

We have implemented a specific filter for each possible attack in the listing above and all test messages
have been recognized as authentic.

25

4.2 DoS Attack on Address Cache

Normally, the address of any target which is not located in the current container has to be looked up by
asking the AMS. To speed up communication and lighten the load on the AMS, every container caches the
last 100 communication targets. On platforms harboring a great number of agents this can be exploited
for a DoS attack. A malicious agent simply has to send messages to more than 100 different agents which
are located in other containers than itself (one additonal container is sufficient) to overflow the cache.
In general, it will be easy to create a container with 101 agents that could be used as communication
targets.

 2

 4

 8

 16

 32

 64

 128

 256

 512

 20 40 60 80 100 120 140 160

m
s

pe
r

ro
un

dt
rip

number of agents

MainContainer 127 KBit
MainContainer 64 KBit
MainContainer 1 MBit

Figure 2: Measurements of the average round-trip time during the DoS attack

For our measurements we changed the official JADE benchmarks [2] in a way that a single agent
is able to send messages to an arbitrary number of receivers. With this presumption we took the time
between sending and receiving the messages. Besides answering messages the receiving agents have no
functionality.

The tests have been performed on two Pentium 4-PCs with 1.8 and 3GHz and 512 MB and 1024 MB
RAM, respectively. Both systems use Linux and are connected by 100 MBit Ethernet. To simulate the
workload of the main container the bandwidth of the first computer has been reduced by the program
tc to the values documented in figure 2 . This computer has only been used for the main container.
Two other containers which contain the sending agent and the receivers, respectively, have been started
on the second computer.

Measurements with a proof-of-concept implementation yielded the results shown in figure 2 (note that
the scale is exponential). However, these results have to be verified in normal use because additional
load on the AMS was simulated by limiting the sending bandwidth of the AMS to the indicated values.
In figure 2 it is obvious that the jump in round-trip time marks the transition from less than 90 to 110
agents thereby creating a cache thrashing effect. Currently this attack is not reasonable under JADE-S
with its lacking mobility support as one could only affect the container in which the sending agent was
created. Technically however nothing prevents this attack under JADE-S. Moreover, one has to expect
the results to worsen significantly in a real environment in which agents as well as their hosts are stressed
with more processes.

5 Discussion

When we decided to analyze JADE, this decision was based on three reasons mainly:

26

1. JADE is an open source project and thus we thought it would be easy to gain detailed information
about the systems implementation.

2. JADE is well-known, broadly used and conform to the FIPA standardization.

3. It was announced that version 3.2 (which came out in July 2004) would provide a security plug-in
which supports agent mobility.

It turned out that with respect to 1. and 3. we were mistaken. While there is a usage-manual available
for JADE-S, information about design and implementation is very scarce. Direct email to the developers
yield some information but largely the recommendation to participate in the development and thereby
gain more knowledge of the internals. In general most documentation on JADE is only about basic
usage. This does not create trust in the JADE security. Concerning mobility JADE-S does not support
any in this version. On the one hand a lot of security problems can thus be avoided but on the other
hand mobility is a popular feature in multi-agent systems and this lack will lead to various completely
unsecured platforms. Moreover, it is questionable whether secured mobility can be integrated into the
existing implementation at all. In our opinion the developers have discovered this problem too and,
therefore, made no efforts to do so.

Besides these two remarks we wish to draw attention on the following problems:

• Storage of Private Keys: When looking at the source code, JADE reveals some oversights in its
implementation. According to comments in the sources it is planned that some keys for encryption
or signing can be handled persistently by the platform. To prevent an extraction of these keys
from either memory or disc, they should be stored encrypted. The implementation indicates
that java.security.KeyStore will be utilized to accomplish this. However, the current (partial)
implementation holds local copies of the concerned keys which defeats the purpose at least for
memory protection.

• Credentials: Another issue which shakes the faith in the current implementation of JADE-S are
repeated comments containing ‘FixMe’-remarks concerning the handling of credentials. As basis
of the rights-management system that JADE offers it should at least be noted in the manual or
release notes, if some parts are only half-implemented.

• Weed Agents: JADE-containers do not enforce the termination of agents. In case its container
calls the agents method .doDelete() the agent should be terminated. This method however is not
declared final and can therefore be changed. Currently, the only secure way to kill an agent (even
with JADE-S enabled) is to destroy the corresponding container. Agents can therefore consume
computing power without easily being destroyed. If not fixed this could mean a serious problem
with DoS attacks, once mobility is available for JADE-S.

Our overall evaluation of JADE(-S) is the following: Considering the security classes presented in the
introduction, we must say that JADE only provides some mechanisms for external security. It seems as if
intruders and, even worse, possibly malicious parties are not regarded as a real thread. Even presuming
the implemented mechanisms for authentication, signing and encrypting as secure, this is far away from
a system that can be used for any sensitive application.

References

[1] Campione, M., and K. Walrath, The Java Tutorial, Second Edition: Object-Oriented Programming
for the Internet, Addison Wesley Publishing Company, 1998.

[2] Cortese, E., Benchmark on JADE Message Transport System. URL:
http://jade.cselt.it/doc/tutorials/benchmark/JADERTTBenchmark.htm, 2005.

[3] Dreyer, U., Agenten und Server – Sicher unter JADE(-S)?, Diploma thesis, Universität Karlsruhe
(TH), Institut für Algorithmen und Kognitive Systeme, March 2005,

[4] Endsuleit, R., and T. Mie, Secure Multi-Agent Computations, “Proc. of Int. Conf. on Security and
Management”, CSREA, 149–155, 2003.

27

[5] Endsuleit, R., and A. Wagner, Possible Attacks on and Countermeasures for Secure Multi-Agent
Computation, CSREA “Proc. of Int. Conf. on Security and Management”, 221–227, 2004.

[6] Java Agent DEvelopment Framework. URL:
http://jade.tilab.com/community-3rdpartysw.htm, 2005.

[7] Keizer, G., Unpatched PC “Survival Time” Just 16 Minutes, InternetWeek. URL:
http://www.internetweek.com/story/showArticle.jhtml?articleID=29106061, 2005.

[8] Maret, P., and J. Calmet, Modeling Corporate Knowledge within the Agent Oriented Abstraction,
“Proc. of Int. Conf. on Cyberworlds”, IEEE Computer Society, 224–231, 2004.

[9] Shakshuki, E., and Y. Jun, Multi-agent Development Toolkits: An Evaluation, “Proc. of IEA/AIE”,
Lecture Notes in Artificial Intelligence, vol. 3029, Springer Verlag, 209–218, 2004.

28

Digital signature in automatic analyses for confidentiality against

active adversaries

Ilja Tshahhirov
Tallinn University of Technology

Peeter Laud
Tartu University and Cybernetica AS

Abstract

In this article we enhance the technique of static analysis for confidentiality in cryptographic
protocols with support for digital signature operations. The presented technique is an extension of
cryptographic protocol analysis presented by Laud, being similar to Abadi and Rogaway — based on
replacing the cryptographic operations in the protocols with constructs that are “obviously secure”.
The replacements are made in such a way that no insecure protocol becomes secure. The transformed
protocols are then statically analysed; they should be easier to analyse than the original protocol.
Handling the digital signatures is a step in exploring the general approach and making it able to
handle realistic scenarios gracefully.

1 Introduction

A cryptographic protocol is expected to satisfy certain security properties. One of them is confidentiality
— whether the adversary is able to gain some information about the secret messages transferred during
the execution of the protocol.

There are techniques for automatic checking the confidentiality of the protocols. Our work is an
extension of analysis presented by Laud [11] to the digital signature primitive. Our main contribution
is extending the programming language of protocols analysed in [11] with operations for generating and
verifying digital signatures, extending and adjusting the rest of the analysis appropriately. The correct-
ness of this transformation is based on the security definition of signature scheme. This contribution
gives a completely automatable method of analysing protocols for the preservation of confidentiality of
secret messages, the results of the analysis are correct in the computational model, even when considering
active adversaries.

This paper has the following structure. After reviewing some related work in Sec.2 we state the
security properties of the considered signature scheme in Sec. 3 and extend the protocol language in Sec. 4.
We give the security definition of the protocol in Sec. 5. In Sec. 6 we describe our main contribution
— a protocol analysis extension to digital signature primitive. Last, we describe a very simple and
conservative information flow analysis in Sec. 7 that is nevertheless quite successful in analysing the
protocols. We give an example of analysis in Sec. 8.

2 Related Work

The results presented in this paper belong to a body of work attempting to reconcile the two main
approaches for modelling and analysing cryptographic protocols — the Dolev-Yao (or “formal”) model
[8] and the complexity-theory-based (or “computational”) approach [15]. Indeed, the semantics of our
protocols is defined in terms of the computational model, while the analysis is closer to the formal model.
The work in this area has been started by Abadi and Rogaway [1] who considered the relationship of
formal and computational symmetric encryption under passive attacks. The same primitive and class of
attacks has been further considered in [2, 14, 10, 13, 3], in these papers the language has been expanded
(the constraints have been weakened) and the security definitions have been clarified.

If active adversaries are considered as well then the reconciliation approaches have mostly considered
asymmetric primitives and/or integrity properties (i.e. properties of execution traces). Hence the digital

29

signatures are one of the most-investigated primitives in this setting. Note that it only makes sense to
consider digital signatures in settings where the adversary is active because a passive adversary cannot
forge anything. Several implementations of digital signatures and related functionalities (certification,
etc.) have been proposed in the reactive simulatability / universal composability framework [4, 5, 6].
Both the reactive and non-reactive frameworks attempt to analyse a protocol in two steps. The first step
is to translate the protocol to a form that is more similar to the Dolev-Yao model and hence more easily
analysed; and the second step performs the actual analysis. The second step can provide no information
to the first. In contrast, the framework that we use [11] performs both steps in parallel, thereby having
the potential to achieve better precision.

3 Basic Cryptographic Notions

A function f : N → R is negligible if for all positive polynomials p there exists n0 ∈ N such that for all
n ≥ n0, |f(n)| < 1/p(n). The cryptographic algorithms work with bit-strings, we denote the set of all
bitstrings with Σ.

A signature scheme is a triple of polynomial-time algorithms (G, S, T). G and S are probabilistic,
T is deterministic. Here G is the key pair generation algorithm, S is the signature generation algorithm,
and T is the signature verification algorithm. All algorithms take the security parameter n (represented
in unary — 1n) as an argument. Additionally, S takes two more arguments — secret signing key and
message to sign. Also, T takes three more arguments — public test key, signature, and message to verify
this signature with.

Let msg ∈ Σ. For all pairs (sk,pk) that may be returned by G and for all signatures s that may be
returned by S(1n, sk, msg), the algorithm T(1n, pk, s, msg) must return true. This definition only states
that T should recognize signatures, correctly generated with S. We also want the signature system to be
secure, i.e. forging the signature without possessing the secret key should be hard.

The signature oracle Osig(·) used in the security definition below is defined as follows (the security
parameter n is assumed to be fixed):

• During the initialization, Osig generates the key pair (sk, pk) by invoking the G(1n), stores it in
memory, and outputs the public key pk.

• Upon request to sign the message m, Osig(m) produces the signature by invoking the S(1n, sk, m)
(the sk stored during the initialization is used) and returns it.

The signature scheme (G, S, T) is called existentially unforgeable under adaptive chosen message
attack (ACMA) if for every probabilistic polynomial-time (PPT) machine Asig that interacts with the
signature oracle Osig(·) based on this scheme the following holds: The probability is negligible (in n)
that Asig finally outputs two values m and s (meant as a forged signature for the message m) with
T(1n, pk, s, m) = true and where m is not among the messages previously signed by Osig(·).

Both these definitions are similar to the ones used in [5], with the only difference that the maximum
number of signatures ns that can be generated with key pair is passed to the signature oracle as an
intialization parameter in [5]. As the number of signatures generated during the execution of the protocol
subject to the analysis is bounded (one of the key assumptions in the original analysis - [11]), we assume
that ns is sufficiently large and omit ns from further consideration.

One more property we require for this analysis is that the signature generation algorithm should
return different signatures each time (this property is required in order to analyse all the signatures
separately while replacing the signature test operations). It can be formalized as follows. Consider the
oracle S(1n, ·, ·). This oracle invokes the signing algorithm taking both the message to be signed and the
secret key as arguments. We require that no adversary can cause (with non-negligible probability) the
oracle S(1n, ·, ·) to give the same answer to two queries.

A signature scheme satisfying the last requirement can be constructed. Let (G′, S′, T′) be any signature
scheme existentially unforgeable against ACMA (such systems exist under standard assumptions, see [5]).
We construct the signature scheme (G, S, T) as follows:

• G is equal to G′.

• S(1n, sk, m) first generates the signature s by invoking the S′(1n, sk, m). Then, it generates a
random bit-string r of length n and outputs (s, r).

30

• T(1n, pk, (s, r), m) just returns the result of T′(1n, pk, s, m). Note that r is thrown away. As we do
not assume that adversary is unable to generate another valid signature for already signed message,
the only function of r is to randomize the generated signature.

Obviously the probability that S returns the same answer twice is bounded from above by q2/2n,
where q is the number of queries that the adversary makes to S(1n, ·, ·). It is negligible, because q is
at most polynomial in n. It is also obvious that the resulting signature scheme remains existentially
unforgeable against ACMA.

4 Syntax and semantics of a protocol

Protocol, as it is understood here, is a set of programs performing certain computations over the values
known to them (computed or received over the network) and exchanging messages. Additionally, there
are long term secrets known or shared by participants, initialized prior to the start of the protocol. Let
the set Var include all the variables used in the protocol.

P ::= k := gen key | y := (x1, . . . , xm) | x := πm
i (y)

| x := encrk(y) | y := decrk(x) | x := random

| send x | x := receiveℓ | check(x = y)
| x := constant(b) | x := y | kp := gen key pair
| pk := public key(kp) | sm := signkp(m) | testpk(sm)
| m := get signed msg(sm)

k, x, x1, . . . , xm, y, kp, pk, m, sm are variables from a set Var and b is a function mapping the security parameter
to some bit-string.

Figure 1: Statements

A program is a sequence of statements. The statements allowed in the programs are defined in Fig. 1.
The semantics of the most of the statements is trivial. kp := gen key pair generates public-secret key
pair, which may be used for signing the messages. pk := public key(kp) extracts public key from the
key pair. sm := signkp(m) generates signature for the message and returns the signed message. Both
public key(kp) and signkp(m) get stuck (the execution of correspondig participant is stopped) if kp is not
valid key pair. m := get signed msg(sm) extracts the message itself from the signed message; gets stuck
if sm is not signed message. testpk(sm) gets stuck if sm was not correctly produced by sm := signkp(m)
(pk is public key(kp)); it also gets stuck if sm is not signed message or kp is not valid public key.

More detailed information on the operations not related to the digital signature primitive can be
found in the [11]. Their modus operandi is similar — they get stuck if something is wrong. In particular,
the i-th projection πm

i gets stuck if its argument is not a m-tuple and check(x = y) gets stuck if the
values of x and y differ. The superscript ℓ of a receive-statement denotes the expected length (as a
function of the security parameter) of the incoming message.

In a protocol, each variable is allowed to occur at most once at the left side of an assignment. Let
Varsent be the set of all variables x, such that the statement send x occurs in the protocol.

The intermediate protocols resulting from the transformation may include some more statements:
semaphores, case-statements, and in ()-statements.

Semaphores (simple synchronization primitives) are implemented using statements signal(s) and
wait(s) (s ∈ Sem is a semaphore). The statement signal(s) records that the semaphore s has been
passed and the statement wait(s) checks whether s has been passed and becomes stuck, if this is not the
case. Each semaphore s may occur at most once in the statement signal(s). The format and semantics
of case-statements are defined in [11]. The inz(x1, . . . , xn)-statement checks whether z is equal to one
of the xi (i = 1. . .n). If z = xi (i = 1. . .n), the execution continues. Otherwise, it gets stuck.

4.1 Protocol execution

We now define what is done during the protocol execution. The emphasis is on the execution of statements
related to the digital signature, other statements are described very briefly. [11] contains full details on
them.

The following notions are used in the description of the protocol execution: Parts — set of (the
names of) protocol participants; ℘(pre) — protocol prelude, Parts′ — Parts ∪̇{pre}, ℘ — protocol —
function mapping each element of Parts ∪̇{pre} to a program.

31

The protocol runs in parallel to the adversary, which schedules the participants and relays messages
between them. Let ASt be the set of all possible internal states of the adversary; the set ASt is
(isomorphic to) some subset of Σ. Adversary A(1n, . . .) implements a probabilistic function An from
Σ⊥ × ASt to Σ × Parts′ × ASt; the running time of A(1n, . . .) must be polynomial in n. Here n is
security parameter, and X⊥ is the set X ∪̇{⊥}. The An takes the message sent to the network, and
returns the message received by a participant executing x := receive at the next moment, as well as the
name of the protocol participant that executes next.

A fixed variable M ∈ Var contains secret message before the execution of the rest of the protocol.
Other variables get their values during the run of the protocol. Let p be a polynomial and let τ be an
efficiently computable injective function from Σ × Σ to Σ, such that τ−1 is also efficiently computable.
Let (G, S, T) be a fixed secure signature scheme. Let keypair, publickey, and signedmessage be certain
fixed bit-strings. The execution of the protocol proceeds as follows.

Initialisation.
The execution state E is the sequence of all the values describing the running state of the protocol.

E contains the values of all initialized variables, but also other quantities like the parts of programs
that are yet unexecuted, the currently executing participant, the message currently in transit (between
a participant and the adversary), and the current state of the adversary. Let ExcSt be the set of all
execution states.

During the protocol initialization the initial values to the components of E are set. It is done exactly
as in the original analysis [11].

Step. During a protocol step, a statement at the head of one of the currently unexecuted parts of
protocols gets executed. Let S be this statement. Here we define what happens if S is signature-related.
Please refer to [11] for the rest.

• If S is kp := gen key pair then invoke (sk, pk) := G(1n), set vkp := τ (keypair, τ (sk, pk)). Also, set
ikp to true. Here vkp is the value of the variable kp and ikp is a flag showing whether kp has been
initialized.

• If S is pk := public key(kp), then parse vkp as (t, x1) := τ−1(kp), and (, x3) := τ−1(x1). If some
invocation of τ−1 fails or t 6= keypair, set rC to false. Otherwise set vpk to τ (publickey, x3) and ipk

to true. Here C is the name of the currently running participant and rC is a flag showing whether
C has not become stuck yet.

• If S is sm := signkp(msg) then parse vkp as (t, x1) := τ−1(kp), and (sk,) := τ−1(x1). If some
invocation of τ−1 fails or t 6= keypair, set rC to false. Otherwise, set vsm to
τ (signedmessage, τ (vmsg, S(1n, sk, vmsg))) and ism to true.

• If S is testpk(sm) then parse vpk as (t1, pk) := τ−1(vpk), vsm as (t2, x) := τ−1(vsm), and (m, s) :=
τ−1(x). If any invocation of τ−1 fails, or t1 6= publickey, or t2 6= signedmessage, set rC to false.
Otherwise, set rC to the value returned by T(1n, pk, s, m).

• If S is msg := get signed msg(sm), then parse vsm as (t, x) := τ−1(vsm) and (m,) := τ−1(x). If
any invocation of τ−1 fails, or t 6= signedmessage, set rC to false. Otherwise, set vmsg to m and
imsg to true.

• If S is inz(x1, . . . , xn) and iz is false, set rC to false. Otherwise, find the first index j, such that
ixj

is true and vxj
= vz. If there is no such such j or ixj

is false then set rC to false. Otherwise,
continue execution.

The steps define a probabilistic transition system over the set of execution states. For each E ∈ ExcSt
there’s certain probability that execution of the protocol (together with the adversary) stops at this step.
This probability distribution over the ExcSt (together with adversary A) is denoted by the [[℘, A]]n.

Fixing the random coin tosses made during the execution of each protocol statement and the adversary
gives us a single state where the execution stops. If those random coin tosses are defined by r (as defined
in [11]), this final execution state is denoted by [[℘, A]]rn.

4.2 An example

To illustrate our language, consider the simple protocol — transferring the public key and signed message
with verification of the signature followed by that. Note that public key is explicitly made known to the
adversary. This protocol is shown in Fig. 2.

32

Protocol prelude the program for A the program for B

KAB := gen key(1)

KPA := gen key pair (2)

PKA := public key(KPA)
send PKA

PKe := encrKAB
(PKA)(3)

send PKe

SM := signKPA
(M)(4)

SMA := encrKAB
(SM)(5)

send SMA

m1 := receivel1(6)

PKB := decrKAB
(m1)

m2 := receivel2(7)

SMB := decrKAB
(m2)

testPKB
(SMB)

Figure 2: Example protocol ℘ in our language

5 Security definition

A probability distribution over some finite or countable set X is a function µ : X → [0, 1], such that∑
x∈X µ(x) = 1. We denote the set of all probability distributions over the set X by D(X). We denote

picking the value of the random variable x according to the distribution D ∈ D(X) by x ← D. The
notation {|E : C|} denotes the distribution of the random variable or expression E with the probability
space defined by C, here C is a list of picking values to random variables and of defining variables.

The definition of the protocol security has not been changed from the original analysis - the protocol
is considered secure if there’s no non-negligible correlation between the final state of the adversary and
the secret message:

{|(E[vM], E[AS]) : E ← [[℘, A]]n|}n ≈ {|(E
′[vM], E[AS]) : E, E′ ← [[℘, A]]n|}n . (1)

The vM is the value of secret message and the AS is the final state of the adversary.

The exact meaning of indistinguishability between two families of probability distributions D =
{Dn}n∈N and D′ = {D′

n}n∈N, denoted D ≈ D′, is following: for all PPT algorithms A, the difference of
probabilities

P[b = 1 |x← Dn, b← A(1n, x)]−P[b = 1 |x← D′
n, b← A(1n, x)]

is a negligible function of n.

6 Analysing the protocols

The analysis of signature operations is done in several steps. First, the protocol is abstractly interpreted
- each variable is assigned a term describing the construction of its value from the atomic values (keys,
key pairs, public keys, signed messages, random numbers, constants, secret message, and advisory’s
input) - this is necessary for tracking the usage of key pairs. This part is described in the Sec. 6.1.
Given the abstract interpretation, the protocol is analysed for the dead code, as described in Sec. 6.2.
Then we attempt to find the key pairs which are not made available to the adversary (this check is
necessary, because exposing the secret key ruins the definition of the signature scheme security). After
the candidate key pair is found, we attempt to do a modification to the protocol, directly following
from the security properties of the signature scheme. Given that without possessing the secret key it
is computationally infeasible to generate valid signature for the message that has not been previously
signed, we can make certain assumptions on the value of the message being tested. In order for testpk(sm)
operation to succeed, sm has to be equal to one of the messages signed with the corresponding key pair,
so we can supply the additional axioms. These additional axioms serve two purposes: first help us in
statically analysing the outcome of testpk(sm) operation, and then they allow taking into the account
the authenticity of the signed data (which may be useful in further extension of the analysis, for instance,
to the public key cryptography, where the public key may be sent unencrypted, but signed). The axioms
are introduced in the form of insm(sm1, . . . , smn), where sm1, . . . , smn are all the messages which have
been signed with the corresponding key pair. Then, the in ()-statement is analysed in the same way
as case-statement - by splitting the original protocol ℘ into branches ℘1, . . . , ℘n, each corresponding
to one of the possible values checked against in the in ()-statement. Finding the key pairs, as well as
transforming the protocol is described in Sec. 6.3.

33

After the modifications are done, the information flow analysis, described in Sec. 7, is applied to
the protocol(s). The process of analysis is iterative — modifications are done until either protocol can
be considered secure or no more transformations are possible — in this case the protocol is considered
potentially insecure.

6.1 Interpreting the protocol

Let all the statements in the protocol be labelled by elements of set Lab. Different statements must
have different labels. For all A ∈ Parts′, let lA be the length of the program ℘(A). Let L℘ (used to
enumerate all the statements in the protocol) be the following set:

L℘ = {(A, i) |A ∈ Parts′, 1 ≤ i ≤ lA} . (2)

Terms are used to track how the values of the variables are constructed from the ”atomic” values.
The definition of terms T ∈ Trm is defined in Fig. 3.

T ::= key(l) | random(l) | const(b) | secret
| tuplem(T1, . . . , Tm) | πm

i (T1) | input(l) | decr(T1, T2)

| encr(l, T1, T2) | keypair(l) | publickey(T1) | signedmsg(l, T1, T2)
| msg(T1)

Figure 3: The set of abstract values

Let I(x) ∈ Trm denote the term assigned to the variable x. We let I(M) = secret , where M ∈ Var
is the variable containing the secret value. The rest of the terms I(x) are defined by examining the
statement defining x. The definition of I(x) for signature-related terms is given in Fig. 4 (for other
terms, refer to [11]). Note that there is no term for test (), as this statement does not affect the values of

x := . . . I(x) is

gen key pair l keypair(l)

public key(kp) publickey(I(kp))

signkp(m)l signedmsg(l, I(kp), I(m))

get signed msg(sm) msg(I(sm))

Figure 4: Definition of the terms I(x)

the variables. Also note that the label of the statement is used as the term argument for those operations
which depend on either random coin tosses or adversary actions. That is necessary in order to be able
to analyse two instances of the protocol executing in lock-step (with fixed coin-tosses).

The semantics of the terms T ∈ Trm are defined by ιrn : Trm→ Σ⊥ (the random choices r ∈ R are
fixed):

• ιrn(keypair(l)) = τ (keypair, τ (sk, pk)), where (sk, pk) is generated by invocation of Gr(l,p)(1n). Here
r(l, p) denotes the random coins in r intended for the legitimate participant at the statement
labelled by l. These coins are used as the random coins for the key generation algorithm. Also,
the generated key pair is tagged with keypair.

• ιrn(publickey(T)) is ⊥ (meaning that the statement defining the variable will get stuck) if ιrn(T) is ⊥.
Otherwise, T is parsed as follows: (t1, kp) := τ−1(ιrn(T)) and (, pk) := τ−1(kp). If t1 is not keypair,
or any invocation of τ−1 fails, ιrn(publickey(T)) is ⊥. Otherwise, it is equal to τ (publickey, pk).

• ιrn(signedmsg(l, T1, T2)) is ⊥ if ιrn(T1) is ⊥ or is not tagged with keypair or ιrn(T2) is ⊥. Otherwise
it is equal to τ (signedmessage, τ (ιrn(T2), S

r(l,p)(1n, t1, ι
r
n(T2)))) where (, kp) = τ−1(ιrn(T1)) and

(t1,) = τ−1(kp). If any of the invocations of τ−1 fails, the semantics of ιrn(signedmsg(l, T1, T2)) is
⊥.

• ιrn(msg(T)) is computed as follows: (t1, x) = τ−1(ιrn(T)) and (t2,) = τ−1(x). If t1 is not
signedmessage, or any invocation of τ−1 fails, ιrn(msg(T)) is ⊥. Otherwise, it is equal to t2.

Let Xr
n ⊆ L℘ denote the set of statements that are actually executed (for the random choices r),

i.e. the execution of the protocol is not stopped before reaching that statement and the participant
containing that statement does not get stuck at or before that statement.

34

Theorem 1. Let x ∈ Var and let l ∈ L℘ be (the label of) the statement defining x. If l ∈ Xr
n or x = M

then
[[℘, A]]rn[vx] = ιrn(I(x)) . (3)

Theorem is proven by induction over the order of executing the statements (determined by r). It
mainly consists of comparing the definitions of the execution step and ιrn. Please refer to [11] for it.

There are rules for deriving the equality and inequality of two terms, denoted by T1 ≃ T2 and
T1 6≃ T2, correspondingly. For example, getting the message body and signing the message cancel out
(under certain conditions). An example of inequality is that different key pairs are unequal. Also, if the
semantics of a certain term is almost always ⊥, we denote it by stuckT .

Fig. 5 presents the axioms and inference rules defining ≃, 6≃ and stuck for terms introduced due to
or affected by the inclusion of digital signature primitive (complete set of rules can be found in [11]).
The syntax of the rules is quite simple - if the premises (above the horizontal line) are satisfied, then the
rule consequent (below the horizontal line) also holds. For instance, the rule (nec) says that the type of
the value that a bit-string represents can be determined from that bit-string. The rules (dif∗) say that
different random bit-strings are different. The rules (inc∗) state that the corresponding operations check
the types of their inputs.

C, C ′ ∈ {key, random , const , secret , tuplen, encr , publickey, signedmsg , keypair}
C 6= C ′

C(. . .) 6≃ C ′(. . .)
(nec)

l 6= l′

keypair(l) 6≃ keypair(l)
(difkp)

C ∈ {key, random , const , tuplen, encr , publickey, signedmsg}

stuck publickey(C(. . .))
(incpk)

l 6= l′

signedmsg(l, T1, T2) 6≃ signedmsg(l′, T3, T4)
(difs)

C ∈ {keypair , publickey, signedmsg}

stuck πm
i (C(. . .))

(incp2)

C ∈ {key, random , const , tuplen, encr , publickey, signedmsg}

stuck signedmsg(C(. . .), T1)
(incs)

C ∈ {keypair , publickey, signedmsg}

stuck decr(T,C(. . .))
(ince3)

C ∈ {keypair , publickey, signedmsg}

stuck decr(C(. . .), T)
(ince4)

C ∈ {key, random, const , tuplen, encr , publickey, keypair}

stuck msg(C(. . .))
(incm)

msg(signedmsg(l, Tkp, TM)) ≃ TM

(canm)

Figure 5: Equality and inequality of terms

We say that T1 ≃ T2 is sound at the statement Sl if the probability

P[l ∈ Xr

n ∧ ιrn(T1) 6= ⊥ 6= ιrn(T2) ∧ ιrn(T1) 6= ιrn(T2) : r ∈R R] (4)

is negligible in n. Similarly, T1 6≃ T2 is sound at the statement Sl if the probability

P[l ∈ Xr

n ∧ ιrn(T1) 6= ⊥ 6= ιrn(T2) ∧ ιrn(T1) = ιrn(T2) : r ∈R R] (5)

is negligible in n. We say that stuckT is sound at the statement Sl if the probability

P[l ∈ Xr

n ∧ ιrn(T) 6= ⊥ | r ∈R R] (6)

is negligible in n. If the statement defining the variable whose abstract value is T is above S then S is
dead.

Theorem 2. All rules in Fig. 5 are sound. I.e. if Sl is a statement of the protocol and all the premises
of some rule are sound at Sl then the consequent of that rule is also sound at Sl.

Proof.

• Rule (nec): the constructors C and C ′ tag the values that they construct with different tags. The
probability of these values being equal is zero.

35

• Rule (difkp): The semantics of two terms in the consequent are two different key pairs. There is
only negligible chance that they are equal (if the probability of two key pairs being equal were
non-negligible then there would be non-negligible chance of guessing key pairs).

• Rule (difs): The semantics of two terms in the consequent are two different signatures. There
is only negligible chance that they are equal (directly follows from the required properties of the
encryption scheme).

• Rules (inc∗): clearly, the semantics of the term in the consequent of the rule is always ⊥.

• Rule (canm): pick r ∈ R in such way that the event described by (4) happens for the premise
(if there are any premises). Such picking disallows only a negligible fraction of possible random
choices. By definition of ιrn, the semantics of a term in the consequence of the rule is either ⊥ or
equal to the semantics of the simpler term. 2

6.2 Removing dead code

In addition to removing the cycles in the execution graph (i.e. cases where wait(s) occurs before signal(s))
and looking for contradictions from ≃ and 6≃, as described in [11], one more technique is introduced -
checking the types of the arguments to test ()-statements. The approach is the same as defined for
the terms in inc∗ rules, however, test ()-statements do not produce terms, so it needs to be specified
separately.

Consider the abstract interpretation of the arguments of statement testpk(sm). If one of the following
is true, then the statement and the code following it is dead and can be excluded from further analysis.

• I(pk) is C(. . .) where C is one of key , random, const , tuplen, encr , signedmsg , keypair .

• I(sm) is C(. . .) where C is one of key , random, const , tuplen, encr , publickey , keypair .

6.3 Transforming the test-statements

The first task is to choose the key pair which can be replaced by black boxes creating signature with
it and getting public key from it - i.e. this key pair may be used only for signing and for public key
extraction. Choosing the key pair means selecting l ∈ Lab, such that keypair(l) occurs in the values of
variables.

In order to introduce the additional axioms prior the test statements, we have to make sure that
adversary is not able to forge signatures (i.e. generate valid signatures that pass test). One conservative
way to do that is to make sure that the key pair does not affect the adversary view. Therefore, the rule
for keypair(l) to be eligible to be chosen is: if the value of some variable x affects the adversary’s view,
then the keypair(l) may occur in I(x) only in context signedmsg(l, keypair(l), T1) or publickey(keypair(l)).
Such variables x are:

• the elements of Varsent;

• the variables occurring in check()-statements for which we do not statically know whether the
comparison succeeds;

• the variables occurring as ciphertexts in decryption statements;

• the variables occurring as keys in encryption or decryption statements

• the variables occurring as key pairs in signing statements (exception: keypair(l) itself may be the
abstract value of I(x));

• the variables occurring as public keys or signed messages in test ()-statements for which we do not
statically know whether the test succeeds or not;

• the variables occurring in the right-hand side of the projection statements for which we do not
statically know whether the projection succeeds or not.

While introducing the additional axioms prior to signature tests with public key corresponding to key
pair keypair(l), we have to make sure that we do not test any signatures that were created with some other
key pair. Since the key pair is never sent out (exception - public key component may be sent out - in this
case part of the signature test statements — the ones which use public key received from the network —

36

will not be removed), we know exactly where it is used. Let sm1 := signkp1
(m1), . . . , smn := signkpn

(mn)
be all statements that I(kp1) ≃ . . . ≃ I(kpn) ≃ keypair(l). If testpk(sm) is a signature testing statement
in the protocol such that I(pk) ≃ publickey(keypair(l)), then add the following code before it (assuming
that tmp is a variable not occurring in the protocol):

tmp := get signed msg(sm)
intmp(m1, . . . , mn)

By the security property of the signing oracle (existential unforgeable under ACMA), the chances
that adversary is able to generate signature that will pass is negligible, so either the testpk(sm) will fail
or value of the m will belong to the set of messages signed with the appropriate key pair.

The final step is removing the in (). This removal results in one or more protocols, such that the
security of all of them implies the security of the original protocol. If the second argument of the in () is
an empty set, this statement is a dead code, which (along with the code following it) should be excluded
from further analysis.

Let IN1, . . . , INk be the in ()-statements in the protocol ℘′. Let the second argument of the statement
INi (set) consist of ni items. The number of protocols ℘′

1, ℘
′
2, . . . will be n1 · n2 · · ·nk; they are defined

in the following way: for all i ∈ {1, . . . , k} choose ci ∈ {1 . . . , ni}; each of the protocols ℘′
1, ℘

′
2, . . . will

correspond to one of such possible choices. Let s1, . . . , sn ∈ Sem be semaphores not occurring in the
protocol ℘′. To obtain a new protocol, we change the in ()-statement INi in the following way:

• Add signal(si) immediately after the statement defining xci
.

• Replace INi with the following fragment:

wait(si)
check(z = xci

)

Such change is applied to all in ()-statements. The resulting protocol has no in ()-statements. Basically,
going from ℘′ to ℘′

1, ℘
′
2, . . . just means analysing all choices of the in ()-statements separately.

We are analyzing the branches separately, therefore we may wonder whether we are missing some
implicit flows of information here. In other words, is it possible that all n programs that we get after
transforming an in ()-statement are secure, but the original program is not? Fortunately, this is not
possible. In our programming language we have no means to let the value of the secret M influence,
which of the branches will be taken. Therefore the choice of a branch only depends on the adversary’s
actions. If the adversary does not know M before one of the branches is chosen then the chosen branch
does not depend on M and hence gives no information about M to the adversary.

When the described transformations are done, the resulting protocols are either submitted to the
same analysis (if there still are unprocessed key pairs left) or to the information flow analysis in the next
section.

7 A simple information flow analysis

We will now extend a information flow analysis from [11] to determine whether the secret variables (in
our case this set is {M}) affect the view of the adversary.

First, we define the information flow. If some participant of the protocol contains a statement of the
form x:=E(x1, . . . , xm), where E is any expression and x1, . . . , xm are all variables occurring in it, then
we say that there is an information flow from the variable xi to the variable x and write xi ⇒ x.

The protocol P is deemed secure if M
∗
⇒ y holds for no y satisfying some of the following conditions:

• y ∈ Varsent;

• y occurs in a check-statement (unless we are able to determine its result from the inference rules
in Fig. 5);

• y occurs as an argument to a projection (π) statement (unless we are able to statically predict
whether it succeeds or fails);

• y occurs as a ciphertext in a decryption statement;

37

• y occurs as a key in an encryption or decryption statement;

• y occurs as an argument to the test statement (unless we are able to determine its result from the
inference rules);

• y occurs as a key in the sign statement.

(here
∗
⇒ denotes the reflexive transitive closure of ⇒). Otherwise the protocol is deemed potentially

insecure.
If a protocol is secure then two instances of that protocol which differ only in the value of the secret

variable M execute in lock-step, giving the same values to all public parts of the execution context. This
result is proven in [11]. Extending it to digital signature operation is also trivial.

8 Analysis example

We demonstrate the developed technique by by applying it to the analysis of the security of the sample
protocol from Sec. 4.2 (initial protocol is shown on Fig. 2). The abstract interpretation of that protocol
is given in Fig. 6.

x ∈ Var I(x)

M secret
KAB key(1)
KPA keypair(2)
PKA publickey(keypair(2))
PKe encr(3, key(1), publickey(keypair(2)))
SM signedmsg(4, keypair(2), secret)
SMA encr(5, key(1), signedmsg(4, keypair(2), secret))
m1 input(6)

PKB decr(key(1), input(6))
m2 input(7)

SMB decr(key(1), input(7))

Figure 6: Interpretation of protocol ℘

Running the information flow analysis, we consider the protocol to be potentially insecure, as SMA ∈
Varsent and M

∗
⇒ SMA). Therefore we run protocol transformations in order to simplify the protocol.

Since it is a ”real” protocol, no dead code is found in it. The first round of transformations is replacing
the encryption and decryption statements, as described in [11]. After running it, the protocol looks like
shown on Fig.7.

Protocol prelude the program for A the program for B

KAB := gen key(1)

Z1 := constant(0l1(n))

Z2 := constant(0l2(n))

KPA := gen key pair (2)

PKA := public key(KPA)
send PKA

PKe := encrKAB
(Z1)

(3)

send PKe

SM := signKPA
(M)(4)

SMA := encrKAB
(Z2)

(5)

send SMA

m1 := receivel1(6)

PKB := case m1 of
PKe → PKA

SMA → SM

m2 := receivel2(7)

SMB := case m2 of
PKe → PKA

SMA → SM

testPKB
(SMB)

Figure 7: Protocol ℘ after replacing encryption/decryption

Removing case-statements results in 4 sub-protocols, corresponding to all possible sub-cases (variable
assignments). One of the sub-protocols (let’s call it ℘1) corresponds to the intended usage of the variables
(PKB := PKA and SMB := SM). Other cases (℘2:PKB := PKA and SMB := PKA; ℘3:PKB := SM
and SMB := SM ; ℘4:PKB := SM and SMB := PKA) will lead to some malfunctioning of the protocol
(as values are used in not-intended way).

For illustration purposes, we demonstrate the analysis of ℘1 and ℘2, since the analysis of ℘3 and ℘4

is similar to ℘2.

38

Protocol prelude the program for A the program for B

KAB := gen key(1)

Z1 := constant(0l1(n))

Z2 := constant(0l2(n))

KPA := gen key pair (2)

PKA := public key(KPA)
send PKA

PKe := encrKAB
(Z1)

(3)

signal(s1)
send PKe

SM := signKPA
(M)(4)

SMA := encrKAB
(Z2)

(5)

signal(s2)
send SMA

m1 := receivel1(6)

wait(s1)
check(m1 = PKe)
PKB := PKA

m2 := receivel2(7)

wait(s2)
check(m2 = SMA)
SMB := SM

testPKB
(SMB)

Figure 8: Protocol ℘1

x ∈ Var I(x)

Z1 const(0l1(n))

Z2 const(0l2(n))

PKe encr(3, key(1), const(0l1(n)))

SMA encr(5, key(1), const(0l2(n)))
PKB publickey(keypair(2))
SMB signedmsg(4, keypair(2), secret)

Figure 9: Interpretation of protocol ℘1 (changes only)

The abstract interpretation of the protocol ℘1 is given on Fig. 9. The protocol ℘1 is checked for dead
code - no dead is code found. At this point, the candidate key pair is found. The only key pair (KPA)
present in the protocol satisfies the criteria. Introducing the additional axioms prior to test statement
corresponding to the protocol results in the protocol ℘′

1.

Protocol prelude the program for A the program for B

KAB := gen key(1)

Z1 := constant(0l1(n))

Z2 := constant(0l2(n))

KPA := gen key pair (2)

PKA := public key(KPA)
send PKA

PKe := encrKAB
(Z1)

(3)

signal(s1)
send PKe

SM := signKPA
(M)(4)

SMA := encrKAB
(Z2)

(5)

signal(s2)
send SMA

m1 := receivel1(6)

wait(s1)
check(m1 = PKe)
PKB := PKA

m2 := receivel2(7)

wait(s2)
check(m2 = SMA)
SMB := SM

tmp := get signed msg(SMB)
intmp(M)
testPKB

(SMB)

Figure 10: Protocol ℘′
1

Removing the in ()-statement leads us to the only possible branch, as indicated on Fig. 11.

The abstract interpretation of the protocol ℘′
1 with in () removed is given in Fig. 12.

At this point we can conclude that the secret message does not affect adversary view in ℘′
1, since,

given the interpretations of the SMB and PKB, the testPKB
(SMB) always succeeds. The statement

check(tmp = M), given the abstract interpretation of tmp, always succeeds either.

Now let us consider the ℘2 - the sub-protocol resulting in ”not-intended” information flow. It is
shown on Fig.13.

The abstract interpretation of the protocol shown in Fig.13, it is given in Fig. 14.

During the search for dead code we conclude that, given the interpretation of SMB (which is
publickey(keypair(2))), the testPKB

(SMB) will always get stuck (the type check on SMB will always
fail). Considering the statements preceding it, we conclude that the ℘2 is secure, since according to the
information flows analysis M does not affect adversary view.

Sub-protocols ℘3 and ℘4 are analysed similarly to ℘2, and give same result - protocol always gets
stuck irrespective of the value of M . So, all sub-protocols are secure. Therefore, the original protocol ℘
is secure too.

39

Protocol prelude the program for A the program for B

KAB := gen key(1)

Z1 := constant(0l1(n))

Z2 := constant(0l2(n))

KPA := gen key pair (2)

PKA := public key(KPA)
send PKA

PKe := encrKAB
(Z1)

(3)

signal(s1)
send PKe

SM := signKPA
(M)(4)

SMA := encrKAB
(Z2)

(5)

signal(s2)
send SMA

m1 := receivel1(6)

wait(s1)
check(m1 = PKe)
PKB := PKA

m2 := receivel2(7)

wait(s2)
check(m2 = SMA)
SMB := SM

tmp := get signed msg(SMB)
check(tmp = M)
testPKB

(SMB)

Figure 11: Protocol ℘′
1 with in () removed

x ∈ Var I(x)

tmp secret

Figure 12: Interpretation of protocol ℘′
1 with in () removed (changes only)

Protocol prelude the program for A the program for B

KAB := gen key(1)

Z1 := constant(0l1(n))

Z2 := constant(0l2(n))

KPA := gen key pair (2)

PKA := public key(KPA)
send PKA

PKe := encrKAB
(Z1)

(3)

signal(s1)
send PKe

SM := signKPA
(M)(4)

SMA := encrKAB
(Z2)

(5)

signal(s2)
send SMA

m1 := receivel1(6)

wait(s1)
check(m1 = PKe)
PKB := PKA

m2 := receivel2(7)

wait(s1)
check(m2 = SMA)
SMB := PKA

testPKB
(SMB)

Figure 13: Protocol ℘2

9 Conclusion

We have presented the extension of analysis given in [11] to digital signature primitive. The analysis
works by first applying transformation described in Sec. 6 to the protocol, resulting in one or more sub-
protocols. The security of the transformed protocols can be analysed using the information flow analysis
given in Sec.7. Our analysis is correct with respect to the computational semantics and (complexity-
theoretical) definition of confidentiality.

There are two directions in which this work is planned to be extended:

• Adding the support for another cryptographic primitive — asymmetric encryption.

• Composing an automated prover.

The authors are in progress of doing the work in both of the mentioned directions.

10 Acknowledgement

We are thankful to the anonymous referees of NordSec 2005 conference for their comments. They
certainly have improved the readability of this paper.

This research has been supported by the Estonian Information Technology Foundation and the ESF
Grants No. 5645 and 6095.

References

[1] Mart́ın Abadi and Phillip Rogaway. Reconciling Two Views of Cryptography (The Computational
Soundness of Formal Encryption). International Conference IFIP TCS 2000, LNCS 1872, pages
3–22, August 2000.

40

x ∈ Var I(x)

PKB publickey(keypair(2))
SMB publickey(keypair(2))

Figure 14: Interpretation of protocol ℘2 (changes relative to ℘1 only)

[2] Mart́ın Abadi and Jan Jürjens. Formal Eavesdropping and its Computational Interpretation. The-
oretical Aspects of Computer Software, 4th International Symposium (TACS 2001), LNCS 2215,
pages 82–94, September 2001.

[3] Pedro Adão, Gergei Bana, Jonathan Herzog, and Andre Scedrov. Soundness of formal encryp-
tion in the presence of key-cycles. 10-th European Symposium on Research in Computer Security
(ESORICS 2005), LNCS 3679, pages 374-396, September 2005.

[4] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A Universally Composable Cryptographic
Library. 10th ACM Conference on Computer and Communications Security (CCS 2003), October
2003.

[5] Michael Backes, Birgit Pfitzmann, and Michael Waidner. Low-level Ideal Signatures and Gen-
eral Integrity Idealization. Information Security Conference (ISC 2004), LCNS 3225, pages 39–51,
September 2004.

[6] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. 42nd
Annual Symposium on Foundations of Computer Science (FOCS 2001), pages 136–145, October
2001.

[7] Veronique Cortier and Bogdan Warinschi. Computationally Sound, Automated Proofs for Security
Protocols. 14th European Symposium on Programming (ESOP 2005), LNCS 3444, pages 157–171,
April 2005.

[8] Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, IT-29(12), pages 198–208, March 1983.

[9] Joshua D. Guttman, F. Javier Thayer, and Lenore D. Zuck. The Faithfulness of Abstract Proto-
col Analysis: Message Authentication. 8th ACM Conference on Computer and Communications
Security (CCS 2001), pages 186–195, November 2001.

[10] Peeter Laud. Handling Encryption in Analysis for Secure Information Flow. 12th European Sym-
posium on Programming (ESOP 2003), LNCS 2618, pages 159–173, April 2003.

[11] Peeter Laud. Symmetric encryption in automatic analyses for confidentiality against active adver-
saries. 2004 IEEE Symposium on Security and Privacy, pages 71–85, May 2004.

[12] Romain Janvier, Yassine Lakhnech, and Laurent Mazaré. Completing the Picture: Soundness of For-
mal Encryption in the Presence of Active Adversaries. 14th European Symposium on Programming
(ESOP 2005), LNCS 3444, pages 172–185, April 2005.

[13] Daniele Micciancio and Saurabh Panjwani. Adaptive Security of Symbolic Encryption. 2nd Theory
of Cryptography Conference (TCC 2005), LNCS 3378, pages 169–187, February 2005.

[14] Daniele Micciancio and Bogdan Warinschi. Completeness Theorems for the Abadi-Rogaway Logic
of Encrypted Expressions. Workshop in Issues in the Theory of Security (WITS 2002), January
2002.

[15] Andrew C. Yao. Theory and Applications of Trapdoor Functions (extended abstract). 23rd Annual
Symposium on Foundations of Computer Science, pages 80–91, November 1982.

41

Secure Dynamic Program Repartitioning

Rene R. Hansen and Christian W. Probst
Informatics and Mathematical Modelling

Technical University of Denmark
2800 Kongens Lyngby, Denmark

{rrh,probst}@imm.dtu.dk

Abstract

Secure program partitioning has been introduced as a language-based technique to allow the
distribution of data and computation across mutually untrusted hosts, while at the same time guar-
anteeing the protection of confidential data. Programs that have been annotated with security types
are automatically partitioned by the compiler. The main drawback in this setting is that both the
trust hierarchy and the set of hosts are fixed once the program has been partitioned. This paper
suggests an enhanced version of the partitioning framework, where the trust relation still remains
fixed, but the partitioning compiler becomes a part of the network and can recompile applications,
thus allowing hosts to enter or leave the framework. We contend that this setting is superior to static
partitioning, since it allows redistribution of data and computations. This is especially beneficial if
the new host allows data and computations to better fulfill the trust requirements of the users. Era-
sure Policies ensure that the original host of the redistributed data or computation does not store
the data any longer.

Keywords: Secure Program Partitioning, Erasure Policies, Distributed Computation.

1 Introduction

Secure Program Partitioning [ZZNM2001, ZZNM2002] has been introduced as a language-based tech-
nique for distributing confidential data and computation across a distributed system of mutually un-
trusted hosts. The program to be distributed is annotated with security types that constrain permissible
information flow. The resulting confidentiality and integrity policies are used to guide the partition-
ing across the network. The resulting communicating sub-programs not only implement the original
program, but at the same time satisfy all security requirements of principals, including trust relations
to other principals as well as hosts. The results reported in [ZZNM2001, ZZNM2002] with respect to
the performance of the distributed code suggest that this is a feasible way to obtain secure distributed
computation.

The main drawback in Secure Program Partitioning (SPP) is that the framework contains two fixed
components—the trust relation and the hosts in the network. While we contend that a static trust
relation essentially is necessary to ensure system integrity, the second restriction not only seems to be
superfluous, but also hinders the system from moving data or computations to newly available hosts
that might allow a better fulfillment of principal’s requirements. Thus, by allowing the partitioning to
be adjusted after a host joins or leaves the network, the overall trust of the principals in the partitioning
and thus in the security of the distributed system can be increased.

After data and computations have been redistributed in the enhanced network, in an ideal world hosts
should not store any references to items that have been moved to another host. The recently introduced
mechanism of Erasure Policies [CM2005] allows to design systems where programmers annotate their
data with policies that describe exactly this kind of behavior. Erasure Policies state explicit erasure and
declassification requirements.

The contributions of this paper are:

• We extend the framework for Secure Program Partitioning to allow hosts to enter and (under
certain conditions) leave the network.

42

� � � � � � �
� � � � � � �
� � � � � � �

✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁
✁ ✁ ✁ ✁ ✁ ✁

✂ ✂ ✂ ✂ ✂ ✂ ✂
✂ ✂ ✂ ✂ ✂ ✂ ✂
✂ ✂ ✂ ✂ ✂ ✂ ✂

✄ ✄ ✄ ✄ ✄ ✄
✄ ✄ ✄ ✄ ✄ ✄
✄ ✄ ✄ ✄ ✄ ✄

sub−programs

☎ ☎
☎ ☎

✆
✆

✝ ✝
✝ ✝

✞
✞

✟ ✟
✟ ✟

✠
✠compiler

trust declarations

security−typed

source code host 1

host 2

host 3

splitter

Figure 1: Structure of the Secure Program Partitioning Framework as introduced by [ZZNM2001,
ZZNM2002].

• By adding Erasure Policies to SPP, the extended system assures that information is erased or made
inaccessible after a node has left the network.

The rest of this paper is structured as follows. Section 2 gives an overview of related work, including
Secure Program Partitioning and Erasure Policies. This is followed in Section 3 by the description of our
proposed framework for dynamic repartitioning in the case of hosts entering the network. The emphasis
here is on making the partitioning an active component of the framework, as well as using Erasure
Policies to ensure that hosts make inaccessible any data that has been redistributed to another host.
Section 5 concludes the paper with an overview of future work.

2 Related Work

This section gives an overview of Secure Program Partitioning [ZZNM2001, ZZNM2002] and Erasure
Policies [CM2005], which form the foundation for the framework described in the rest of this paper. This
Section largely follows the description in the cited papers.

2.1 Secure Program Partitioning

Information-flow policies have been used for specifying confidentiality and integrity requirements. Their
success is mostly based on the ability to specify how information may be used in the system as opposed
to which principals may access or modify the data. Security-typed languages [Sch2000, ABHR1999,
HR1998, Mye1999, PC2000, SV1998, VSI1996, ZM2001] have been used to implement these policies in
programming languages. By annotating data in programs, the programmer explicitly specifies how the
flow of information allowed by the language semantics should be constrained. The benefit of these explicit
annotations is that programs that violate the restrictions will be rejected either during compilation
or during execution. Thus, the program itself does not have to be trusted—instead, only the reused
components (compiler and run-time system) must be trusted.

The benefit of SPP is that participants do not need to fully trust each others hosts to enable the
distributed execution of a program dealing with data of the principals. As Figure 1 depicts, in the original
framework introduced by [ZZNM2001], the compiler receives two inputs—the program source code, which
uses a security-typed language, and the trust declarations of all participants. These declarations state
each principal’s trust in hosts and other principals. They are used to guide the compilation and splitting
of the security-typed program into sub-programs that are executed on (some of) the hosts in the network.
By communicating, these sub-programs perform the same computation as the original program, however,
the splitter ensures that all trust and security policies are fulfilled. As the authors state in [ZZNM2001],
the splitter ensures that if a host h is subverted, only the confidentiality or integrity of data owned by
principals that trust h is threatened.

The main component in the programming model used in SPP is the principal, who can express
confidentiality or integrity concerns with respect to data. Principals can be named in information-flow

43

1 public class OTExample {

2 int{Alice:; ?:Alice} m1;

3 int{Alice:; ?:Alice} m2;

4 boolean{Alice:; ?:Alice} isAccessed;

5
6 int{Bob:} transfer{?:Alice} (int{Bob:} n)

7 where authority(Alice) {

8 int tmp1 = m1;

9 int tmp2 = m2;

10 if(!isAccessed) {

11 isAccessed = true;

12 if(endorse(n, {?:Alice}) == 1)

13 return declassify(tmp1, {Bob:});

14 else

15 return declassify(tmp2, {Bob:});

16 }

17 else return 0;

18 }

19 }

Figure 2: The source code for the Oblivious Transfer example taken from [ZZNM2002], based on the
Oblivious Transfer Problem [Rab1981]. Alice has two values (stored in fields m1 and m2), exactly one of
which Bob is allowed to learn. However, Bob does not want Alice to know, which value he has requested.
Fields and methods have been annotated with labels to specify confidentiality and integrity requirements
of the principals Alice and Bob.

policies and also define the authority possessed by the program being executed. Security labels [ML2000]
express confidentiality policies on data. A label l1 = {o : r1, r2, · · · , rn}means that data labeled with l1 is
owned by a principal o and that o permits readers r1, · · · , rn (and o) to read the data. Data can also have
multiple owners, each expressing its concerns with respect to the data. E.g., l2 = {o1 : r1, r2; o2 : r2, r3; }
expresses that owner o1 allows readers r1 and r2 to read data labeled with l2, and owner o2 does so for
readers r2 and r3. Of course each annotation must be obeyed by the system, that is only r2 will be
allowed to access data labeled with l2. Additionally, labels may specify integrity. l3 = {? : p1, · · · , pn}
specifies which principals trust the data labeled with l3.

To allow the splitter to partition the program across the hosts of the target network, it must know the
trust relationship between the principals and the hosts. This information is specified by two components
per principal and host. The confidentiality label C(h,A) specifies the upper bound on the confidentiality
of information that A allows to be sent to host h. Accordingly, the integrity label specifies whether the
principal trusts information received from host h. For the example shown in Figure 2, the principals
Alice, Bob, and Charlie specify the following confidentiality and integrity labels for the four hosts in the
network. Alice does trust her own host A as well as the hosts T and S and also believes in the integrity
of data received from these hosts. Bob trusts his own host B as well as hosts T and S, but only believes
in the integrity of data received from his own host. Finally, Charlie trusts the host T . This results in
the following sets C and I:

C(A,Alice) = {Alice :} I(A,Alice) = {? : Alice}
C(B,Bob) = {Bob :} I(B,Bob) = {? : Bob}
C(T,Alice) = {Alice :} I(T,Alice) = {? : Alice}
C(T,Bob) = {Bob :} C(T,Charlie) = {Charlie :}
C(S,Alice) = {Alice :} C(S,Bob) = {Bob :}

For a host h, the sets Ch and Ih are computed as the union of the according sets C(h,) and I(h,),
respectively. Along the same lines one can derive confidentiality and integrity labels for fields and
expressions in a security-typed language. Generally, the sets C and I are unified into a single label L and
the two functions C and I are used to extract each of the subsets.

For the splitting of an application onto the hosts available in a network, the authors in [ZZNM2002]

44

specify constraints for fields and statements in the application. For a field f , the generated constraints
are

C(Lf) ⊑ Ch and Ih ⊑ I(Lf)

The constraints for a statement S result from performing a simple definition-use analysis on all data
used or defined in the statement. Let U(S) and D(S) be the set of values used and locations defined by
S. Then

C
(
⊔v∈U(S)Lv

)
⊑ Ch and Ih ⊑ I

(
⊓l∈D(S)Ll

)

For a list of additional constraints, including those regarding the program counter, refer to [ZZNM2002].
The essential property for this work is that in principal they all have the above form.

2.2 Erasure Policies

Erasure Policies (EPs) as introduced by Chong and Myers [CM2005] impose strong end-to-end require-
ments to enforce that information is either erased or made less accessible. They are based on a lattice of
security levels. The simplest kind of a policy is a label l that limits how the labeled data may be used. In
the setting of SPP this would be a set of confidentiality and integrity requirements. Additionally, erasure
policies have the form l1 cրl2, where l1, l2 are policies and c is a condition specifying that l1 must be
enforced on the labeled data, and once condition c is fulfilled, l2 must be enforced as well, independent
of the future evaluation of c. Finally there are declassification policies l1

c
; l2 stating that l1 must be

enforced on the labeled data, but once condition c is fulfilled, the data may be declassified. From thereon
policy l2 must be enforced, again independent of the future evaluation of c.

3 Dynamic Repartitioning

This section introduces our extension to the Secure Program Partitioning framework as introduced
in Section 2.

Dynamic Repartitioning essentially shares all the properties of SPP as described above. The main
achievement is that hosts may join or leave the network after an initial partitioning of the application
has been found. This initial partitioning is important, since it ensures that the program can also be
partitioned across a bigger set of hosts. We define the set of hosts used for constructing the initial
partitioning as Hinit . Hosts in this set are never allowed to leave the network, since they are needed to
ensure the existence of a partitioning. Hosts that join the network later are part of the set Hjoin . Hosts
in this set may freely join or leave the network since they are not needed for the initial partitioning. In
contrast, in the case of hosts from the set Hinit leaving the network no guarantee can be given that the
source code can be partitioned across the remaining hosts.

The effect of having an additional host in the network is that some of the constraints introduced
in Section 2 may be resolved to an element that is smaller with respect to ⊑ than the original solution.
This is true for all constraints where the confidentiality (integrity) sets for the new host n (Cn and In)
are smaller (bigger) than those of the originally chosen host h. Of course there is no guarantee that the
new host will be chosen for data or computations, just like the host S in the Oblivious Transfer example.

3.1 Enforcing Erasure of Data

If data has been repartitioned to another host as result of a host joining the network, principals will want
to be assured that their data has been erased or made less accessible on the original host. Using the
framework of Erasure Policies as described in Section 2, this effect can be ensured automatically without
additional annotations by the principals.

To do so, we introduce two conditions rem and loc that model the event of data being rescheduled to a
remote host and data being available locally. We assume that during the redistribution of an application
no data ever is reused. As the result of a host n joining the network, data might be repartitioned from
host h to the new host n. If n leaves the network again, depending on the other hosts that joined or left
the network, the data or parts of it could be repartitioned to be stored on h again. In this scenario, a

45

��
�
✁
✁✁

✂ ✂ ✂
✂ ✂ ✂✂ ✂ ✂
✄ ✄ ✄✄ ✄ ✄✄ ✄ ✄

☎ ☎☎ ☎
✆ ✆
✆ ✆

compiler

✝
✝
✞✞

✟ ✟ ✟✟ ✟ ✟
✠ ✠ ✠
✠ ✠ ✠

✡✡☛☛

☞☞✌✌
✍✍✍✎✎
✎

✏
✏✏
✑
✑✑

✒ ✒ ✒
✒ ✒ ✒✒ ✒ ✒
✓ ✓ ✓✓ ✓ ✓✓ ✓ ✓

✔ ✔
✔ ✔
✕ ✕✕ ✕

host 1

host 2

host 3

host 4

host 1

host 2

host 3

splitter

compiler

splitter

compiler

✖✖✗
✗

✘✘✙✙

trust declarations

security−typed

source code ✚
✚
✛✛

✜ ✜ ✜✜ ✜ ✜
✢ ✢ ✢
✢ ✢ ✢

✣ ✣✣ ✣
✤ ✤✤ ✤

host 1

host 2

host 3

host 1

host 2

host 3

host 4

splitter

compiler

splitter

(b)

(d)

(a)

(c)

Figure 3: Secure Dynamic Program Repartitioning. The main change in contrast to SPP is that the
Compiler/Splitter component is part of the network (a). The initial distribution of application code
is done just like in the original framework (b). Once a new node enters the network (c), the Compil-
er/Splitter tries to find a new distribution that better fulfills the trust requirements specified by the
principals. If the new host enables such a repartitioning, the new partitions are distributed to the hosts
(d). Otherwise, the system remains unchanged. In a last step, hosts must erase the data that has been
partitioned to another host (or make the data inaccessible). In (d) this is the hatched area of host 3.

fresh copy of the data would be created and stored on h. To make sure that data stored on hosts are
not reused once they have been partitioned on another host, we use an erasure policy using the rem
condition. The policy for some data d that is partitioned on a host h and in the original framework
would have label l then becomes lremր⊤. This ensures that after the d has been partitioned onto another
host it can no longer be accessed on host h.

4 An Example

This section returns to the Oblivious Transfer example presented in Figure 2. Using the annotations to
the source code and the confidentiality and integrity labels specified by the principals, the code can be
partitioned on three hosts A, B, and T . The labels for the four available hosts are

CA = {Alice :} IA = {? : Alice}
CB = {Bob :} IB = {? : Bob}
CT = {Alice :, Bob, Charlie :} IT = {? : Alice}
CS = {Alice :, Bob :} IS = {? :}

Figure 4 shows how the application again and how to partition it on three of the hosts, A, B, and T .

Assume that later on a host N joins the network for which the principals have specified CN =
{Alice :, Bob} and IN = {? : Alice}. Repartitioning data and computations that in Figure 4 have been
partitioned to T will allow to fulfill the requirements of both Alice and Bob better than in the original
partition, since the set CT is larger than necessary to fulfill all constraints generated for the program
(since the labels in the program do not reason about Charlie).

46

host A

host B

host T

else return 0;

return declassify(tmp2, {Bob:});

else

return declassify(tmp1, {Bob:});

if (endorse(n, {?:Alice}) == 1)

isAccessed = true;

if (!isAccessed) {

int tmp2 = m2;

int tmp1 = m1;

where authority(Alice) {

public class OTExample {

int{Alice:; ?:Alice} m1;

int{Alice:; ?:Alice} m2;

boolean{Alice:; ?:Alice} isAccessed;

int{Bob:} transfer{?:Alice} (int{Bob:} n)

}

}

}

Figure 4: The Oblivious Transfer example including the partitioning of code pieces across three hosts
according to [ZZNM2002].

5 Conclusions and Future Work

We have introduced a framework for Secure Dynamic Program Repartitioning. The work presented in
this paper builds on prior work on Secure Program Partitioning, a framework working with a fixed sets
of hosts. Our framework inherits all properties from SPP, but additionally allows hosts to join and
(under certain conditions) leave the network, possibly causing a re-partitioning of the application, and
uses Erasure Policies to ensure that data is made inaccessible on hosts that no longer store the data after
repartitioning has taken place.

We see two limitations for our approach. On the on hand, for the time being like SPP we only
investigate single-threaded programs. Repartitioning of applications can only occur when the program is
not being executed. Thus, no additional communication primitives are needed on top of those introduced
by [ZZNM2002]. On the other hand, theoretically the system does not know the confidentiality and
integrity sets of principals for hosts joining the network. This could be avoided by having a list of hosts
potentially joining the network and principals specifying policies for each of them or by specifying certain
properties of a host like operating system or owner to deduct policies for each user based on preferences.
While these approaches are inherently inelegant, we currently see no real alternative.

We are currently working on the formalization of the extensions described here. It will be especially
interesting to model fully dynamic networks based on the available confidentiality and integrity, that is
allow hosts to leave the network again based on the trust of principals into the hosts remaining in the
network. In order to ensure that applications can still be partitioned in this case, the system will need
to ensure that (instead of forcing the initial set of hosts to remain in the network) the hosts remaining in
the network provide the same confidentiality and integrity as the initial set. Another interesting problem
is to change the token model introduced by [ZZNM2002] so that repartitioning can be guaranteed to be
safe also while the application is executed.

47

References

[ABHR1999] Mart́ın Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core calculus of
dependency. In ACM, editor, POPL ’99. Proceedings of the 26th ACM SIGPLAN-SIGACT
on Principles of programming languages, January 20–22, 1999, San Antonio, TX, ACM
SIGPLAN Notices, pages 147–160, New York, NY, USA, 1999. ACM Press.

[CM2005] Stephen Chong and Andrew C. Myers. Language-Based Information Erasure. In CSFW
’05: Proceedings of the 18th IEEE Computer Security Foundations Workshop (CSFW’05),
pages 241–254, Washington, DC, USA, 2005. IEEE Computer Society.

[HR1998] Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming with security and
integrity. In Conference Record of POPL ’98: The 25th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 365–377, San Diego, California,
19–21 January 1998.

[ML2000] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized label
model. ACM Transactions on Software Engineering and Methodology, 9(4), October 2000.

[Mye1999] Andrew C. Myers. JFlow: practical mostly-static information flow control. In ACM, editor,
POPL ’99. Proceedings of the 26th ACM SIGPLAN-SIGACT on Principles of programming
languages, January 20–22, 1999, San Antonio, TX, ACM SIGPLAN Notices, pages 228–
241, New York, NY, USA, 1999. ACM Press.

[PC2000] François Pottier and Sylvain Conchon. Information flow inference for free. ACM SIGPLAN
Notices, 35(9):46–57, September 2000.

[Rab1981] M. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard
Aiken Computation Laboratory, 1981.

[Sch2000] Fred B. Schneider. Enforceable security policies. ACM Transactions on Information and
System Security, 3(1):30–50, February 2000.

[SV1998] Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-threaded imper-
ative language. In The 25th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL ’98), pages 355–364, New York, January 1998. Association
for Computing Machinery.

[VSI1996] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for secure flow
analysis. Journal of Computer Security, 4(3):167–187, December 1996.

[ZM2001] Steve Zdancewic and Andrew C. Myers. Secure information flow and CPS. Lecture Notes
in Computer Science, 2028:46–??, 2001.

[ZZNM2001] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers. Untrusted
hosts and confidentiality: Secure program partitioning. In Greg Ganger, editor, Proceedings
of the 18th ACM Symposium on Operating Systems Principles (SOSP-01), volume 35, 5
of ACM SIGOPS Operating Systems Review, pages 1–14, New York, October 21–24 2001.
ACM Press.

[ZZNM2002] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers. Secure pro-
gram partitioning. ACM Transactions on Computer Systems, 20(3):283–328, August 2002.

48

A Vulnerability Taxonomy Methodology applied to Web Services

Chris Vanden Berghe1,2, James Riordan1, Frank Piessens2

1 IBM Zurich Research Laboratory
{vbc,rij}@zurich.ibm.com

2 Katholieke Universiteit Leuven
{chrisvdb,frank}@cs.kuleuven.be

Abstract

We present a methodology for taxonomizing vulnerabilities based on the likelihood that they
will be present in a certain system. It attempts to capture and formalize the intuition that allows
security professionals to make predictions about likely security problems. The method exploits the
realization that the vulnerabilities present in a system are related to the set of properties that define
the system. By modeling it using a selection of relevant properties and correlating this with the body
of knowledge on historic vulnerabilities and the systems in which they lived, we obtain a heuristic of
the likelihood that these vulnerabilities will reappear in a new system. The predictive nature of this
methodology serves as an early warning for systems before they are widely deployed. As an example
we apply our methodology to Web Services, thereby providing a tool to focus efforts in securing Web
Services.

1 Introduction

Service-oriented architectures are a major evolutionary step in the creation of distributed systems.
J2EE [25] and .NET [18] have embraced this trend and provide tools and support for Web Services
(WS), which are practical implementations of the principles of a Service-Oriented Architecture (SOA).
The architecture introduces a service layer around software components and can be regarded as the
logical next level of abstraction after the componentization of software. Such an abstraction allows for
the creation of rich, highly-distributed applications by enabling dynamic discovery and loose-coupling of
heterogeneous components that span organizational boundaries.

The flexibility of these highly-distributed applications enables new and interesting possibilities. At
the same time it creates numerous security challenges that need to be addressed for the ultimate success
of the technology. This need was quickly recognized and has resulted in numerous standards addressing
various aspects of SOA security. Examples include the WS-Security family of standards [22], SAML [20],
XACML [19] and the Liberty Alliance specifications [14]. Each of these specifications targets some (not
necessarily disjoint) collection of the security needs in the service layer.

By contrast, security concerns regarding implementations and operation have received far less atten-
tion. This disparity is largely rooted in the youth of WS rather than in the relative importance of the
two classes of security failure. There are simply too few deployed and active instances of WS to generate
an adequate body of knowledge about real-world security failures and the vulnerabilities behind them.

Our methodology is predicated upon two principal assumptions: The first is that one can usefully
think of security vulnerabilities as being present in the properties of a system rather than in the system
itself. The second is that we will not see fundamentally new vulnerabilities in SOA but rather variations
of those already present in existing systems. Based on these assumptions, we develop a general-purpose
methodology for generating predictive vulnerability taxonomies and apply it to WS. Some vulnerability
types are more likely to arise than others in such architectures, depending upon the properties of the
individual components.

As a testcase example, we apply our methodology to WS which illustrates how the resulting taxonomy
can used to reason about practical security in WS. It indicates the degree to which the WS components are
prone to several classes of vulnerability, thereby providing insight into an optimal use of finite resources
for securing WS.

49

The paper is structured as follows. In Section 2 we present the aspects of SOA and WS that are the
most important ones to our work. In Section 3 we give a brief overview of practical security, which is
our security layer of focus. Section 4 provides some insights into taxonomies in general and vulnerability
taxonomies in particular. Section 5 lays out and explains our methodology for creating vulnerability
taxonomies, using the example of WS. Section 6 details the actual results of this application to WS.
Section 7 presents related work, and Section 8 concludes with a summary of our findings.

2 Web Services

In this section we present an overview of security-relevant aspects of WS. We start by outlining the
principles of a Service-Oriented Architecture (SOA). This is followed by a description of WS and its
relation to SOA. Finally we discuss the implementation-related aspects of WS.

2.1 Service-oriented architecture

SOA is a software development methodology aimed at improving the manageability of today’s increasingly
complex systems. A good understanding of the methodology’s principles, and the reasoning behind them,
is essential for understanding WS security, because WS is a practical implementation of the more general
SOA concept.

Object-oriented and component-based software development methodologies have successively in-
creased our ability to develop and manage complex applications. They are based upon the abstraction
of components, which increases re-usability of software functionality. While this notion is very powerful,
interfaces between components tend to be rather tightly coupled and inflexible. It therefore does not
scale to distributed applications spanning organizational boundaries, as they require that developers
understand and control each component in the application. The integration of components coming from
a wide variety of organizations is therefore a daunting task.

SOA can be seen as an extension of the ideas of component-based software development aimed at
increasing the flexibility of application integration. It introduces the concept of a service layer, which
provides a framework to address the complexity of integration in highly-distributed heterogeneous sys-
tems. Conceptually, SOA represents a model in which loosely coupled pieces of application functionality
are published, located, consumed, and combined over a network. Such exposed functionality is called a
service. Services adhere to the following principles [17]:

• They deliver some self-contained and composable functionality that is advertised in terms of the
task performed by the service. The focus is on what is performed instead of how it is performed.
In addition, it should be possible to use the service as part of a larger application.

• They are loosely-coupled and can be discovered and invoked dynamically. Traditional applications
depend on tight interconnections of all subsidiary components, therefore changing existing systems
is exceedingly difficult. Loosely coupled systems require less coordination and allow for more
flexible reconfiguration, thereby enabling the use of services across organizational boundaries.

• They have well-defined interfaces and coarse-grained interactions. Coupling systems is generally
difficult, so it is important to keep interfaces simple and the number of interactions minimal. This
keeps the dependencies between services manageable. In addition, it facilitates more thorough
testing of the service and makes the interactions easier to understand.

• They are network-addressable and location-transparent. The ability to invoke the service over a
network is key to the concept of SOA. It allows applications to use the services best suited to their
needs, independently of their location.

• They are interoperable. This is a necessary characteristic of heterogeneous systems that communi-
cate and cooperate. Towards this end, the service consumer and provider must agree on a mediating
protocol and data-format on to which they map their platform-specific characteristics.

2.2 Web Services

WS are practical implementations of SOA principles. The term itself is not very well defined and is used
both in a conceptual and in a technical sense. Conceptually, WS are XML-based SOA that use standard

50

Internet transport protocols1. In the technical sense, WS refers to specific collections of standards, tools
and practices to implement the WS concept. Different styles of WS exist such as SOAP Web Services [28],
REST Web Services [10] and XML-RPC [27].

SOAP WS are the most common form. Specific to SOAP WS is the use of WSDL [29] as the service
descriptor, SOAP [28] as the messaging protocol and UDDI [21] as the directory protocol. WS-I [31], an
industry organization created with the mission to promote interoperability among WS, recommends this
style of WS (with some additional restrictions) for interoperability reasons. Many of the higher-layer WS
protocols, addressing issues such as workflow, business processes and security, are built atop these core
specifications. The main advantage of this particular flavor of WS is its wide adoption and availability
of supporting tools. The complexity of the protocol stack is its major disadvantage.

REST Web Services and XML-RPC provide a less complex alternative to SOAP Web Services, but are
also less widespread. REST Web Services adhere to the concepts of the Representational State Transfer
architectural style [10]. In this model, services are seen as resources addressable by URIs. Accessing and
managing these services is done exclusively through the HTTP verbs GET, POST, DELETE and PUT,
where each one has well-specified semantics. Most of the data transmitted is in the form of XML.

REST Web Services are very light-weight by design because they only use URIs, HTTP and standard
resource representations, such as XML, jpeg, etc. They possess additional desirable properties such as
improved performance due to better caching opportunities. XML-RPC, although often considered as
another light-weight protocol for WS, does not adhere to all of the aforementioned properties of a SOA.
For example, XML-RPC does not publish application functionality with a service abstraction, but is
merely a convenient way to open functionality to the Web.

In this paper we focus on SOAP WS because of their wide acceptance. Many of the conclusions also
hold for other WS flavors, as the fundamental concepts are largely shared.

2.3 Web Services implementation

There is no universally accepted set of tools for developing WS or platform for their deployment; this
would indeed defeat much of the purpose of WS. Instead, toolkits exist for many platforms. Nevertheless,
it is safe to say that most WS will be developed in higher-level languages and deployed in managed-
execution environments. Two concrete examples of WS implementations are J2EE [25] application servers
and the .NET framework [18]. They are already widespread and provide good tool support for SOAP
Web Services.

Development toolkits for J2EE and .NET provide wizard-based tools that take care of deploying
the selected functionality as a WS, and even publish the WS with one or more directory services.
The application servers handle message parsing, cryptographic transformations, data-type mapping and
transparent dispatching. Although the specifics differ, both platforms abstract the WS details away from
the applications.

Subsequent discussion of WS implementation-related properties is limited to properties shared by
common implementations, as opposed to aspects of a specific implementation (thus rendering the results
more widely applicable).

3 Practical Security

Our work focuses on the layer of security that addresses real-world vulnerabilities caused by a system’s
implementation, deployment and management. We refer to this layer as “practical security”. It occupies
a position complementary, yet related to, security specifications (such as those of WS). Specifications
determine the way in which a system should behave, whereas the implementation determines the way in
which it does behave.

Although we are concerned with such concrete and specific vulnerabilities, it makes sense to speak
of them as abstractions. Any reader of a security vulnerability announcement list, such as Bugtraq [11],
will be eventually struck with a certain sense of déjà-vu. On an average day several new vulnerabilities
are published, but only very seldomly something fundamentally new is discovered. Instead, they are
variations that differ only in the specifics, but not in the implicitly-adjudged underlying reason why the
system is vulnerable.

1The term “transport protocol” now includes higher level protocols such as HTTP and BEEP

51

The foundation of our subsequent analysis is that one can think of vulnerabilities as being manifest
in the implicitly-adjudged underlying reason for their existence rather than in the systems themselves.
We therefore propose a model that describes these reasons in terms of a collection of properties. This is
analogous to the epidemiological practice of ascribing a disease to a population rather than an individual.
This epidemiology applies to our work in three distinct manners.

• Code analysis and testing resources are limited by both time and cost. As such, they should be
utilized towards maximum effect. Knowledge of what sorts of problem are likely to occur in which
places is thus quite valuable.

• Properties should be seen as characteristics of the complete process of design, development, use and
maintenance of the system. Determination of the property sets is both important and potentially
difficult. The properties that influence the security of a system are not limited to technical or
implementation-oriented properties, such as which development tools are used. They also include
nontechnical issues such as security-awareness of the users of the system. These properties should
ultimately describe the system as completely as possible.

• The influence-map from properties to vulnerabilities is not necessarily injective: indeed, a group
of properties may be required to influence the presence of a vulnerability. For example, buffer-
overflows are commonly attributed to the use of a low-level programming language, whereas they
actually result from the combination of low-level programming languages, lack of testing, poor
development processes, et cetera. Correspondingly, we do not assume strict causality but merely
correlation: the C programming language does not create buffer-overflows itself, it is just partic-
ularly well-suited towards creating them and, therefore, programs written in C should be checked
for buffer overflows.

To predict vulnerabilities of a new technology, we assume that their recurrent nature will continue with
minor variations. For example, we anticipate that code using the standard selection and predicate
language for data in the hierarchical model of XML (XPath) [30] will present problems similar to those
in code using the standard selection and predicate language for data in relational databases (SQL):
XPath-injection is very likely to be a problem in WS.

Based on these considerations regarding practical security, we developed a methodology for predicting
vulnerabilities in systems through taxonomization. Before detailing this methodology in Section 5, we
introduce general concepts related to vulnerability taxonomies.

4 Vulnerability taxonomies

Although classification of items and events is a commonplace activity, there is no universal agreement
on the semantics of terms surrounding classification and taxonomization. Therefore we commence by
defining these concepts and by providing some general observations about classifications. We then discuss
vulnerability taxonomies in general and vulnerability taxonomies for WS in particular.

4.1 Classifications and taxonomies

Classification refers to both the operation and its result. Marradi [16] defines the operation as being one
of three possibilities:

• an intellectual operation, whereby the extension of a concept at a given level of generality is
subdivided into several narrower extensions corresponding to as many concepts at a lower level of
generality;

• an operation whereby the objects or events in a given set are divided into two or more subsets
according to the perceived similarities of one or several properties; or

• an operation whereby objects or events are assigned to classes or types that have been previously
defined.

The first is an a priori classification, in which one starts from a concept and then further refines it into
subconcepts. In this definition “the extension of a concept” refers to its most direct or specific meaning.
The second is an a posteriori classification, in which one starts from the actual objects or events and
proceeds by grouping them according to properties, or taxonomic characters. Each of these two types of
classification produces a hierarchy of classes. The final possibility is the actual process of assigning the
objects or events to these pre-defined classes.

52

A taxonomy is a “classification, including bases, principles, procedures and rules”. This definition,
introduced by Simpson in his seminal work on the classification of animals [24], is widely accepted, and is
also used in other vulnerability classifications [13]. The definition suggests that a taxonomy is more than
a classification, in the sense that it also describes the principles according to which the classification is
done and the procedures to be followed in order to classify new objects. A resulting class of a taxonomy
is called a taxon (Pl. taxa).

The goal of classification is to turn chaos into regularity. Systematization is necessary to handle
the large amount of information humans are confronted with. The first known attempt to perform
systematic classification dates back to Aristotle (322-287 BC), who worked on the first classification
of animal species. For more than two millennia systematic classification was the exclusive domain of
biological sciences. This changed at the end of the 19th century, when classifications started to appear
in diverse branches of science [13].

The key to building a good taxonomy is the choice of the taxonomic characters according to which
the objects or events will be classified. These taxonomic characters should be relevant and readily and
objectively observable in the objects to be classified [24, 13]. Lough [15] gives an overview of desirable
properties when building a taxonomy. Some of the most widely accepted are: deterministic, exhaustive,
mutually exclusive, objective, and useful. Some of these properties are partially contradictory, e.g., a
taxonomy can be made exhaustive by adding the catch-all category other, but doing so generally renders
it less useful.

An important, yet often overlooked, issue is that there is no such thing as the ultimate taxonomy.
Rather, the form of the taxonomy should be adapted to the intended usage. In practice this means that
the intended usage as well as the scope and viewpoint of the taxonomy should be stated explicitly. We
define scope as the part of the universe to be included in the taxonomy. This determines what should
be classified. An example of scope is all flowers indigenous to a certain country. Equally important is
the viewpoint, which determines how one looks at the things within the scope and consequently which
properties will be relevant. For example, the viewpoints of a botanist and a florist yield totally different
relevant classification properties in a taxonomy of flowers.

4.2 Vulnerability taxonomies

The perceived similarities between vulnerabilities published on security mailing lists such as Bugtraq [11]
are an indication for the utility of taxonomizing vulnerabilities. Although ideally every report features
a distinct vulnerability instance, one can naturally abstract them into classes of vulnerability instances
with similar properties. This abstraction facilitates understanding of the origins of the vulnerabilities,
and allows for the development of avoidance and mitigation methods for such vulnerabilities. The key
challenge in the production of a good taxonomy is the selection of properties that optimally contribute
to this understanding.

As discussed, these properties depend on the scope and the viewpoint. A vulnerability taxonomy
implies an implicit limitation of the scope, namely to vulnerabilities. Some examples of scopes that are
further limited are:

• Vulnerabilities in UNIX operating systems [3, 6]

• Cryptographic vulnerabilities [26, 2]

• Application-level vulnerabilities

By setting the scope and the viewpoint of the taxonomy, one also determines which vulnerabilities to
classify as well as how to look at them. For instance, the viewpoint of a developer, a system administrator
or an attacker on a particular vulnerability are quite different.

Several vulnerability taxonomies have been proposed. Those proposed by [1, 5] had the scope of
“vulnerabilities in operating systems”. Subsequent taxonomies differed in scope and viewpoint [3, 4, 6,
9, 13]. A shortcoming of the aforementioned taxonomies is that they do not make their intended usage
explicit, but instead aim at being general-purpose.

There will probably never be a vulnerability taxonomy as universally accepted as Linnæus’s original
classification is in biology for several reasons. The scope of vulnerabilities is highly dynamic, since the
modes of daily computer usage are evolving rapidly. In addition, the computer vulnerabilities themselves
are inherently difficult to describe, and most often negative terminology is used in describing them. This
is related to the fact that they exist where conceptual models break down. Finally, the way in which one
describes a vulnerability is strongly tied to the viewpoint.

53

There are at least three realizations common to vulnerability taxonomies:

• Generating a good taxonomy is difficult (see discussion in Section 4.1).
• A taxonomy depends not only on the vulnerabilities themselves but also on the viewpoint of the

taxonomy creator; this viewpoint is generally determined by the intended use of the taxonomy.
• Related vulnerabilities often manifest themselves in packages that share some common property.

Generating a vulnerability taxonomy with the scope of WS incurs the additional difficulty that the
WS themselves are not yet fully deployed. However, it is our central assumption that there is a sufficient
body of knowledge regarding related systems to allow accurate prediction of the classes of vulnerability
that are most likely to be problematic in WS. The key benefit of such a predictive taxonomy is that it
can guide the investment of limited resources in securing WS.

5 Proposed Methodology

Our methodology produces predictive vulnerability taxonomies based on correlation of properties of sys-
tem components and their adjudged influence on a selection of historical vulnerabilities. It is predicated
on the two principal assumptions introduced in Section 3. Namely that it is meaningful to think of
vulnerabilities as being present in the properties of the system in addition to being present in a partic-
ular version of a particular program and that vulnerabilities in new systems are mostly variants, in an
abstract sense, of vulnerabilities existing in older systems.

We begin with a discussion of correlative properties and the process by which they are selected.
Two inputs drive this process. The first is an architectural refinement of the system being analyzed
into functional components. These components need to be of sufficiently fine granularity to express
possible attack scenarios. They need also be uniform with respect to the selected properties for each
component. The second is a representative collection of vulnerabilities, associated with the selected
properties by the adjudged influence of the properties on the vulnerabilities. Naturally, the selection of
properties, refinement of architecture, and collecting of vulnerabilities are iterative interdependent steps
in the methodology. These inputs allow for the correlation of components with vulnerabilities through
common properties. The result is a table detailing the likelihood of a vulnerability variant being present
in a given component.

In the remainder of this section we detail each of the general steps of the methodology and illustrate
them using the example of WS. Details that go beyond clarification of the methodology are provided in
Section 6.

5.1 Architecture and selection of properties

The predictive capabilities of the produced taxonomy are determined by the accuracy with which the
selected properties describe the system with respect to vulnerabilities. The selection of the properties
is therefore paramount. While there is no predefined and exact means of selecting properties, we target
those with influence on the security of the system. The task is facilitated by the fact that we merely
need coverage rather than a perfect selection. Selection of irrelevant properties is not a problem, as they
will have no effect in the correlation. Selection of strongly correlated properties is more problematic as it
may lead to multicollinearity, resulting in an unproportional influence of these properties. In this work
we endeavor to avoid the problem through utilization of the basis of this work: we attempt to use our
security experience to select properties that are not causally related. While this heuristic does not have
statistical rigor, it does have the advantage of being tractable.

A complex system is comprised of different components with diverse properties. In order to capture
this with our methodology, it is necessary to refine the analyzed system into components for which the
properties are well defined (e.g., true, false or irrelevant, rather than dependent upon the subcomponent).
In a complex system, different components are prone to different vulnerabilities. The refinement offers
the advantage that we capture not only the sorts of problems the complex system is apt to have, but
also where within the system they are most likely to appear.

It is also useful to list pairs of components as connections, which indicate the composition or simul-
taneous presence of two components. These connections have security-relevant properties themselves,
since properties on both the physical connection (e.g., use of encryption) and the logical connection (e.g.,
trust relationship) can render the system more or less secure.

We clarify the selection of properties using the example of WS. WS is a complex, highly-distributed
architecture, but as an input into the methodology, a simple refinement suffices. As depicted in Figure 1,

54

our WS refinement is comprised of a service requester, a directory service, a service provider, backend
systems and the connections between these components. Intermediaries are not explicitly modeled, but
are seen as a service provider acting as a service requester.

Figure 1: WS Architectural Refinement

The next step is the selection of the most relevant properties describing these components. We divide
them into two categories: paradigm-related and implementation-related.

The first category contains properties related to the underlying concepts of WS and SOA. Examples of
the properties in this category include support for dynamic discovery and binding of services, XML-based
messaging, and cross-platform support.

The second category involves properties related to actual implementations. These properties are
equally important but less uniformly applicable and more difficult to find; different implementations have
different properties. In order to ensure general applicability of the produced taxonomy, it is important to
choose properties common to most implementations. For example, most WS implementations use high-
level languages and server application containers, which provide system-level services such as memory
and transaction management. As such we consider “use of high-level languages” a shared property.

The result of this property selection step is a matrix [properties × architecture]. The rows contain
the different properties and the columns contain the different components of the architecture. For every
property and component there is a cell describing the degree to which the property is present in the
component. The different values are “the property is present”, “the property is not present” or “the
opposite property is present”.

5.2 Selection and assessment of vulnerabilities

The next major step of our methodology is the selection of vulnerabilities. Recalling the assumption that
new vulnerabilities will largely be variants of existing vulnerabilities (as opposed to fundamentally new
vulnerabilities), it is necessary to identify a representative base of existing vulnerabilities. With several
“new” vulnerabilities discovered on an average day, it is necessary to discriminate. We set the following
three criteria: coverage, relevance and availability of information.

Coverage in this context refers to the need for a broad and complete range of vulnerabilities. The goal
is to estimate the likelihood that variants of the selected vulnerabilities will appear in the new system.
Therefore, it is necessary to ensure that the selection is not too limited. While buffer-overflows account
for a major part of the published vulnerabilities, there is no need for proportional representation of this
class of vulnerabilities in the selection.

Our second criterion is relevance. The vulnerabilities should also be relevant to the security layer of
interest. If the layer of interest is practical security for applications, the selected vulnerabilities will be
centered around the application-level. Likewise, vulnerabilities from similar systems will have a higher
chance of being relevant to the new system. For example, vulnerabilities in CORBA [12] bear greater
relevance to DCOM [8] than those of an architecturally dissimilar system.

The final criterion is availability of information about the particular vulnerability. The best sources
for obtaining vulnerability information are security databases and mailing lists, such as Bugtraq [11].
Nevertheless, the available information is often sparse or obscured, inhibiting understanding of the vul-
nerability. Hence, it is best to select the vulnerabilities with the most complete information available.

55

This selection step yields a list of vulnerabilities that needs to be assessed, in order to determine the
influence that each property has on each vulnerability. Many properties will not influence the likelihood
that a vulnerability appears whereas others will either increase it or decrease it.

This assessment is necessarily partially biased, as our method aims to capture the experience of a
security professional. In many cases, the assessment will be trivial as the property is a prerequisite or
conversely an inhibitor of the vulnerability. In other cases, there is no relation whatsoever between the
property and the vulnerability. In cases where the influence is less clear, different professionals may
come to different conclusions. This can be mitigated by having a more fine-grained scoring system and
averaging results or a questionnaire resulting in a standardized score.

The result of this vulnerability selection and assessment step is a matrix [vulnerabilities × properties].
Each cell qualitatively describes the influence of the property on the vulnerability. Later, this qualitative
description will be mapped onto a quantitative value in order to perform correlation.

In our WS example, we begin with the values “positive”, “none” and “negative”, meaning respec-
tively more likely, no influence and less likely. For instance, text-based communication, which facilitates
understanding and manipulation of the transmitted data, increases the likelihood of input validation
vulnerabilities; its influence is therefore positive. Similarly, the use of high-level programming languages
and managed computing environments diminishes the likelihood of buffer-overflow vulnerabilities; their
influence is therefore negative.

5.3 Correlation of properties and vulnerabilities

The purpose of this step is to compute an estimate of the likelihood that a variant of a vulnerability will
be present in the different components of the system, by combining the information resulting from the
previous steps; namely the matrices [vulnerabilities × properties] and [properties × architecture].

To obtain a quantitative estimate, we first assign numerical values to the two matrices. In our WS
example, for the first matrix, we map the three values (“the property is present”, “the property is not
present” and “the opposite property is present”), to the values 1, 0 and -1 respectively. Similarly, for
the second matrix, the three values (“positive”, “none” and “negative”) are mapped to 1, 0 and -1.

It is now possible to determine the likelihood that a particular vulnerability is present in a particular
component. We do so by means of a simple linear composition with equal weights, obtained by the
multiplication of the two matrices [vulnerabilities × properties] × [properties × architecture]. This
results in the desired description matrix [vulnerabilities × architecture].

The values in this matrix are not mathematical probabilities (e.g., they are not bounded) but rather
indications of likelihood, with higher values indicating higher likelihood. For simple components, the
values indicate the most relevant vulnerabilities for each component. Recall that, the simultaneous
presence of components are modeled as connections between components. In this case, the meaning of
the values is different: they indicate the likelihood that a vulnerability may be exploited over the link
between the components.

As an example, input received over a trusted link is less apt to be validated than that received over
an untrusted link. Therefore the likelihood of an exploit of an input validation vulnerability over the
trusted link is greater. This is especially important for WS, where the most obvious attack flow (user
attacks WS) is not the only realistic attack scenario.

5.4 Leveraging existing taxonomies

We now use a similar construction to combine the results of the previous correlation step with existing
vulnerability taxonomies. This combination may be viewed as:

• A summarization of results of the previous step with respect to the viewpoint of the existing
vulnerability taxonomies.

• A specialization of existing vulnerability taxonomies into a vulnerability taxonomy for the system
under study.

A taxonomy can again be represented by a matrix, namely [vulnerabilities × categories]. In this matrix
the rows represent particular vulnerabilities and the columns represent the taxonomy’s different classes.
The cells of the matrix describe whether the vulnerability is an instance of the class; values are therefore
“true” or “false”. Vulnerabilities generally belong to one and only one class, although this is not uniformly
the case.

56

By mapping the values “true” to “1” and “false” to “0” and normalizing with a weight vector, we can
use a simple matrix multiplication to obtain the desired result: [architecture × vulnerabilities] × [vul-
nerabilities × categories] × [normalizing vector] = [architecture × categories]. The normalizing vector
accounts for the different number of vulnerabilities per class.

For our WS example we used the Bugtraq classification which we selected following our use of Bugtraq
as the source of vulnerability data. It is rather coarse-grained, having only 7 classes, but is reasonable
for our purposes.

6 Applying our methodology to WS

In this section, we detail application of our methodology to WS and the salient results obtained. We
focus on the details, as the coarse-scale process was already explained in the previous section. We begin
with the architectural model and properties, and continue with the selection of the vulnerabilities. We
present the produced result matrix and touch on how these results can be validated. Finally, we highlight
the most interesting findings.

6.1 Architecture and Properties

Our WS architecture model was introduced briefly in Section 5.1 and is depicted in Figure 1. It is a
coarse-grained model by design, with four functional components and their connections:

• Clients: the service requester such as an ordering system.

• Directory services: the service locator such as UDDI or DNS.

• WS providers: the actual providers of a service (can be clients of other WS providers).

• Backend systems: the backend systems behind the WS providers such as a database.

• Links: components have logical links between them, e.g., WS requesters communicate directly to
WS providers and directory services, but only indirectly to backend systems.

The loopback connection in Figure 1 represents the ability of a WS provider to make requests to other
WS providers, aggregate the results and return them to the service requester.

The property selection follows from the architecture model. We selected 17 properties divided in two
categories: properties related to the WS paradigm itself, and properties related to implementations of
WS systems.

The properties of the first category, derived from the definition of SOA and WS (discussed in Sec-
tion 2.1 and Section 2.2), are:

• WS are designed to enable interactions between diverse systems and are therefore considered cross
platform.

• WS allow for the dynamic discovery of WS providers through directory services.

• WS support dynamic binding between service requester and provider.

• WS are an implementation of SOA and therefore are service oriented.

• WS use XML-based messaging for communication.

• WS, in contrast to web applications, are especially well suited for machine to machine interaction.

• WS are message-centric; messages describe what should be performed instead of how it should be
performed.

• WS are not limited to a particular transport protocol and are therefore transport agnostic.

The second category of properties, related to the implementation of WS, is less clearly defined (as they
are, by definition, implementation dependent). We selected the following properties shared by the most
popular WS implementations:

• WS are typically implemented in systems with a managed execution environment, such as Java or
.NET.

• WS have a highly layered structure.

• WS make heavy use of general-purpose libraries and components.

• Creation, configuration, and deployment of WS is often done via wizard.

• Interaction between the WS components typically takes place over stateless synchronous transport
protocols, e.g., HTTP.

• WS are not particularly efficient, e.g., extensive XML parsing.

57

• The WS standards are highly complex.

• Different connections in the WS architecture have different trust-levels.

For every property and architectural component described above, we assessed the property’s presence:
present, not present, or the opposite property is present.

6.2 Vulnerabilities

The second step in the methodology is the selection of the vulnerabilities that are representative of the
body of knowledge of historical vulnerabilities. We used Bugtraq as the source of the vulnerabilities as
it is one of the largest publicly available vulnerability databases. We selected a suitable subset using the
criteria set in Section 5.2: coverage, relevance and availability of information.

Availability of information was the first criterion used to create our subset. It is important as
vulnerability descriptions are often incomplete and inconsistent. Therefore, we discarded vulnerabilities
whose descriptions did not provide adequate information to understand root causes and thus to assess
property influences.

From the set of vulnerabilities with adequate information, we discarded those that are not relevant
to WS. We therefore focus on software vulnerabilities and, in particular, those in distributed systems.
We discarded, for example, vulnerabilities in physical security systems, such as locks.

From the remaining vulnerabilities we selected a subset so as to retain coverage; representative
vulnerabilities from each different class need to remain in the subset. This resulted in a final set of 54
vulnerabilities. For each of these vulnerabilities, we categorized the influence of each selected property
on the vulnerability as positive influence, negative influence or no influence.

6.3 Result matrix

The final step of the methodology is the combination of the [vulnerability × properties] and the [prop-
erties × architecture] matrices via linear correlation to obtain the [vulnerability × architecture] matrix.
We applied the technique described in Section 5.4, using the Bugtraq classification, to group the results
according to the [classification × architecture]. The result matrix is depicted in Figure 2.

The columns of the result matrix represent the component architecture depicted in Figure 1. Recall
that the functional components are client, web service, directory and backend components, as well as
all the possible connections between these components. The rows represent the different vulnerability
classes as defined by Bugtraq: access validation error, boundary condition error, input validation error,
design error, failure to handle exceptional situations and unknown.

6.4 Validation

The predictive nature of our methodology poses some specific challenges for its validation. One possible
approach entails applying it to a well-established technology, without using prior knowledge of the
vulnerabilities in this particular technology. Comparison of our results with the historical vulnerabilities
discovered in this technology allows for validation of our methodology. This approach is, however, out
of scope for this paper as the authors’ interests in this work lies in the early understanding of applied
security problems in WS.

To date, the publicly available data on vulnerabilities in WS is not adequate to validate our approach.
Nevertheless, this technology is maturing rapidly and we expect to have more data available soon.

In the next section we will discuss the result matrix which indicates both anticipated and unantic-
ipated, yet retrospectively clear, outcomes. We thereby perform a functional validation although fully
acknowledge that this is by no means complete.

6.5 Discussion of results

There are a number of conclusions one may draw from the result matrix. We focus our discussion on the
most salient of these in the context of real-world WS deployment.

WS often provide an interface that allows for direct interaction with core business processes. Tradi-
tionally these interfaces have been closed to the outside world and consequently run in a trusted, but
not necessarily trustworthy, environment. WS changes this situation by allowing direct interaction with

58

Figure 2: [classification × architecture]

the core systems, thereby exposing them to a significantly larger range of threats. Therefore, previous
assumptions need be reevaluated.

The result matrix shows consistently high values in the input validation class over all the components
and connections between the components. This indicates that input validation errors are likely in all
WS components and can be exploited over all the connections between these components.

We discuss two subclasses of input validation: input format and input origin. We conclude with a
discussion of attack flows and the implications derived from the matrix values describing the connections
between components.

6.5.1 Input Format

Unfounded assumptions regarding the format of the input can lead to vulnerabilities. These vulnera-
bilities are commonly known as input format validation errors, but input validation is only part of the
reason why these errors exist.

The loosely coupled and composable nature of WS requires input validation at each of the various
stages of the complete WS process. Unfortunately, the fact that form data has different meanings
in different layers of the WS implies that input must also be validated in the different layers. Proper
validation requires data normalization, and order is important: data must be normalized and then checked
(the Nimda worm exploited a series of vulnerabilities that stemmed from the fact that a validation check
was performed before the character encoding normalization was applied).

Good support for input validation is essential in both tools and libraries; currently such support is
limited. For example, the best method for avoiding SQL-injection (the archetypical input validation
error) is the use of prepared statements which has the effect of enforcing separation of control and data
channels. The equivalent in the context of WS is XPath-injection, and there is currently no standard
support from “prepared XPath”.

6.5.2 Origin of data

Other unfounded assumptions relate to the origin of the input, as opposed to its format. The induced
vulnerabilities include the direct spoofing of origin, corruption of directory services leading to an incor-
rectly contacted party, and cross site scripting. These are caused by inadequate input validation. The
likelihood of each of these vulnerability subclasses is increased by the composable nature of WS.

59

We would make special mention of the subclass of vulnerabilities involving bounce attacks wherein the
attacker tricks a trusted party into making a bad request (including cross site scripting). The likelihood
of these is greatly exacerbated by the use of standard libraries for XML handling that support inclusion
of external data sources (such as XInclude and external entities). For example, the attacker may set his
name to the string <xi:include href="passwords.txt" xmlns:xi="http://www.w3.org/2003/XInclude"/>

which will be interpreted as the instruction to include a password file.

6.5.3 Attack flows

Recall that the matrix values for the connections between components, unlike the values for components
themselves, do not indicate the likelihood of the connection having a vulnerability but rather indicate
how easily a certain vulnerability can be exploited over that connection. In the same way that a property
or a combination of properties can render a vulnerability more or less likely, there are properties that
make the exploitation of a vulnerability over a certain connection more or less difficult.

An example property is the nature of the relationship between the communicating components. When
this is a trust relationship, the received input will typically also be trusted and is thus often not subjected
to the proper access controls and not sufficiently validated.

The notion of exploitability of an attack over a certain connection naturally leads to the concept of
attack flows. Before an attack on a component of a system can be staged, the component needs to be
vulnerable to the attack and the path from the attacker to the victim needs to permit the attack to be
launched. This raises the question: from what components can a certain component be attacked?

Consider the boundary condition error category as an example. These errors are typically caused by a
buffer’s reserved memory being exceeded by unexpectedly long input, which can lead to the execution of
arbitrary code by an attacker. Programs written in C or C++ are prone to this variety of vulnerability.

WS components are generally written in higher-level languages and executed in managed environ-
ments, and are thus generally not vulnerable to boundary condition errors. One might there expect that
WS, as an entire system, would be similarly invulnerable. This is not the case. The backend components
of the WS architecture are generally written in C or C++ and are hence prone to boundary condition
errors, as one can observe in the result matrix shown in Figure 2. While the WS component itself may
not be vulnerable, it may pass on an attack to the vulnerable backend component.

If we assume that the client is the attacker, then determination of whether such a vulnerability in the
backend system is exploitable, involves determination of whether there exists a suitable path from the
client to the backend. By suitable we understand “having properties that make exploitation feasible”.
As there is no direct path from the client to the backend system, the attack would have to be staged
indirectly through one or more of the other components. The most obvious scenario is to connect to
the WS that, although not vulnerable for the attack in itself, can pass the attack on to the vulnerable
backend.

The data in Figure 2 suggests that this most obvious scenario may not be the most problematic,
since the properties of the connection between the client and the WS make it difficult to exploit this
type of vulnerability over this connection. This is due to a combination of properties, of which one is
the untrusted nature of the connection.

Although more difficult to stage, a scenario in which the attacker uses a path through the directory
service or in which the directory service itself is the attacker is more likely to be successful. This follows
from the relatively high values for these connections in table .

An important realization stemming from this analysis is that one’s initial expectations concerning
the vulnerabilities of a system are not always accurate. One must consider not only the component-wise
vulnerabilities but also the paths over which they can be exploited. Furthermore, it is important to
consider all attack flows rather than only that in which the client is the attacker and/or the web service
component is the target.

7 Related work

The key difference between our approach and existing taxonomies (see Section 4) is the taxonomic
character used and the systematic methodology for deriving new taxonomies. Our taxonomic character
is the likelihood that vulnerabilities will appear in a system. This implies that our taxonomy is predictive,
whereas previous work focused on classifying existing vulnerabilities. Our methodology is systematic:
the classes are not selected ad-hoc, but through a well defined process.

60

Orthogonal Defect Classification [7] is a methodology for analysis of software defects, serving as an
early indicator of the health of the software development process. It is related to the methodology
proposed in this paper as it also involves a systemic analysis of software defects. However, both the
techniques applied and the purpose differ widely. From certain attributes of the detected defects, e.g.,
the defect type or defect trigger, statistics are created that are compared to the expectations on defects
in a certain phase of the development process.

Our test case of WS is, to our knowledge, the first taxonomy focusing on WS as a system in contrast to
web applications, which have been addressed as a component by OWASP [23]. The OWASP vulnerability
classes are more specialized (towards web applications) and therefore finer-grained. For example, the
input validation error class of the Bugtraq classification is split into several classes, such as SQL injection,
encoding errors, etc. However, the similarities between WS and web applications lead us to expect many
of these classes to be also relevant for WS.

8 Conclusions and Future Work

In this work we developed a methodology for predicting vulnerabilities in systems. Our methodology
systematizes the déjà-vu feeling a security expert has when confronted with a new system. It assesses the
likelihood that variants of historic vulnerabilities will appear, based on the combination of the properties
describing the system. The use of an architectural refinement provides not only an indication of which
vulnerabilities will appear, but also where they are likely to appear. This allows one to reason about the
security of a system before it is widely deployed and to thereby address security problems at an early
stage.

We applied this methodology to WS. This has practical significance because of the importance of WS
despite the current lack of wide deployment. The results of our WS example are promising and present
a first step towards full validation of our methodology.

The test case application of our methodology revealed two critical steps. On one hand, the selection
of the properties is difficult. There is no well-defined minimal set of properties that describes a system
in all its aspects. Further, for any particular aspect, balance must be achieved between selecting a set
of properties which is rich enough to describe the system yet compact and clear enough as to remain
tractable. On the other hand, the selection of vulnerabilities is not trivial. Information in vulnerability
databases is often incomplete, hindering understanding of the root causes of the described vulnerabilities.

One limitation of our methodology is the use of a linear mapping with equal weights to derive likeli-
hoods. Linearity is a strong simplification implying that all properties are equally important. Alternative
weighing schemes would provide more accurate models, but at the cost of higher complexity.

Nevertheless, the methodology provides a valuable heuristic for identifying the most likely sources of
insecurity in a system.

References

[1] R.P. Abbott, J.S. Chin, J.E. Donnelley, W.L. Konigsford, S. Tokubo, D.A. Webb, and T.A. Linden.
Security analysis and enhancements of computer operating systems: The RISOS project. Techni-
cal Report NBSIR 76-1041, Institute for Computer Sciences and Technology, National Bureau of
Standards, US, April 1976.

[2] Ross Anderson. Why cryptosystems fail. Proceedings of the ACM Conference in Computer and
Communications Security, pages 215–227, November 1993.

[3] Taimur Aslam. A Taxonomy of Security Faults in the UNIX Operating System. PhD dissertation,
Purdue University, US, August 1995.

[4] Taimur Aslam, Ivan Krsul, and Eugene Spafford. Use of a taxonomy of security faults. Proceding
of 19th NIST-NCSC National Information Systems Security Conference, pages 551–560, September
1996.

[5] R. Bisbey and D. Hollingworth. Protection analysis: Final report. Technical report, Information
Sciences Institute, University of Southern California, US, May 1978.

[6] Matt Bishop. A taxonomy of unix system and network vulnerabilities. Technical Report CSE-9510,
University of California, Davis, US, May 1995.

61

[7] Ram Chillarege, Inderpal Bhandari, Jarir Chaar, Michael Halliday, Diane Moebus, Bonnie Ray, and
Man-Yuen Wong. Orthogonal defect classification a concept for in-process measurements. IEEE
Transactions on Software Engineering, 18:943–956, November 1992.

[8] Microsoft Corporation. Distributed Component Object Model (DCOM). Webpage at http://www.
microsoft.com/com/tech/DCOM.asp.

[9] Richard DeMillo and Aditya Mathur. A grammar based fault classification scheme and its application
to the classification of the errors of TEX. Technical Report SERC-TR-165-P, Purdue University, US,
November 1995.

[10] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software Architectures.
PhD dissertation, University of California, Irvine, US, 2000. chapter 5: REpresentational State
Transfer (REST).

[11] Security Focus. Bugtraq mailing list. Webpage at http://www.securityfocus.com/archive/1.

[12] Object Management Group. Common Object Request Broker Architecture (CORBA). Webpage at
http://www.omg.org/.

[13] Ivan Krsul. Software Vulnerability Analysis. PhD dissertation, Purdue University, US, May 1998.

[14] Liberty Alliance. Liberty alliance project. Webpage at http://www.projectliberty.org/.

[15] Daniel Lowry Lough. A taxonomy of computer attacks with applications to wireless networks. PhD
dissertation, Virginia Polytechnic Institute and State University, US, April 2001.

[16] Alberto Marradi. Classification, typology, taxonomy. Quality and Quantity, 2:129–157, May 1990.

[17] James McGovern, Sameer Tyagi, Michael Stevens, and Sunil Mathew. Java Web Services Architec-
ture. Morgan Kaufmann, April 2003.

[18] Microsoft Corporation. Microsoft .NET. Webpage at http://www.microsoft.com/net/.

[19] Oasis. eXtensible Access Control Markup Language (XACML). Webpage at http://www.

oasis-open.org/committees/tc_home.php?wg_abbrev=xacml.

[20] Oasis. Security Assertion Markup Language (SAML). Webpage at http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=security.

[21] Oasis. Universal Description, Discovery and Integration of Web Services (UDDI). Webpage at
http://uddi.org/.

[22] Oasis. Web Services Security (WSS). Webpage at http://www.oasis-open.org/committees/tc_
home.php?wg_abbrev=wss.

[23] OWASP. The Open Web Application Security Project. Webpage at http://www.owasp.com/.

[24] George Gaylord Simpson. Principles of animal taxonomy. Technical report, Columbia University,
New York, US, 1961.

[25] Sun Microsystems, Inc. Java 2 Platform, Enterprise Edition (J2EE). Webpage at http://java.

sun.com/j2ee/.

[26] Paul Syverson. A taxonomy of replay attacks. Proceedings of the Computer Security Foundations
Workshop, 1994.

[27] Userland. XML Remote Procedure Call (XML-RPC). Webpage at http://www.xmlrpc.com/.

[28] W3C. SOAP. Webpage at http://www.w3.org/TR/soap/.

[29] W3C. Web Services Description Language (WSDL). Webpage at http://www.w3.org/TR/wsdl.

[30] W3C. XML Path Language (XPath). Webpage at http://www.w3.org/TR/xpath.

[31] WS-I. Web Services Interoperability Organization (WS-I). Webpage at http://ws-i.org/.

62

Vulnerabilities in Online Banks

Thomas Tjøstheim and Vebjørn Moen
Department of Informatics

University of Bergen, Norway

Contact author: Thomas Tjøstheim, thomast@ii.uib.no

Abstract

This paper describes some attacks on online banks that authenticate each customer through the
use of a unique user identifier and a Personal Identification Number (PIN). Many user identifiers
contain structure which make them easy to generate on a computer. Given a generated set of iden-
tifiers it is possible to do a brute-force attack on the PINs. A general attack model is described and
some example attacks against a Scandinavian online bank are discussed.

Keywords: online bank, brute-force attack, DoS attack.

1 Introduction

Online banks have thrived with the explosive growth and availability of the Internet. A wide variety of
services are offered to the customers. Paying a bill, checking the account balance, or applying for a loan
can now be comfortably done from one’s own home or office. However, the new possibilities introduced
with Internet banking have also resulted in new security challenges. It is difficult to create both user
friendly and secure Internet banking solutions. Can customers really trust that an attacker will not be
able to break into their accounts?

Online banks claim that they are secure as they have many security features like firewalls, Public Key
Infrastructure (PKI), Intrusion Detection Systems (IDSs), money auditing systems, and Secure Socket
Layer (SSL). The average customer seems to be satisfied with the level of security in Internet banks.
However, security is complex and not some magic potion that you add to your system to make it secure.
Security should be considered from the start of the system development phase. A careful analysis of the
environment is necessary to determine the needed security services and to determine how to implement
these services correctly. Analysis of a security protocol is very difficult, due to the many ways an attacker
can take advantage of the protocol environment.

In this paper we show that online banks authenticating each customer through an N -digit PIN in
combination with a structured user identifier are vulnerable to both brute force and Denial of Service
(DoS) attacks. There are at least three online banks in Norway that use or have used this form of
customer authentication. However, the authors have decided not to explicitly name any banks, as this
has been requested from one of the banks, and the fact that some of the banks are still vulnerable to the
attacks described in this paper.

The rest of this paper is organized as follows: Section 2 presents the general attack model, Section 3
describes structure and generation strategies when Social Security Numbers (SSNs) and account numbers
are used as unique identifiers, Section 4 discusses some example attacks on a real Internet bank in
Scandinavia, and Section 5 concludes the paper.

2 Attack model

A common way of authenticating customers in online banks is to require a unique identifier for each
customer together with a secret that only the customer knows. This section describes a general attack

63

to online bank customers

user IDs
PINs and
tries pairs of
Program that

10^N PINs

Internet Online bank

Number of user IDs belonging

Generated user IDs

Figure 1: Attack model

model against online banks where each customer has a unique user ID and an N -digit PIN as their secret.
The PIN can be either static or dynamic. A static PIN stays the same while a dynamic PIN is changed
for each login; it can for example be generated by a PIN calculator.

A customer gains access to an account only by entering a valid user ID and PIN combination.
Typically, there will be a limit on how many times (often three or five) a wrong PIN can be entered
for a given customer’s user ID. The objective of this limit is to prevent a brute-force attack against the
customer’s PIN. A customer will temporarily lose access to the account if the limit is exceeded and must
contact the bank in order to receive a new PIN.

2.1 Brute-force attack

Figure 1 depicts the attack model for the brute-force attack. The generated set of user IDs will contain
a subset of the user IDs belonging to the customers of an online bank (we will see examples of how to
generate such sets in Section 3). A program logs into the online bank’s web pages and automatically
enters different user ID and PIN pairs. One can observe that it does not matter if the PIN is dynamic
or not. The only difference is that if a PIN is dynamic the attacker would have to attack the account at
the moment a valid PIN and user ID combination is found.

Running the attack from only one host is not realistic, as this most likely will be detected by the
bank’s IDS. A distributed attack could be done by for example spreading a virus that contains the brute-
force program in addition to having a control program that gets feedback from the zombie machines.
Furthermore, it is possible to avoid the IDS by spreading the attack over several days in order to hide
the number of tried logins in the anticipated natural traffic from legitimate users accessing the bank.

The probability of accessing at least one account is

P (At least one) = 1− P (none)

= 1− (1− Psuccess)
Y (1)

where Y is the number of online bank customers in the generated set of user IDs. The anticipated
number of cracks is

µ = Y × Psuccess. (2)

The probability that an attacker cracks a random customer’s account is

Psuccess =
X

10N
. (3)

64

Here, X is the maximum number of allowed wrong entries for a PIN, and N is the number of digits in
the PIN.

Given a generated user ID, an attacker must first consider whether it is valid and belongs to an online
bank user, or not. An attacker would ideally like to maximize the amount of customer user IDs in the
initially generated set. This would give the most effective and silent attack.

2.2 DoS attack

If an attacker can acquire many user IDs, there is also a possibility of doing a distributed DoS attack
against the bank’s customers. The login scheme of online banks simplifies an application layer based
DoS attack. An attacker can temporarily shut down access to accounts by entering X incorrect PINs for
each valid user ID.

2.3 Combined DoS and brute-force attack

The probability in (3) assumes a combined DoS and brute-force attack. It can be discussed if the attacker
is better off guessing X−1 times since customers are not denied access this way, and it might take longer
before the bank’s IDS detects the attack. However, if the attacker controls a network of “zombie”
machines, it is very difficult to both identify the attacker and stop the attack from all the machines in
the controlled network. The chaos created by the combined attack could also be an advantage for the
attacker. For more information on how to execute a distributed DoS attack please consult [1].

3 Generating user IDs

This section describes two real cases of user IDs being used in online banks. We will study structure
and generation strategies for Norwegian SSNs and account numbers. The arguments that apply to
the Norwegian user IDs are similar for other countries. In particular, we have verified that the same
generation strategies, with minor modifications, can be applied to both Swedish and Danish user IDs.

3.1 Norwegian SSNs

Norwegian SSNs are not confidential. Given a reasonable documented need, the SSNs can be requested
from a national register. Many public institutions like hospitals, banks, and tax authorities have legal
access to people’s SSNs, but it can be difficult for private persons to argue the need for many SSNs.
Therefore it might be better for an attacker to generate a set of SSNs. Most SSNs have a specific
structure which make them easy to generate.

3.1.1 Structure of Norwegian SSNs

The Norwegian SSN [2] consists of 11 digits: x1x2x3x4x5x6i1i2i3c1c2.

x1x2x3x4x5x6 is the birth date of the individual on the form ddmmyy.

i1i2i3 is called the individual number and is used to separate people born on the same date. The na-
tional register distributes SSNs in the order they receive birth messages. They start with the highest
available valid individual number for that day and proceeds downwards for each new birth message.
The individual number is based on the century the person is born in, as shown in Table 1. It is
also possible to distinguish boys from girls by looking at i3, which is odd for boys and even for girls.

c1c2 are control digits that are calculated as weighted sums of the first 9 and 10 digits, respectively.

c1 = 11− (3x1 + 7x2 + 6x3 + x4 + 8x5 + 9x6 + 4i1 + 5i2 + 2i3 (mod 11)).

65

c2 = 11− (5x1 + 4x2 + 3x3 + 2x4 + 7x5 + 6x6 + 5i1 + 4i2 + 3i3 + 2c1 (mod 11)).

If either c1 or c2 is calculated to be 10 (mod 11) the SSN is discarded, and if c1 or c2 is equal to 11
then it is set equal to 0. Let’s assume that c1 and c2 are approximately independent, then an SSN will
be discarded with the following probability:1

p(c1 ∪ c2) = p(c1) + p(c2)− p(c1 ∩ c2)

=
1

11
+

1

11
− (

1

11
)2 =

21

121
.

Individual Year in Born
number birth date

500–749 >54 1855–1899
000–499 1900–1999
500–999 <55 2000–2054

Table 1: Correspondence between individual number and birth date

3.1.2 SSN generation strategies

How can an attacker maximize the ratio of customer SSNs in the initially generated set? Four different
strategies will be discussed.

Strategy 1: The simplest strategy is to generate SSNs in such a way that all of the online bank’s
customers are covered. If for example the online bank only has customers in the age group 18–100, one
could generate all possible SSNs for this group. With this scenario, all customers are born in the 20th
century and are therefore given individual numbers in the range 000–499. Hence, for each day in the year
we get 500 possible SSNs, but an estimate of 21/121 will be invalid numbers. The number of possible
SSNs for people that are 18–100 is 500 × 365 × 83 × (100/121) ≈ 12.5 million. Let Z denote the total
number of customers in an online bank. The proportion of customer SSNs would then be

Rcustomers =
Z

12.5 million
. (4)

The drawback, from the attacker’s point of view, is of course the huge number of SSNs that has to be
checked. A large portion of the SSNs will neither belong to real people nor to online bank users. There
is also a high probability for the bank’s IDS detecting the attack because of the big workload.

Strategy 2: A strategy for increasing the concentration of customer SSNs is to focus on a specific
age group that has a high percentage of online bank customers. For example, 34 % of customers in pure
online banks are males in the age group 26–35 [3]. The number of generated SSNs for this particular
group would be 250× 365× 10× (100/121) ≈ 754, 132. The ratio of customer SSNs would then be

Rcustomers =
Z × 0.34

754, 132
. (5)

Strategy 3: However, one still has to generate a lot of SSNs belonging to non-existing people. This
problem can be avoided by taking advantage of the chronological assignment of SSNs to newborn and
immigrants. Instead of generating all valid SSNs for one day, it is possible to use population statistics
to reduce the amount of generated SSNs. As an example, one can look at the period corresponding to
males in the age group 26–35. There is an average of about 33,343 SSNs assigned per year for this group
[4]. This gives an average of 33, 343/365 ≈ 91.4 people per day. Let S be the number of assigned SSNs
for a particular day. This number will of course vary from day to day. To get an idea of how S varies one

1To control the assumption of stochastic independence, a computer program was written that generated all the possible
SSNs for the 20th century and counted the number of discarded SSNs. The results from the computer program gave the
probability estimate 21/121 down to the 5th decimal.

66

can make the simplifying, but only approximately true assumption, that each day in the year is equally
probable for the assignment of an SSN. This gives a binomial probability distribution with n = 33, 343
(the average for a year) and the probability p = 1/365 (ignoring leap years) that a person is assigned an
SSN for a particular day. The standard deviation for a random variable V having a binomial distribution
is

Sd(V) =
√

np(1− p). (6)

From (6) we have Sd(S) ≈ 9.5. To get an estimate of how S varies for each day one can construct an
interval with ±3 standard deviations. The probability that S lies in the interval is

P (91.4− 3Sd(X) ≤ S ≤ 91.4 + 3Sd(X))

≈ P (62 ≤ S ≤ 120) = 0.9974,

since a a binomial distribution can be approximated with a normal distribution.
If the attacker generates 120 SSNs for each day, then:

P (120 ≤ S ≤ 120 + m)

is the probability that the attacker looses between 0 and m SSNs for that day. This probability is
limited to ≤ 0.0013 since ±3 standard deviations are used. The number of generated SSNs would be
120 × 365 × 10 = 438, 000. We can assume that almost all of the online bank’s customers in the age
group 26–35 are covered. An approximated ratio of customer SSNs is then:

Rcustomers =
Z × 0.34

438, 000
. (7)

SSNs that do not belong to real persons can be minimized if the attacker for example generates 62
SSNs for each day. This way the attacker will loose some SSNs belonging to real people, but will with
probability P (S ≤ 62−m) which is ≤ 0.0013 generate between 0 and m too many SSNs for a particular
day. The number of generated SSNs would then be 62 × 365 × 10 = 226, 300. This will correspond to
approximately generating 0.68 (226,300/333,430) of the total number of SSNs for the age group 26–35.
If we assume a uniform distribution of online customers among the assigned SSNs, an estimate of the
customer ratio is then:

Rcustomers =
Z × 0.34× 0.68

226, 300
. (8)

Strategy 4: Another possibility is to filter out the SSNs belonging to online bank customers by
trying to exploit response information from the bank’s web pages. Two filtering examples are shown in
Section 4.2.

3.2 Norwegian account numbers

An account number is a unique identifier for a customer’s account, and can be generated in much the
same way as an SSN. This is not hard when the structure is known.

3.2.1 Structure of Norwegian account numbers

A Norwegian account number [5] consists of 11 digits: b1b2b3b4a1a2a3a4a5a6c1

b1b2b3b4 indicates which bank the account belongs to. Each bank has a set of serial numbers that
identify the particular bank.

a1a2 is the type of account, e.g. a salary account or a high interest account. There is no standard for
which numbers have to be used, each bank can define its own system.

a3a4a5a6 are digits that uniquely identify a customer’s account. When a new account is created the
smallest available 4-digit number is chosen.

c1 is a control digit that is calculated as a weighted sum of the first 10 digits:
c1 = 11− (5b1 + 4b2 + 3b3 + 2b4 + 7a1 + 6a2 + 5a3 + 4a4 + 3a5 + 2a6 (mod 11))

However, if c1 is calculated to be 10 (mod 11), the account number is discarded.

67

3.2.2 Account number generation strategies

The strategies for generating account numbers are easier than for SSNs. An attacker can find out which
serial and account type numbers a particular bank uses. Given one of the bank’s serial numbers and an
account type, an attacker can generate the next four digits a3a4a5a6 in such a way that it gives a valid
account number. Note that there are only 10, 000× 10/11 ≈ 9, 090 valid combinations.

An attacker can also take advantage of the fact that the smallest available account number is always
chosen. It is also likely that an attacker can filter out valid account numbers by guessing incorrectly X
times for a given account number and observing the response. Given this, it is possible to generate an
interval of account numbers that the attacker knows belongs to customers.

4 Example attacks on a real Internet bank

Let Bank B denote the Norwegian branch of a Scandinavian bank that specializes in online banking
services. The security solution was changed in 2004. In this section we will look at some theoretical
example attacks on the Norwegian bank B, both before and after the change of security solution.

4.1 Bank B before 2004

A customer in bank B is supposedly authenticated by having a valid SSN, a N = 4 digit PIN, and a
personal certificate. A new certificate must be downloaded for each new host used to connect to the
bank. Before 2004 a customer downloaded a new certificate by entering a valid PIN and SSN pair. With
this scenario an attacker could try to brute force the PIN by attempting to download a new certificate.
An attacker had (X = 3) tries at guessing the correct PIN.

4.2 Brute-force attack

How does the brute-force attack described in Section 2.1 apply to bank B? Given the first strategy in
Section 3.1.2, all SSNs for people in the age group 18–100 are generated. It is realistic to assume that
nearly all of B’s customers are covered in this SSN generation. In Norway, bank B had more than
Y = 220, 000 customers in 2003. From (1), the following probability can then be obtained

P (At least one crack) = 1− (1−
3

104
)
220,000

≈ 1,

and from (2), the anticipated number of cracks are

µ = 220, 000×
3

104
= 66.

The ratio of customer SSNs is from (4) 220, 000/12.5 million ≈ 0.018.
The second strategy was to only generate SSNs belonging to males in the age group 26–35. The

expected number of B’s customers in this age group is Y = 220, 000 × 0.34 = 74, 800. This gives the
following probability:

P (At least one crack) = 1− (1−
3

104
)
74,800

≈ 1.

The anticipated number of cracks when checking all SSNs one time is

µ = 74, 800×
3

104
≈ 22.

From (5), the ratio of customer SSNs is 74, 800/754, 132 ≈ 0.099.
The third strategy was to exploit the chronological ordering of SSNs combined with the use of

population statistics. We apply the strategy to both the age group of 26–35 and 18–100. Table 2 shows
some different results when the average number of SSNs ±3 standard deviations is generated per day for
the two groups. In particular, the table lists the total number of SSNs generated and the approximated
number of B’s customers covered.

68

Strategy 3
Variation SSNs Age Total ≈ B Ratio Cracks

per day SSNs SSNs SSNs
1 148 18–100 4,483,660 220,000 0.049 66
2 84 18–100 2,544,780 160,180 0.063 48
3 120 26–35 438,000 74,800 0.171 22
4 62 26–35 226,300 50,864 0.225 15

Table 2: Overview of results for strategy 3, when the average number of SSNs ±3 standard deviations is
generated each day for the two age groups

In Section 3.1.2 a binomial probability distribution was assumed, and the two cases of generating 120
SSNs and 62 SSNs each day for the group 26-35 were considered. In the first case one can expect to almost
cover all of the 74,800 customers in B and obtain about the same probabilities as when we generated all
the valid SSNs for the same age group. The ratio (7) of customer SSNs would be 74, 800/438, 000 ≈ 0.171.
With 62 SSNs generated each day the following estimate of the ratio of B SSNs is obtained from (8) to
be 50, 864/226, 300 ≈ 0.225.

The birth statistics [4] for men and women in the age group 18–100 show that there is a total of
3,495,131 people (SSNs) and this gives an average of 3,495,131/83× 365 ≈ 115.4 per day. The standard
deviation is calculated from (6) to be ≈ 10.7.

From Table 2 we see that the anticipated number of accounts cracked is dependent on the number
of SSNs generated. There are different attack variations depending on how the bank will react to the
attack. For instance, the most effective attack would be to try and verify the 226,300 SSNs generated
with variation 4 in Table 2. Depending on how B would react to the first attack, the same attack could
be repeated with about 15 anticipated cracks each time. On the other hand, if the attacker only gets
one chance at verifying the SSNs and the number of SSNs does not matter, then variation 1 in Table 2
yields the best attack.

The fourth strategy was to try to filter out the SSNs belonging to online bank customers. Two
different approaches were discovered for the case of bank B:

1. When a valid SSN is combined with a wrong PIN the following error message is returned: “You
have entered the wrong SSN or PIN.” After three incorrectly entered PINs, and only if this is an
SSN belonging to a customer, will the bank respond that the customer has been denied access to
the bank. This means that an attacker can guess three times for each SSN, and not only find valid
PIN and SSN combinations, but also filter out which of the SSNs belong to B’s customers.

2. It is also possible for an attacker to filter an SSN by trying to register a new customer. When
registering, bank B only verifies the correspondence between the SSN and the name. Fake email,
phone numbers and so on can be entered. Only when entering an SSN that belongs to a customer
will a specific error report be sent: “There was en error with registration. Please contact. . . ”
Otherwise the person with this SSN will be registered as a new customer. A disadvantage is that
an attacker will register a large amount of new customers and this will probably be detected.
The advantage of this method compared to the first is that an attacker can filter the SSNs before
executing the brute-force attack.

4.3 Bank B in 2004

The certificate downloading scheme in bank B was altered in 2004. In addition to entering a valid PIN
and SSN combination, a customer must also enter a valid one-time password that is sent either to the
customers’ mobile phone or mailbox. If the password is sent as an SMS it has 15 minutes validity, while
a password in the regular mail is valid for 14 days.

The brute-force attack described in Section 4.1 is still possible. An attacker that finds valid PIN and
SSN combinations can decide how the one-time password shall be delivered. If the password is delivered
by SMS, the attacker could try to sniff the password with an interceptor [6]. However, it is much easier
and cheaper for the attacker to get the password from the mailbox. Given a valid SSN it was possible to
find the matching name and the address. This could for instance be done by using a Norwegian pension

69

fund web site [7]. This site authenticates members using only SSNs. When a member logs in, the site
displays the name and address corresponding to the SSN. If the attacker chooses password delivery by
mail, he decides when the password shall be delivered, and will have a good indication of when to steal
the mail.

5 Conclusions

This paper shows that online banks authenticating customers through the use of a PIN in combination
with an SSN or an account number are vulnerable to both brute-force and DoS attacks at the application
level. The degree of exposure to brute-force attacks depends on the number of digits in the PIN. Whether
the PIN is static or is changed for each login makes no difference in this case.

In Section 4 it was shown that bank B is vulnerable to a brute-force attack as the PIN only has 4
digits. The PKI solution in bank B is of limited value, since a new certificate and corresponding private
key can be downloaded given a valid PIN and SSN combination and the one-time password.

An easy countermeasure against the attacks described in this paper would be to use user IDs that do
not contain any structure, so that they would be difficult to generate automatically. The reason the banks
have not done this, might be that it simplifies customer handling to use SSNs or account numbers as
unique customer identifiers. Another suggestion is a fully functional PKI solution that require customers
to meet in person with the Registration Authorities (RAs) when opening an account. This would enable
stronger user authetication and possibly solve many of the vulnerabilities in online banks.

Much of the security in online banks relies on IDSs and money auditing systems. The problem with
this approach is that it deals more with detection than attack prevention. A combined brute-force and
DoS attack is hard to protect against with the current security schemes. The online banks have little
other protection than temporarily closing down service for customers. The potential damage to the
bank’s reputation and the loss in revenue could be substantial.

References

[1] Jelena Mirkovic, Sven Dietrich, David Dittrich, and Peter Reiher “Internet Denial of Service, Attack
and Defense Mechanisms.” Pearson Education 2005.

[2] Ernst S. Selmer “Personnummerering i Norge: Litt andvendt tallteori og psykologi”. Nordisk matem-
atisk tidsskrift 12, Oslo 1964 (in Norwegian).

[3] Monica Hjorth. “En kartlegging av nettb@nkkunders holdninger”. Hovedfagsoppgave i Infor-
masjonsvitenskap, Universitetet i Bergen, November 2002 (in Norwegian).

[4] See http://statbank.ssb.no/statistikkbanken/ (in Norwegian). Last visited August 29th 2005.

[5] See http://www.ecbs.org/Download/TR201/norway.pdf. Last visited August 29th 2005.

[6] See http://www.spylife.com/digital_interceptor.html. Last visited August 29th 2005.

[7] See http://www.pensjonskassa.no/elaan/Elaan (in Norwegian). Last visited August 30th 2005.

70

Exponentiation to the power p in F

pk using Variants of

Montgomery Modular Arithmetic

Christophe Negre,

Équipe DALI - Université de Perpignan

Abstract

Koblitz curves are special elliptic curves which give efficient implementation of ECC protocols.
Scalar multiplication, the most important operation in ECC protocols, requires in the case of Koblitz
curves over Fpk efficient Frobenius evaluation, i.e., efficient exponentiation to p. In this paper we
present two algorithms to exponentiate to the power p in fields Fpk . We note that these algorithms
can be used to implement randomized arithmetic, and thus, prevent side channel attacks.

1 Introduction

Koblitz [7] and Miller [8] proposed in 1985 the elliptic curve cryptosystem (ECC). Regarding efficiency
and security ECC seems to be a good alternative to RSA [10] cryptosystem. The security of ECC is
based on the difficulty of the discrete logarithm problem in the group of points of elliptic curves.

The most costly operation of ECC protocols is the scalar multiplication of a point on the curve.
Precisely, given an integer m and a point P on the curve, we have to compute mP .

For general elliptic curve, the scalar multiplication is usually done by a chain of doubling and addition
of points on the curves, using the so-called Double-and-Add method (cf. Cohen et al. [3]). Each point
doubling and addition require several multiplications, additions, and one possible inversion of point
coordinates. In the case of Koblitz curves, the scalar multiplication can be done with a chain of additions
and Frobenius evaluations (cf. Smart [11]). In each case the efficiency of the protocols is deeply related
to the arithmetic of the underlying field.

For both software and hardware implementation of ECC we have to prevent side channel attacks. As
explain by Joye in [6] different strategies are possible: we can use balanced curve arithmetic, randomized
finite field arithmetic, and randomized curve representation. The so-called Montgomery multiplication
[9] gives simple way to randomize finite field arithmetic using a random multiple of the modulus. In
this paper we investigate a method to exponentiate to p in characteristic p inspired by Montgomery
multiplication. We extend this method to a recent version of the Mongemery multiplication [2] which
seems to be well suited for hardware implementation. This gives finite field arithmetic which improves
the security of ECC implementation over Koblitz curve.

This paper is organized as follows: in the first section we recall some basic facts on elliptic curve
over finite field, point representations and Koblitz curves. In the second section we briefly present the
different strategy to implement finite field arithmetic and the possible advantage of Montgomery methods
to prevent side channel attack. In the third section we recall polynomial Montgomery multiplication (i.e.
the polynomial version of Montgomery integer multiplication [9]) and then we extend the method to get
a modular exponentiation to the power p (algorithm 3 and 4). In the third section we recall the CR
representation of field Fpk and the CR multiplication algorithm presented in [2]. We then present the
main result of this paper: we extend previous CR multiplication algorithm of [2] to get an algorithm to
exponentiate to the power p (algorithm 9). At the end we give a small example and we conclude.

2 Cryptographic context

In finite group G with underlying difficult discrete logarithm problem (DLP) and efficient group law, one
could use it to implement cryptographic protocols such that ElGamal encryption [5] or Diffie-Hellman

71

key exchange [4].
As mentioned by Koblitz an Miller, elliptic curves have a group structure which gives efficient group

arithmetic and difficult DLP. Indeed, let Fpk be a finite field, with p > 3, an elliptic curve E(Fpk) over
Fpk is the set of pair (x, y) ∈ Fpk ×Fpk , which fulfill an equation of type Y 2 = X3 + aX + b, plus special
point: point at infinity O. We have a group law on the set of points of E: given two points P1 = (x1, y1)
and P2 = (x2, y2) on E, we compute the addition P3 = (x3, y3) = P1 + P2 by

{
x3 = λ2 − x1 − x2

y3 = λ(x3 − x1) + y1
where λ =





y2−y1

x2−x1

if P1 6= ±P2

3x2

1
+a

2y1

if P1 = ±P2

Before proceeding, we note that the formulas of the group law above need inversion in Fpk , which is
a relatively expensive operation compared to multiplication. It is possible to avoid inversion in addition
and doubling formulas when using projective coordinates, in this case the most used field operation is
the multiplication. A projective point (X, Y, Z) can be set in an affine form, by one inversion and several
multiplications. The are different types of projective coordinates which give different efficiency for the
doubling and the addition formulas

Projective (X/Z, Y/Z) = (x, y),

Jacobian (X/Z2, X/Z3) = (x, y).

For more on these coordinates, we refer to the work of Cohen et al. [3].
For field Fpk of small characteristic p < 67 a special family of curves, called the Koblitz curves,

have special property which provides efficient scalar multiplication. These curves E have their equation
Y 2 = X3 + aX + b with a, b ∈ Fp and thus admit a curve endomorphism: the Frobenius endomorphism

σ : E(Fpk) → E(Fpk)
P = (x, y) 7→ σ(P) = (xp, yp).

In [11] Smart has shown that each integer m, more precisely the curve endomorphism P → mP , can
be written in a σ-expansion of the form

m =

ℓ∑

i=0

miσ
i where |mi| ≤

p + 1

2
and ℓ ≤ ⌈2 logp(m)⌉+ 3.

If an integer is given by its σ-expansion we can use algorithm 1 to multiply the point P by m.

Algorithm 1 Scalar multiplication on Koblitz curve

Input: m =
∑ℓ

i=0 miσ
i the σ-expansion of an integer m and P ∈ E(Fpk) where E is a Koblitz curve

Output: mP
Precomputations. For i = 1 to p+1

2 do Pi = iP
P ′ = 0
for i = ℓ to 0 do

if mi ≥ 0 then
P ′ ← σ(P ′) + Pmi

else
P ′ ← σ(P ′)− P|mi|

end if
end for
return P ′

This method is efficient as soon as σ(P) can be computed efficiently, i.e., as soon as the exponentiation
to the power p can be done efficiently.

Computing the σ-expansion of an integer m is a costly operation. So, for practical applications,
Koblitz curves are advantageous when integer m are already expressed in σ-expansion (or can be ran-
domly constructed like in key exchange or El Gamal encryption), or when the scalar multiplication by
integer m is done more than once.

72

3 Preventing side channel attack

Generally finite fields Fpk are constructed as quotient Fpk = Fp[X]/(M) where M is an irreducible
polynomial of degree k in Fp[X]. One can speed up field multiplication by using special irreducible
polynomial M . Generally the best strategy is to get an M as sparse as possible to obtain simple
reduction modulo M [16, 12]. Another strategy consist to use normal bases. These bases provide efficient
exponentiation to p [15], but for random normal bases, multiplication is highly inefficient (the complexity
is in average equal to O(n3) multiplications and additions in Fp). To get efficient multiplication it is
thus recommended to carefully choose the normal basis, i.e. to use low complexity normal basis [17, 13].

The other method to implement finite field arithmetic consist to use the Montgomery’s Method [9].
This method is well suited for a large choice of modulus M (even not irreducible). We can use this fact
to randomize field arithmetic: instead of computing modulo M we compute modulo N = MM ′ where
M ′ is randomly chosen polynomial with small degree. As noticed by Joye in [6] it is an important task to
have randomized arithmetic in the field, because this provides a protection of ECC against side channel
attack.

Precisely, side channel attack ([14], [18]) are based on the property that every point arithmetic is
done exactly in the same way at different moment.

For a fixed integer m, side channel attack measure some difference in point operation in the loop for
of algorithm 1 to determine the point added Pmi

and thus the coefficient mi.

For example, timing analysis on elliptic curve record the time required for a full scalar multiplication
with algorithm 1 and also record additions σ(P ′) + Pmi

and substraction σ(P ′) − Pmi
. Then it use

statistic technique to determine the coefficient mi. So if the arithmetic is randomize, the timing for
both scalar multiplication and point operations will be erratic, and then the attack fails. As noticed by
Joye [6], to prevent SPA one has to use balanced arithmetic, but for DPA it is also crucial to use both
balanced arithmetic and and randomized arithmetic.

In summary, Montgomery methods provide quite less efficient field arithmetic than arithmetic with
sparse polynomial or normal basis, but they clearly improve security level. This fact motivated our
research on the extending the Montgomery method to exponentiate to the power p.

4 Montgomery Arithmetic

In this section, we will recall the original Montgomery’s algorithm for modular polynomial multiplica-
tion. Then we present an algorithm to exponentiate to the power p in Fpk inspired by Montgomery
multiplication.

4.1 Montgomery multiplication

Let A, B be two polynomials in Fp[X] such that deg A, deg B < deg N and let Φ ∈ Fp[X] such that
deg Φ ≥ deg N and gcd(Φ, N) = 1. The polynomial version of the Montgomery algorithm [9] computes
AB(Φ)−1 mod N instead of AB mod N In practice we generally take Φ = Xk.

If we denote by U div V the Euclidean division of U by V , then we can express the calculations
in two following steps: first we compute Q = −A × B × N−1 mod Φ and then we compute R =
(A×B + Q×N) div Φ. The division by Φ is an exact division since A×B + Q×N = 0 mod Φ. Thus
when Φ = Xk this is done by shifting by k of the coefficients of A×B + Q×N , which is a really simple
operation.

Algorithm 2 Montgomery Multiplication

Input: A polynomial N ∈ Fp[X] of degree k, two polynomials A, B ∈ Fp[X] such that deg A, deg B ≤
k − 1 and Φ ∈ Fp[X] with deg Φ ≥ k and gcd(Φ, N) = 1

Output: ABΦ−1 mod N
Step 1. Q← −A×B ×N−1 mod Φ
Step 2. R← (A×B + Q×N) div Φ
return R

73

Complexity. The complexity of this algorithm was computed in [2] in term of operations in Fp: it
requires 2k(k − 1) multiplications and 2k(k − 1) additions in Fp.

Exact computation of AB mod N can be done using algorithm 2 by first compute R = ABΦ−1

mod N and then, if C = Φ2 mod N is precomputed, by doing

R × C × Φ−1 mod N = (ABΦ−1)× Φ2 × Φ−1 mod N = AB mod N.

A method to avoid this second multiplications consist to use the so-called Montgomery representation:
a polynomial A of degree smaller than (k− 1) is represented by AM = A×Φ mod N . The algorithm 2
compute AMBMΦ−1 mod N = ABΦ mod N which is equal to CM the Montgomery representation of
C = AB mod N . Thus, as long as we have to do multiplication or addition, we can stay in Montgomery
representation and thus avoid superfluous operations.

4.2 Montgomery exponentiation to the power p

This section is devoted to present an algorithm to exponentiate to the power p in Fpk using a method
inspired by Montgomery multiplication.

Let A be a polynomial in Fp[X] such that deg A < deg N , we want to compute Ap mod N . Let Φ
be a polynomial of degree bigger or equal than deg N and such that gcd(Φ, N) = 1, in practice we will
take Φ = Xk. The following algorithm computes Ap(Φp)−1 mod N in a similar way as Montgomery
multiplication does: in a first step, we compute Q = ApN−1 mod Φp, and then we compute R =
(Ap −QN) div (Φp) which is an exact division.

Algorithm 3 Montgomery exponentiation to the power p

Input: A polynomial N ∈ Fp[X] of degree k, two polynomials A ∈ Fp[X] such that deg A ≤ k − 1 and
Φ ∈ Fp[X] with deg Φ ≥ k and gcd(Φ, N) = 1

Output: Ap(Φp)−1 mod N
Step 1. Q← Ap ×N−1 mod Φp.
Step 2. R← (Ap −QN) div Φp.
return R

Let us check that R is equal to Ap(Φp)−1 mod N . From the first step, we have Ap − QN = 0
mod Φp, and since R = (Ap −QN) div Φp we have

(Ap −QN) = ΦpR

If we reduce this expression modulo N and then multiply by (Φp)−1 modulo N we get the required result

R = Ap(Φp)−1 mod N.

It is easy to check that deg R < deg N .

In the case Φ = Xk and p > k it is possible to simplify algorithm 3. First, if we remark that
deg Ap ≤ (k − 1)p < kp we can see that R = (−QN) div (Φp) (here the division is not exact).

Secondly, the major drawback of algorithm 3 is due to the large degree of the polynomials Ñ = N−1

mod Φp and Q which have degree equal to kp− 1 in average. In fact, we need only to know a small part
of the coefficients of Q to be able to compute R. Precisely, we have only to know the coefficients of Q of
degree between kp− k and kp− 1 to compute the coefficient of R = (Q×N) div Φp since N is of degree

k . If we express Ñ and Ap in radix-Xp

Ñ =
∑k−1

i=0 Ñi(X)Xip with deg Ñi(X) < p,

Ap =
∑k−1

i=0 aiX
ip,

since, Φp = Xkp, we have

Q = ApÑ mod Φp =
k−1∑

i=0

(
i∑

j=0

ajÑi−j(X))Xip.

74

To compute R = (Q × N) div Φp we multiply this last expression of Q by N and then divide it by
Φp = Xkp

(QN) div Xkp =
(∑k−1

i=0 (
∑i

j=0(ajÑi−j(X)N)Xip
)

div φp

=
(∑k−1

j=0 (ajÑi−j(X)N)
)

div Xp

since for i ≤ k − 2 we have deg Ñi−j(X)NXip ≤ p− 1 + k + ip < kp.

To conclude, if we note N̂i = Ñi−j(X)N div Xp, the computation of ApX−kp mod N can be com-
puted by the following algorithm.

Algorithm 4 Simplified Montgomery exponentiation to the power p

Input: A polynomial N ∈ Fp[X] where gcd(N, X) = 1 and deg N = k and a polynomial A ∈ Fp[X] of

degree less than k − 1, and the set {N̂0, . . . , Ñk−1(X)} defined by N−1(X) mod Xkp =
∑k−1

i=0 ÑiX
ip

and N̂i(X) = Ñi ×N div Xp

Output: ApX−pk mod N
R← 0
for j = 0 to k − 1 do R← R + ajN̂k−1−j(X) end for
return R

Complexity. Let us evaluate the complexity of algorithm 4. The operations done consist to the
k multiplications aiÑk−1−j , i.e., a constant polynomial by an element of Fp, and k − 1 additions of
polynomials of degree k−1. Thus, the total amount of computation is equal to k2 constant multiplications
in Fp and k(k − 1) additions in Fp. The cost of an exponentiation to the power p with the algorithm 4
is thus roughly equal to the cost of a multiplication.

We have to deal with a last problem: the previous algorithm does not preserve the Montgomery
representation. Indeed let AM = A×Φ mod N , then the output of the algorithm 4 is equal to AMΦ−p

mod N = Ap×ΦpΦ−p mod N = Ap mod N . So, to go back to obtain the Montgomery representation
of Ap mod N , it is necessary to use Montgomery multiplication to compute ApΦ = (ApΦ2)Φ−1 mod N .

5 Chinese remainder representation

In this section we will recall the results presented in [1, 2] about a version of the Montgomery algorithm
which use a chinese remainder representation. Next we will establish the main result of this paper
concerning the exponentiation to the power p in CR representation. We give details concerning the
version in [1, 2] of Montgomery multiplication, since all tools (cf. Chinese Remainder Theorem and
Lemma 1) will be used to get the algorithm of exponentiation to the power p.

Let us go back to the original Montgomery multiplication, i.e., to algorithm 2. This algorithm is
clearly well suited to the case Φ = Xk, but, as we will see in the sequel, we could take advantages of a
different type of Φ. For differents Phi the exact division by Φ in algorithm 2 is generally not so simple
. To avoid this division, we can replace the costly exact division by Φ with a modular multiplication
by the inverse of Φ. Precisely if Φ′ is a polynomial of degree bigger than k = deg N and such that
gcd(Φ, Φ′) = 1 then we can compute R by doing

R = (A×B + Q×N)× Φ−1 mod Φ′.

Using this strategy we get the following generalized version of Montgomery’s polynomial multiplication.

Algorithm 5 Generalized Montgomery Multiplication

Input: An polynomial N ∈ Fp[X] of degree k, two polynomials A, B ∈ Fp[X] with deg A, deg B ≤ k− 1
and Φ, Φ′ ∈ Fp[X] such that gcd(Φ, N) = gcd(Φ, Φ′) = 1 and deg Φ, deg Φ′ ≥ k

Output: ABΦ−1 mod N
Step 1. Q← −A×B ×N−1 mod Φ
Step 2. R← (A×B + Q×N)× Φ−1 mod Φ′

return R

75

The efficiency of this algorithm is related to arithmetic modulo Φ and Φ′.
In [1] we proposed to use generalized Montgomery multiplication with Φ and Φ′ which are products

of degree one polynomials. Precisely if N ∈ Fp[X] is of degree k and if we suppose 2k ≤ p, we define two
disjoint subsets of Fp

E = {e1, . . . , ek} and E ′ = {e′1, . . . , e
′
k}.

The polynomials Φ and Φ′ are defined as follows

Φ =

k∏

i=1

(X − ei) and Φ′ =

k∏

i=1

(X − e′i). (1)

The arithmetic modulo such polynomials Φ and Φ′ can be done efficiently by using the following
Theorem.

Theorem 1 (Chinese Remainder Theorem). Let Φ =
∏r

i=1 φi ∈ Fp[X] with gcd(φi, φj) = 1 for
i 6= j. Let A ∈ Fp[X], if we denote |A|φi

the remainder of A modulo φi, then the following application is
an isomorphism

Fp[X]/(Φ) → Fp[X]/(φ1)× Fp[X]/(φ2)× · · · × Fp[X]/(φr)
A 7→ (|A|φ1

, |A|φ2
, . . . , |A|φr

)
(2)

Moreover if A ∈ Fp[X] is such that deg A < deg Φ, and if we denote aj = |A|φj
, Φj =

∏
i 6=j φi and

ρj = |Φ−1
j |φj

, we obtain

A =

r∑

j=1

|ajρj |φj
Φj (3)

We can use the previous theorem to get a simpler expression of the multiplication modulo Φ =∏k
i=1(X − ei). Let A and B two polynomials of degree smaller than deg Φ. From the isomorphism of

equation (2), if we know the evalutaion of A and B at ei for i = 1, . . . , k

ai = A(ei) = A mod (X − ei),
bi = B(ei) = B mod (X − ei),

then the evaluation of the polynomial C = (AB mod Φ) at ei is equal to aibi = AB mod (X − ei).
This property motivates the following representation of polynomials.

Definition 1 (CR representation). Let A ∈ Fp[X]. The CR representation of A relatively to Φ =∏k
i=1 φi is the vector

CRΦ(A) = (a1, . . . ak)

such that ai = A mod φi.

If in algorithm 5 the elements are given in a CR representation relatively to Φ and Φ′, the two steps
of algorithm become really simple and highly parallelizable: for the first step if ai = A(ei), bi = B(ei)
and ñi = N−1 mod (X − ei) then for i = 1, . . . , k

qi = Q mod (X − ei) = aibiñi.

For the second step, if we know the following CR representations relatively to Φ′

CRΦ′(A) = (a′
1, . . . , a

′
k), CRΦ′(B) = (b′1, . . . , b

′
k)

CRΦ′(Q) = (q′1, . . . , q
′
k) CRΦ′(Q) = (n′

1, . . . , n
′
k)

CRΦ′(Φ−1) = (β1, . . . , βk),

then we compute the coefficients of the CR representation relatively to Φ′ of R by doing

r′i = (a′
ib

′
i + q′in

′
i)βi for i = 1, . . . , k.

We have to deal with a last problem: at the end of the first step we know the CR representation of
Q relatively to Φ, but we do not know the CR representation of Q relatively to Φ′. A similar remark
can be done for R. The following lemma gives us a method to change CR representation.

76

Lemma 1. Let Φ =
∏r

i=1 φi and Φ′ =
∏r

i=1 φ′
i be two polynomials of Fp[X], such that deg φi, deg φ′

j are
all equal, and let A be a polynomial such that deg A ≤ deg Φ, deg Φ′. Let CRΦ(A) = (a1, . . . , ar) be the
CR representation of A relatively to Φ. If ΓΦ,Φ′ be the r× r matrix where the coefficients are defined by

Coeffi,j(ΓΦ,Φ′) =
∣∣|Φ−1

j |φj
Φj

∣∣
φ′

i

,

then CRΦ′(A) = (a′
1, . . . , a

′
r) the CR representation of A relatively to Φ verifies




a′
1
...
a′

r


 = ΓΦ,Φ′ ·




a1

...
ar


 . (4)

In the sequel we will call ΓΦ,Φ′ the base change matrix from Φ to Φ′.

Proof. The lemma is a simple consequence of the chinese remainder theorem: since deg A ≤ deg Φ we
know from equation (3) that

A =

r∑

j=1

aj |Φ
−1
j |φj

Φj , where Φj =

r∏

ℓ 6=j

φℓ and φj = (X − ej).

We obtain the coefficient a′
i of CRΦ′(A) by reducing this last expression modulo φ′

i. But this is nothing
else than the expression given in equation (4).

In our case where Φ and Φ′ are defined by Φ =
∏k

ℓ=1(X − eℓ), Φ =
∏k

ℓ=1(X − e′ℓ), the coefficients of
ΓΦ,Φ′ the base change matrix from CRΦ to CRΦ′ are equal to

γi,j =
∣∣|Φ−1

j |φj
Φj

∣∣
φ′

i

=

k∏

ℓ=1,ℓ 6=j

e′i − eℓ

ej − eℓ

. (5)

Similarly the coefficients of ΓΦ′,Φ are equal to

γ′
i,j =

k∏

ℓ=1,ℓ 6=j

ei − e′ℓ
e′j − e′ℓ

. (6)

Thus, if we use expression (4) to compute the CR representation of Q relatively to Φ′ and the CR
representation of R relatively to Φ we obtain the following algorithm to multiply in CR representation
relatively to Φ and Φ′.

Algorithm 6 CR Multiplication

Input: Two polynomials A, B of degree less than k given by their CR representations relatively to Φ, Φ′

CRφ(A) = (a1, . . . , ak), CRφ′(A) = (a′
1, . . . , a

′
k) and CRΦ(B) = (b1, . . . , bk), CRΦ′(B) = (b′1, . . . , b

′
k).

And for i = 1, . . . , k the elements ñi = N ′−1 mod (X − ei) and βi = Φ−1 mod (X − ei) relatively to
Φ and Φ′

Output: ABΦ−1 mod N in CR representation.
Step 1. for i = 1 to k do qi ← aibiñi end for
Step 2. for i = 1 to k do q′i ←

∑k
j=1 qjγi,j end for

Step 3. for i = 1 to k do r′i ← (a′
ib

′
i + q′ini)× βi end for

Step 4. for i = 1 to k do ri ←
∑k

j=1 r′jγ
′
i,j end for

return CRΦ(R) = (r1, . . . , rk), CRΦ′(R) = (r′1, . . . , r
′
k)

The complexity of this algorithm is equal to 2(k+1)2 multiplications by constants, 2k multiplications
and 2k(k − 1) additions in Fp. For a detailed study of the complexity of this algorithm we refer to [1].

77

5.1 CR Exponentiation to the power p

As in the case of Montgomery multiplication we can give a generalized version of Montgomery exponen-
tiation to the power p, i.e., of algorithm 3. This algorithm was well suited to the case Φ = Xk, because
the division by Xp is in this case simple. If we want to use a more general Φ, we can replace the division
by Φp by a multiplication by (Φp)−1 modulo a polynomial Φ′p.

We get the following generalized version of Montgomery’s polynomial exponentiation to p.

Algorithm 7 Montgomery exponentiation to p

Input: An polynomial N ∈ Fp[X] with deg N = k, A ∈ Fp[X] of degree less than k and Φ, Φ′ ∈ Fp[X]
such that deg Φ, Φ′ ≥ k and gcd(Φ, N) = gcd(Φ, Φ′) = 1

Output: Ap(Φp)−1 mod N
Step 1. Q← ApN−1 mod Φp

Step 2. R← (Ap −QN)(Φp)−1 mod Φ′p

return R

This algorithm has the same disadvantage as algorithm 3, some polynomials are too big: Ap, (Φp)−1

mod Φ′, Ñ = N−1 mod Φp and Q have a degree roughly equal to kp− 1. But if we take Φ and Φ′ as in
the previous section Φ =

∏k
i=1(X − ei) and Φ′ =

∏k
i=1(X − e′i) we could take advantage of the fact that

Φp =
∏k

i=1(X
p − ei) and Φ′p =

∏k
i=1(X

p − ei) to reduce the degree of these polynomials: we will use a
CR representation relatively to Φp and Φ′p.

Let us rewrite algorithm 7 with modular arithmetic modulo Φp and Φ′p expressed with the CR
representations relatively to Φ and Φ′.

Step 1 in CRΦp representation. We first rewrite the polynomials used in step 1. Since 2k ≤ p we have
deg A ≤ k − 1 < p, and this implies A mod (Xp − ei) = A. Consequently the CR representation

of A relatively to Φp is CRΦp(A) = (A, A, . . . , A). Let Ñ = N−1 mod Φp, and let CRΦp(Ñ) =

(Ñ1, . . . , Ñk) be its CR representation relatively to Φp. From the chinese remainder theorem the

CR representation relatively to Φp of Q is given by Qi = Ap× Ñi mod (Xp−ei), for i = 1, . . . , k,.

In this case the polynomials A, Ñi and Qi have all a degree less than p.

Step 2 in CRΦ′p representation. Let CRΦ′p(Q) = (Q′
1, . . . , Q

′
k) and CRΦ′p((Φp)−1) = (β1, . . . , βk)

be the CR representation of Q and (Φp)−1 mod Φ′p relatively to Φ′p. As in the case of CR
representation relatively to Φp since deg A, deg N ≤ k < p we have CRΦ′p(A) = (A, . . . , A) and
also CRΦ′p(N) = (N, . . . , N). We finally get

R′
i = Ap −Q′

i ×N mod (Xp − e′i). (7)

Base change matrix ΓΦp,Φ′p and ΓΦ′p,Φp . For the base change matrix, we will see in the lemma bellow
that the base change matrices ΓΦp,Φ′p and ΓΦ′p,Φp between CRΦp and CRΦ′p have all coefficients
in Fp and are equal respectively to ΓΦ,Φ′ and ΓΦ′,Φ the base change matrices between CRΦ and
CRΦ′ .

Lemma 2. Let Φ and Φ′ the polynomials defined in equation 1. Then we have

ΓΦp,Φ′p = ΓΦ,Φ′ and ΓΦ′p,Φp = ΓΦ′,Φ.

Proof. We give only the proof for ΓΦp,Φ′p . From lemma 1 the coefficients of ΓΦp,Φ′p are equal to∣∣∣|(Φp
j)

−1|φp
j
Φp

j

∣∣∣
φ
′p
i

. But we have

|(Φp
j)

−1|φp
j

=




k∏

ℓ=0,ℓ 6=j

(Xp − eℓ)




−1

mod (Xp − ej) =

k∏

ℓ=1,ℓ 6=j

1

ej − eℓ

,

and similarly (Φp
j mod φ′p

i) =
∏k

ℓ=1,ℓ 6=j(e
′
i − eℓ). Thus the coefficients of ΓΦp,Φ′p are finally equal to

∏k
ℓ=1,ℓ 6=j

e′

i−eℓ

ej−eℓ
which are nothing else than γi,j the coefficients of ΓΦ,Φ′ .

78

Finally in the CR representation relatively to Φp and Φ′p of algorithm 7 becomes algorithm 8 below.

Algorithm 8 CR exponentiation to the power p

Input: Let N ∈ Fp[X] a polynomial of degree k, A ∈ Fp[X] with deg A < k. Let Ñi = N−1 mod (Xp−
ei) and for i = 1, . . . , k.

Output: ABΦ−1 mod N in CR representation.
Step 1. for i = 1 to k do qi ← AÑi mod (Xp − ei) end for

Step 2. for i = 1 to k do Q′
i ←

∑k
j=1 Qjγi,j end for

Step 3. for i = 1 to k do R′
i ← (Ap + Q′

iNi)× Φp)−1 mod (Xp − e′i) end for

Step 4. for i = 1 to k do Ri ←
∑k

j=1 R′
jγ

′
i,j end for

return CRΦp(R) = (R1, . . . , Rk), CRΦ′p(R) = (R′
1, . . . , R

′
k)

5.2 Improved CR Exponentiation

In this section we will modify the algorithm 8 such that

• it takes the input A in CR representation relatively to Φ and Φ′ ;

• and such that the algorithm output the CR represenation relatively to Φ and Φ′ of the element R.

For the first point we will use the following Lemma.

Lemma 3. Let Φ et Φ′ be the two polynomials defined in page 76 equation 1 and Φp, Φ′p their p power.
Let A be a polynomial of degree smaller than k − 1. The following identity holds for i = 1, . . . , k

Ap mod (Xp − ei) = A mod (X − ei) = A(ei).

Proof. Let CRΦ(A) = (a1, . . . , ak) be the CR representation relatively to Φ of a polynomial A such that
deg A < k. Using the chinese remainder theorem we have

A = a1
Φ1

Φ1(e1)
+ a2

Φ2

Φ2(e2)
+ . . . + ak

Φk

Φk(ek)
where Φi =

k∏

ℓ=1,ℓ 6=i

(X − eℓ).

If we exponentiate A to the power p we get

Ap = a1
Φp

1

Φ1(e1)
+ a2

Φp
2

Φ2(e2)
+ . . . + ak

Φp
k

Φk(ek)
where Φp

i =
k∏

ℓ=1,ℓ 6=i

(Xp − eℓ).

We then reduce this expression modulo (Xp − ei) we get

Ap mod (Xp − ei) = ai

Φp
i

Φi(ei)
mod (Xp − ei).

The lemma is finally a consequence of the following identity

Φp
i mod (Xp − ej) =

{
0 if j 6= i,
Φi(ei) if i = j.

Lemma 3 expresses that if CRΦ(A) = (a1, . . . , ak) then CRΦp(Ap) = (a1, . . . , ak), this means that
we have nothing to do to compute the CR representation of Ap relatively to Φp.

For the second point we only need to compute the CR representation of R relatively to Φ′, since the
CR representation of R relatively to Φ can be computed by a simple change-basis. So let us see how to
get the CR representation relatively to Φ′ of R. We use the fact that for every polynomial U we have

U mod (X − e′i) = (U mod (Xp − e′i)) mod (X − e′i) for each i = 1, . . . , k. (8)

79

This means that from a CR representation CRΦ′p(U) = (U1, . . . , Uk) relatively to Φ′p of a polynomial
U , we compute the CR representation relatively to Φ′ of U by reducing each coordinate ui modulo
(X − e′i). So if we apply this fact to R we get that if CRΦ′p(R) = (R′

1, . . . , R
′
k) then CRΦ′(R) =

(R1 mod (X − e′1), . . . , R
′
k mod (X − e′k)). But from equation (7) we have R′

i = (Ap − Q′
iN)(Φp)−1

mod (Xp − e′i), if we reduce this expression modulo (X − e′i) we obtain

r′i = R′
i mod (X − e′i) = (a′

i − q′in
′
i)βi (9)

where
a′

i = Ap mod (Xp − e′i) = A mod X − e′i,
n′

i = N mod (X − e′i),
βi = (Φp)−1 mod (Xp − e′i) = Φ−1 mod (X − e′i),

and where

q′i =




k∑

j=1

ajÑj(X)γi,j


 mod (X − e′i) =

k∑

j=1

ajλi,jγi,j with λi,j = Ñj(X) mod (X − e′i)).

Finally we obtain algorithm 9 below for the exponentiation to the power p in CR representation
relatively to Φ and Φ′.

Algorithm 9 CR Exponentiation to the power p

Input: The CRΦ(A), CRΦ′(A) of A a polynomial such that deg A ≤ k − 1.
Output: CRΦ(R), CRΦ′(R) where R = AΦ−p mod N .

Step 1. for i = 1 to k do q′i =
∑k

j=1 ajλi,jγi,j end for
Step 2. for i = 1 to k do r′i = (a′

i − q′in
′
i)βi end for

Step 3. for i = 1 to k do ri =
∑k

i=1 r′jγ
′
i,j end for

return CRΦ(R), CRΦ′(R)

Complexity. Let us express the complexity of this algorithm in function of the number of operations
in the field Fp. We have 2k2 multiplications in Fp and k(k−1) additions in Fp for the computation of the
q′i. Next we have 3k multiplications and k additions for the computation of the r′i. And finally we have
k2 multiplications and k(k − 1) additions for the computation of the ri. This give a total of 3k(k + 1)
multiplications and 2k(k − 1) + k additions in Fp.

Remark 1. We remark that we could decrease the cost of the algorithm if we precompute the products
λi,jγi,j . In this situation the cost would become 2k2 +k multiplications and 2k(k−1)+k additions thus
a complexity slightly smaller than the complexity of algorithm 9.

We did not use such precomputations because the γi,j are used in CR multiplication algorithm.

It could be necessary to go back to a Montgomery representation when the input A is given in
Montgomery representation, which is not the case of the previous algorithm. But as in it was notice 4.2
we can get back to a Montgomery exponentiation by one multiplication by (Φ2 mod N) using the CR
multiplication algorithm.

Example 1. Let us present a small example to illustrate the process of algorithm 9. We choose p =
17, k = 4 and N = X4 + 2X + 3 and let us take Φ and Φ′ as follows

Φ =
∏3

i=0(X − 2i), here ei = 2(i− 1),

Φ′ =
∏3

i=0(X − (2i + 1)), here e′i = 2(i− 1) + 1.

The CR representation relatively to Φ′ of polynomial Φ−1 mod Φ′ is here as follows

CRΦ′(Φ−1) = (9, 2, 9, 6),

and the CR representation of N relatively to Φ′ is equal to CRΦ′(N) = (6, 5, 9, 4).
The base change matrix ΓΦ,Φ′ and ΓΦ′,Φ defined in the lemma 1 are equal here to

80

ΓΦ,Φ′ =




12 2 5 16
1 8 8 1
16 5 2 12
5 13 1 16


 , ΓΦ′,Φ =




16 1 13 5
12 2 5 16
1 8 8 1
16 5 2 12


 .

For the computation of Λ we compute CRΦp(N−1) = (Ñ1, Ñ2, Ñ3, Ñ4) and we deduce the coefficients

of Λ by computing Λi,j = Ñj mod (X − e′i). We get

Λ =




7 3 14 11
15 14 9 9
3 0 6 10
0 3 4 13


 .

We will now apply algorithm 9 to compute ApΦ−p mod N where A = 11X3 + 7X2 + 15X + 3. First
we must compute the CR representation of A relatively to Φ and Phi′

CRΦ(A) = (3, 13, 12, 1), CRΦ′(A) = (2, 0, 13, 8).

Now we can compute the CR representation of Q = ApN−1 mod Φp relatively to Φ′ with CRΦ(A), Λ
and ΓΦ,Φ′ . We obtain CRΦ′(Q) = (3, 11, 0, 15).

Next we compute CRΦ′(R) = (9, 9, 15, 11) with expression 9 and then we get the CR representation
of R relatively to Φ by a base change, CRΦ(R) = (12, 3, 8, 11). Finally it is easy to see that CRΦ(R) is
the correct CR representation of

(AΦ−1)p mod N = 11X3 + 8X2 + 12X + 12.

⋄

6 Complexity comparison

The complexity of the algorithms stated in this paper are summarized in the table below. They are
express in term of additions and multiplications in Fp. Since in practice it is often possible to optimize
multiplication by constant element, we count separately multiplications with non-constant operands
(Mult) and multiplication with constant operands (C. Mult). For comparison we mention also the
complexity for other methods which use fixed representation (polynomial basis modulo binomial, and
optimal normal basis).

Method Multiplication Exponentiation to p
Mult. # Add. # C. Mult. # Add. # C. Mult.

Montgomery 2k(k − 1) 2k(k − 1) 0 k(k − 1) k2

(algorithm 2 and 4)
CR method 2k 2k(k − 1) 2k(k + 1)2 k(2k − 1) 3k(k + 1)

(algorithm 6 from [2] and 9)
Random Normal Bases k2 k3 k3 0 0

Optimal Normal Basis (cf. [17]) k2 k2 0 0 0
Polynomial basis k2 k2 (k − 1) 0 k

modulo Binomial (cf. OEF[12])

We compare here only methods which can be randomized, as others are clearly more efficient for
both multiplication and exponentiation to p and also because we are interested only on secure finite field
arithmetic.

Let us first compare CR arithmetic to Montgomery arithmetic. CR arithmetic has a better multi-
plication since in CR multiplication most of the multiplications are constant. In other word the expo-
nentiation is more efficient using Mongomery exponentiation. But for hardware implementation, CR
arithmetic could take advantage of common chipset for multiplication and exponentiation to the power
p since both algorithm use the same base-change matrices.

Now if we compare Montgomery or CR method to random normal basis, we see that randomized
normal basis multiplication is highly inefficient. Even with a nearly free exponentiation to p the hight
costly of multiplication prevent the use of such bases.

81

7 Conclusion

In this paper we have presented different algorithms to exponentiate to the power p in Fpk . These
algorithms do not take advantage of the form of the polynomial used to construct the field Fpk . Thus,
they can be used to implement field arithmetics with randomized modulus. After careful comparison
to usual methods, we show that our algorithms are efficient with a balanced security/efficiency point of
view (and not uniquely efficiency). In other word, our algorithms allow implementations of ECC over
Koblitz curves which prevents side channel attack.

References

[1] J.-C. Bajard, L. Imbert, and C. Negre. Modular multiplication in GF(pk) using Lagrange represen-
tation. In INDOCRYPT, pages 275–284, 2002.

[2] J.-C. Bajard, L. Imbert, C. Negre, and T. Plantard. Efficient multiplication in GF(pk) for elliptic
curve cryptography. In IEEE Symposium on Computer Arithmetic, pages 181–187, 2003.

[3] H. Cohen, A. Miyaji, and T. Ono. Efficient Elliptic Curve Exponentiation Using Mixed Coordi-
nates. In ASIACRYPT: Advances in Cryptology – ASIACRYPT’98: International Conference on
the Theory and Application of Cryptology, volume 1514 of Lecture Note in Computer Science, pages
51–65. Springer-Verlag, 1998.

[4] W. Diffie and M.E. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, 24:644–654, 1976.

[5] T. El Gamal. A public key cryptosystem and signature scheme based on discrete logarithms. IEEE
Transaction on Information Theory, IT-31:469–472, 1985.

[6] M. Joye. Elliptic curves and side-channel analysis. ST Journal of System Research, 4(1), 2003.

[7] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48:203–209, 1987.

[8] V. Miller. Use of elliptic curves in cryptography. In Advances in Cryptology, proceeding’s of
CRYPTO’85, volume 218 of Lecture Note in Computer Science, pages 417–426. Springer-Verlag,
1986.

[9] P.L. Montgomery. Modular multiplication without trial division. Mathematic of computation,
44(170), april 1985.

[10] L. Adleman R.L. Rivest, A. Shamir. A method for obtaining digital signature and public key
cryptosystem. Comm. ACM, 21:120–126, 1978.

[11] N.P. Smart. Elliptic curves over small fields of odd characteristic. J. Cryptology, 12(2):141–151,
August 1999.

[12] D.V. Bailey and C. Paar. Optimal Extension Fields for Fast Arithmetic in Public-Key Algorithms.
Lecture Notes in Computer Science, 1462:472, 1998.

[13] I.F. Blake D.W. Ash and S.A. Vanstone. Low Complexity Normal Bases. Discrete Applied Math-
matics, 1989.

[14] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other sys-
tems. Lecture Notes in Computer Science, 1109:104–113, 1996.

[15] J.L. Massey and J.K. Omura. Computational Method and Apparatus for Finite Field Arithmetic,
1986.

[16] E.D. Mastrovito. VLSI architectures for computations in Galois fields. PhD thesis, Dep. Elec.
Eng.,Linkoping Univ, 1991.

82

[17] R.C. Mullin, I.M. Onyszchuk, S.A. Vanstone, and R.M. Wilson. Optimal Normal Bases in GF(pn).
Discrete Appl. Math., 22(2):149–161, 1989.

[18] J. Jaffe P. Kocher and B. Jun. Differential power analysis. In CRYPTO ’99: Proceedings of the 19th
Annual International Cryptology Conference on Advances in Cryptology, pages 388–397, London,
UK, 1999. Springer-Verlag.

83

Algebraic Test Case Generation of Security Policies in

Communication Networks

Mohamed Hamdi, Jihène Krichène, and Noureddine Boudriga

CN&S Research Lab., University of the 7th of November at Carthage, Tunisia

Abstract

Security policies (SPs) play an important role in the protection of networked information systems.
They can be seen from two perspectives. As a product, a SP determines the rules that govern the
protection of a system. As a specification, a SP describes the constraints that a security solution
should comply with. The validation of a SP is therefore essential for an efficient protection. This
paper presents a formal technique for the generation of a complete test cases derived from the algebraic
specification of SPs. Two properties are considered for the convergence of the generation process, the
uniformity and regularity.

1 Introduction

Because computer system technologies are rapidly spreading from academic research to industrial ap-
plications, many security issues have been raised. This need for security is driven by the increasingly
large proportion of losses caused to the enterprises by various security incidents. Security attacks may
disturb the operation of the system, entail loss of secrets, and privacy, and become a risk to the national
security and economy. An intriguing fact that has been pointed out by the statistical studies that have
addressed communication network attacks is that many organizations already have had, at the moment
they were attacked, some protection mechanisms. Effectively, most of security threats are not due to
the lack of security equipments, but instead are due to breaches at the planning level. Clearly, there
should be a strategic security plan for each organization. In fact, security controls are rarely acquired
within the frame of a global security program. To alleviate this problem, enterprises should consider
computer system security as a means to achieve their business objectives. Security should be subjected
to a documentation activity just as is done for normal production processes. Therefore, using policies to
regulate the security management program is among the most important aspects the enterprise should
address. Developing Security Policies (SPs) is a sensitive task because the policy itself can be a security
weakness if it does not conform to the security requirements. Furthermore, SPs are generally proportion-
ally complex with respect to the protected system making their verification arduous. Hence, appropriate
techniques should be used to check whether or not a SP verifies the target properties. Formal methods
have been presented as an alternative to represent and to prove the correctness, with regard to a set of
defined requirements, of SPs. Many approaches have been proposed to formally model SPs, and prove
their correctness. Nonetheless, very little research has been directed towards SP testing, which is an
important issue. The existing approaches focused on developing correct SP specification but did not
demonstrate how to know whether a SP implementation corresponds to a formal representation. In
fact, validating the SP abstract model is not sufficient because faults can also appear at the low-level
representation of the policy.

This paper presents an approach to test a SP based on its specification. We also provide a way to check
whether or not a candidate security solution is conforming to a SP. We introduced algebraic specifications
as a useful tools to represent the assets to be protected, the operations that can be performed on these
resources, and the properties that these operations should respect. Algebraic specifications provide a
means to rigorously reason on SPs due to the richness of their semantics. Conditional axioms can
translate most of the properties the security administrator can think of to a mathematical language.
Moreover, in our approach, SP implementations are viewed as many-sorted algebras that model a given

84

specification. The major problems that we have attempted to cope with consist in: (1) stating whether
the algebra correctly translates the specification reasoning to the concrete context, (2) detecting SP faults
according to their reaction to automatically generated test sets, and (3) providing a framework to assess
candidate SPs for a specific situation. To this end, we developed a test generation technique that consists
in executing the SP for a set of selected inputs (called test set) and interpreting the resulting outputs.
We used a technique borrowed from software engineering to generate test sets from the axioms of an
algebraic specification. The main shortcut of such automated test generation methods is that they often
return infinite test sets that are practically impossible to execute. We defined two hypotheses (uniformity
and regularity) that are shown to reduce the size of the test set while preserving its mandatory properties
(i.e., validity, unbiasedness). Illustrative examples are given to provide the reader with real situations
of testing security. In these examples we give the algebraic specification of the policy of interest and we
show how to extract test sets using our methodology. Reduction process is then performed, if necessary,
to reduce the exhaustive test set to a finite one keeping the properties of tests, i.e. completeness and
correctness.

The rest of the paper is structured as follows. Section 2 discusses the definition of the term “security
policy” and shows the importance of validating and testing security in telecommunication networks.
Section 3 introduces algebraic preliminaries and applies them on security policies. Specific examples
are given in this section for illustration purpose. Test derivation from algebraic specification of SPs is
addressed by Section 4 where exhaustive test set generation is presented. Hypotheses (uniformity and
regularity) are also introduced to generate finite test sets. A case study illustrating these theoretical
concepts is given in Section 5 as a real application to what has been stated formally. Finally, Section 6
concludes this paper.

2 Security policy fundamentals

2.1 Defining the security policy

Finding a precise meaning to the security policy turns out to be very arduous as it is used to refer
to numerous disparate aspects of information systems’ security [6, 7]. In the following we give some
examples highlighting the fact that the definition of a security policy is narrowly related to the context
in which it is used.

• Network security policy: The communication infrastructure is often used to carry out various
attacks (e.g., flooding, e-mail spoofing). Therefore, the system should prevent network nodes
from forwarding suspicious traffic. Networked assets should behave securely to cover the existing
weaknesses. The network SP consists of a set of rules indicating how data should be transmitted
across the network. It consists of two components: the preventive network SP, and the reactive
network SP. The first attempts to cover vulnerabilities so that attacks do not occur while the
second aims at limiting the damage resulting from the occurrence of a security incident.

• Access control security policy: Due to numerous security threats that exploit weaknesses at
the operating system (OS) level, a set of protection mechanisms should be implemented to plug
up such vulnerabilities. The totality of the protection mechanisms related to an OS is called
Trusted Computing Base (TCB). They concern the various resources of the computer system (e.g.,
hardware, software, processes). The most relevant example consists of the access control policy
which is enforced by secure OSs to protect the objects they handle. Obviously, for consistency and
completeness purposes, those mechanisms should abide by a set of rules, which form the SP. The
reference monitor is an entity that mediates accesses to objects by subjects. Among those accesses,
only those that conform to the SP are allowed. The reference monitor basically guarantees that the
OS respects several pre-defined security principles such as least privilege and continuous protection
[6].

• Key management security policy: To establish a secure tunnel using the IPSec protocol suite,
two end-points should agree upon a set of mutually acceptable cryptographic parameters called
Security Association (SA). These security parameters are managed according to local security
policies which are set in each end-node. For example, when creating a new SA in order to modify

85

an older one, “deletion of the old SA is dependent on local security policy”. Besides, a standard
has been recently developed to administrate IPSec security policies; it defines the concept of IP
Security Policy (IPSP) [6].

The examples listed above present the security policy seen from different angles. To unify all these views,
the security policy has been defined in [6] as “a set of rules that determine how a particular set of assets
should be secured”. This definition may appear to be too general, but it has the merit to extend to most
communication network contexts.

2.2 Specifying, validating, and testing security policies

Various languages can be used to express security policies. The choice of the language depends on the
context addressed by the policy. Referring to the examples discussed in the previous subsection, it can
be pointed out that a myriad of implementations are provided. Each implementation is characterized
by a language permitting to express the SP. These languages can be more or less abstract (i.e., formal).
The reader would refer to [7] for a more detailed idea about these languages. For instance, access rules
to the various objects handled by an operating system (e.g., files, processes) are exported to the kernel
language, such as the C language in the case of the Linux system. For key exchange in an encrypted
connections, both open-source and industrial solutions implement most of the protocols that address this
consideration. Some of the available implementations are written in the C language (e.g., FreeSwan) and
several others use proprietary languages.

To make the use of these languages efficient, three important issues should be addressed: specification,
validation, and testing. Typically, the SP is written in a human natural language. When it is applied,
the SP is translated into another language that is suitable to the secured process. To illustrate this
idea, consider a policy describing the security of a networked system. To implement it, the administrator
should configure the firewall, using its proper command set, in such a way that it will execute the SP. Even
if the original SP substantially achieves its objectives, an error made by the administrator might make
it deviate from these goals. Henceforth, the main problem at this stage is to prove that an expression
of a SP in a given language conforms to another expression of the same SP in a different language.
This issue is analogous to the software development process where many specifications corresponding to
different levels of abstraction can be considered. These specifications that deal with the same problem
are derived from each other by decreasing the abstraction level at each refinement. This encompasses the
use of different more or less abstract languages to specify SPs. Specification languages have to support
techniques allowing to verify the conformance with the defined security requirements. This functionality
is called validation. It is performed at the specification level through the use of logical tools and deduction
systems [3, 1].

Unfortunately, validation is not sufficient to state that a SP implementation is correct with regard to
the basic security requirements, another key consideration is to test the conformance of each specification
to the one it was derived from. This feature is useful to check whether or not the implementation of a
SP fulfills the criteria defined by its specification (which is supposed to be valid). Generating test sets
constitutes an important step in SP engineering because it permits to detect the security properties that
are not fulfilled by the developed solution. In addition, the testing processing allows to compare a set of
candidate SPs with respect to their conformance to the target ideal solution.

3 Algebraic specification of SPs

3.1 Algebraic preliminaries

An algebraic specification is composed of two main parts: a syntactic part, called the signature, and a
semantic part, modeled by a set of axioms [2]. A many-sorted signature typically consists of a non-empty
set S of sort names, and a S⋆ × S-sorted finite set of operation names.

Let Σ = 〈S, Ω〉 be a signature where S and Ω denote respectively the set of sorts and the set of

operations of the signature Σ. Let χ =
⋃

s∈S

χs be a set of variables on this signature (i.e., χs is an

s-sorted set for every s in S), where χs is a set of variables of sort s. The set of terms T (Σ, χ) is defined
as follows:

86

• χs ⊆ T (Σ, χs) ,

• if o :→ s is a zero-arity operation of Ω, then o ∈ T (Σ, χs) ,

• if ao : s1 × ...× sk → s is an operation of Ω and ti ∈ T (Σ, χsi
) for i ∈ {1, ..., k}, then o(t1, ..., tk) ∈

T (Σ, χs) .

In addition, we consider the positive conditional logic L and the decidable set L(Σ) of ε-sentences that
express the properties that the signature verifies.

The set L(Σ) contains conditional Σ-equations having the following form

∀X. t1 = t′1 ∧ ... ∧ tn = t′n ⇒ t = t′, (1)

where X is a Σ-sorted set of variables and
{

t, t′ ∈ |TΣ(χ)|s
ti, t

′
i ∈ |TΣ(χ)|si

, i = 1, .., n
,

|TΣ(χ)| being the term algebra corresponding to Σ and generated by applying the operations of Ω to
variables belonging to the sorts S.

A many-sorted algebra assigns a concrete aspect to a many-sorted signature by associating a set of
data to each sort and a function to each operation. In other terms, if Σ = 〈S, Ω, Π〉 is a many-sorted
signature, a Σ-algebra α assigns:

• a set |α|s to each sort s ∈ S, called the carrier set of the sort s,

• a function |ω|α : |α|s1
× ...× |α|sk

→ |α|s to each operation (ω : s1 × ...× sk → s) ∈ Ω,

• a predicate |π|α : |α|s1
× ...× |α|sk

to each predicate symbol (π : s1 × ...× sk) ∈ Π.

The class of all Σ-algebras is denoted Alg(Σ).
Let Σ = 〈S, Ω, Π〉 be a signature, χ a corresponding set of variables and α a Σ-algebra. An assignment

of χ for α is a family f = (fs)s∈S of functions such that

fs : χ→ α.

Therefore, an assignment is simply a mapping from a set of Σ-variables to a Σ-algebra. The value of a
Σ-term t ∈ T (Σ, χ) under an assignment f , denoted [t], is computed using the following induction rules:

1. if t = x with x ∈ χs, s ∈ S, then [t] = fs(x),

2. if t = c with ω = (c :→ s) ∈ Ω, then [t] = ωα,

3. if t = g(t1, .., tk) with ω = (g : s1×..×sk → s) ∈ Ω, k ≥ 1, ti ∈ T (Σ, χsi
), then [t] = ωα ([t1] , .., [tn]).

The first rule means that a ground term has a fix assignment value in the Σ-algebra α.
To state about the conformance of a specific algebra to a set of requirements, expressed through the

use of Σ-formulas (i.e., Σ-sentences), we use a binary relation |=⊆ Alg(Σ)×L(Σ) called the satisfaction
relation. For instance, when dealing with traditional equational logic, a Σ-algebra α satisfies a formula
(t1 = t2) ∈ L(Σ) if and only if [t1] = [t2] for all assignments f : χ→ α.

Let Φ be a set of Σ-sentences, an algebra α satisfies Φ if and only if it satisfies every formula ϕ ∈ Φ. In
other terms, we can define a binary relation |=⋆⊆ Alg(Σ)×L(Σ)⋆ such that α |=⋆ Φ iff ϕ ∈ Φ⇒ α ∈|= .ϕ.

An interesting property of the satisfaction relation is given in the following equation: |=⋆ .(Φ∪Ψ) =
(|=⋆ .Φ)∩(|=⋆ .Ψ) , meaning that a set of equations can be enriched generally by axioms that are satisfied
by the algebra.

A formula ϕ is said to be a logical consequence of Φ (denoted by Φ ⊢ ϕ) if and only if every algebra α
satisfying Φ also satisfies ϕ. Formally, this can be expressed using the condition Φ ⊢ ϕ⇒|= .ϕ ⊆|=⋆ .Φ.
Practically, the relation ⊢ can be seen as the union of some elementary relations defined on the set of

Σ-sentences called inference rules ⊢=
⋃

n

n∏

i=1

(⊢i), where ⊢i is an inference rule belonging to the deduction

system (e.g., reflexivity rule, congruence rule) and
∏

i denotes the indexed relational product. Informally
speaking, this means that deriving an equation consists in applying iteratively the rules of the deduction
system.

87

3.2 Algebraic specification of security policies

Because the SP should address all the security requirements of the enterprise (e.g., authentication, ac-
cess control), it should be split into multiple components. RFC 2196 defined a list including the major
components, i.e. computer technology purchasing guidelines, privacy policy, access policy, accountability
policy, authentication policy, availability statement, information technology system & network mainte-
nance policy, and violations reporting policy.

We found that all of these policy components can be specified similarly even though they use dis-
tinguished security techniques. Abstracting away from its context, a SP representation should contain
the protected asset, the operations modeling their interaction, and the security properties that must be
followed. Algebraic specifications, that have been defined in the previous sub-section, allow to build an
abstraction reasoning about the SP. Many-sorted signatures [5, 2] can be used to handle resources and
operations, while conditional axioms can model the security requirements. According to this view, the
assets of the protected infrastructure are categorized into sorts. For example, to establish a connection
between two machines, we need three sorts (i.e. host, port, protocol).

For the sake of parsimony, we will not treat all the components listed by RFC 2196. Our analysis
will be limited to a single example (i.e., network SP) that shows how sort, operations, and axioms can
efficiently model a SP.

Example: Network access SP

This example considers two simple firewall rules within a specific network.

• Allow all connections to the web (IP1) and the DNS (IP2) servers.

• Allow connections from the local network to external machines using the tcp protocol.

The algebraic specification of the above-mentioned policy is given in the following:

pres ΠFW Sorts actions, ip, protocols, ports
Opns deny :→ actions

allow :→ actions
IP1, IP2 :→ ip
udp, tcp :→ protocols
80, 8080, 443, 53 :→ ports

Preds inLAN : ip
connect : protocols× ip× ports

Axioms ∀x : ip, p : ports. (p = 80 ∨ p = 8080 ∨ p = 443) ∧ ¬inLAN(x)∧
connect(tcp, x, IP1, p)⇒ allow

∀x : ip, p : ports. (p = 53) ∧ ¬inLAN(x) ∧ connect(udp, x, IP2, p)
⇒ allow

∀x, y : ip, p : ports. inLAN(x) ∧ ¬inLAN(y) ∧ connect(tcp, x, y, p)

The operations of the algebraic signature correspond to the elementary connection establishment
parameters (e.g., ports, IP addresses) and to the firewall responses (i.e., allow, deny). The predicates
inLan and connect respectively state whether a specific host belongs to the local network and whether
a given IP address has requested a connection.

4 Deriving security policy test cases from algebraic specifica-
tion

This section addresses the main goal of this paper, i.e. automatically generating test cases from algebraic
specification of security policies. Tests considered here are expected to be finite, complete and correct.
To this end, we have adapted the techniques used by Gaudel in [4], especially those used to reduce the
exhaustive test set. We also define a methodology for deriving security tests from the formal specification
of security policies.

88

4.1 Basic definitions

Let SP = (Σ, Φ) be such the specification of a security policy P . Given a ground Σ-term t, we note tP
the result of its computation by P . Given a Σ-equation ε, and a policy P providing an implementation
for every Σ-operation

• a test for ε is any ground instantiation t = t′ of ε;

• a test experiment of P against t = t′ consists of the evaluation of tP and t′P and the comparison of
the resulting values.

In the following, a test experiment is said to be successful if it concludes to the satisfaction of the test
by P , and we note it P |= Γ where Γis the test.

Given a specification SP = (Σ, Φ), the exhaustive test set for SP , denoted ExhaustSP , is the set of
all well-sorted ground instances of all the Σ-axioms.

ExhaustSP = {Φσ|Φ ∈ Ax, σ = {σs : var(Φ)s → TΣs
|s ∈ S}}.

An exhaustive test of P against SP is the set of all the test experiments of P against the formulas
of ExhaustSP .

Because it is practically impossible to consider the exhaustive test space due to its infiniteness, we
introduce the concept of hypotheses that is shown to considerably reduce the test set size. Moreover,
we define some properties that must be considered to guarantee the correctness and completeness of test
cases.

4.2 Need for hypotheses

Let ExhaustSP be the exhaustive test set for the policy specification SP resulting from replacing vari-
ables by the associated ground terms. Even though it covers all the test space, this test set is practically
not useful to assess SP implementations. In fact, it is often infinite because, for a specific axiom, it
considers all the states of the precondition. This means that the whole carrier set, in the corresponding
algebras, should be inspected for erroneous SP behavior. Furthermore, and as it considers all axiom
preconditions, ExhaustSP also includes false ones. Although they are meaningless from the SP testing
perspective, conditional ground instances of the tested axioms belong to ExhaustSP leading to a sub-
stantial waste of computing resources. In addition, conditional tests in ExhaustSP may be redundant
with the equational tests as they can be seen as conjunctions and their preconditions are tested by
other equational tests. In other terms, ExhaustSP contains both simple and composite equations (i.e.,
conjunctions), and this makes some tests be performed more than once.

Hence, when testing a SP, only a subset of ExhaustSP may be sufficient. However, some properties
should be guaranteed by this subset. Eliminating infiniteness, false preconditions, and redundancies
must be done according to a procedure that preserves the properties of ExhaustSP . The two major
requirements consist in the fact that the selected test set should be valid and unbiased ; meaning that
incorrect SP implementations should be discarded, and that all correct SP implementations are accepted.
To this end, we use selection hypotheses aiming at reducing the exhaustive test set to a finite test set T .

Regularity and uniformity of hypotheses

Two hypotheses will be considered: uniformity and regularity. These hypotheses are considered on a per-
axiom basis. Hypotheses basically consist in assertions about the behavior of an axiom with respect to
its precondition space. For instance, uniformity hypotheses states that the test result can be generalized
to a whole domain if the test is performed at a single point of this domain. This corresponds to the
determination of sub-domains of the variables where the program is supposed to have the same behavior.
Assuming that, it is no more necessary to have all the ground instances of the variables but only one
by sub-domain. Such criteria are modeled in our framework by uniformity hypotheses. Formally, this is
expressed by the following definition.

Definition 1. Uniformity hypothesis. Given a formula Φ(X) where X is a variable, a uniformity
hypothesis on a sub-domain D for a program P is the assumption:

89

(∀t0 ∈ D) (P |= Φ(t0)⇒ (∀t ∈ D) (P |= Φ(t))).

Another type of hypothesis, called the regularity hypothesis, relies on testing the axiom for several
variables that do not exceed a defined ’size’. This notion of size can be customized to represent multiple
aspects of SP objects.

Definition 2. Regularity hypothesis. Given a formula Φ(X) where X is a variable, and a function
of interest |t| from ground terms into natural numbers, a regularity hypothesis for a program P is the
assumption:

((∀t ∈ Σ) (|t| ≤ k ⇒ P |= Φ(t)))⇒ (∀t ∈ TΣ) (P |= Φ(t)).

4.3 On hypotheses properties

We introduce the notion of a testing context which is a pair (H, T) of a set of hypotheses and a set of
tests and we define some important properties which are required for testing contexts.

Definition 3. Given a specification SP = (Σ, Ax), a testing context (H, T) is valid if, for all Σ-testable
program P ,

H ⇒ (P |= T ⇒ P |= ExhaustSP).

Definition 4. Given a specification SP = (Σ, Ax), a testing context (H, T) is unbiased if, for all
Σ-testable program P ,

H ⇒ (P |= ExhaustSP ⇒ P |= T).

Assuming H, validity ensures that any incorrect program is rejected and unbias prevents the rejection
of correct programs.

5 Case study

This section discusses the application of the algebraic test case generation method to Kerberos 5, which
is a cryptographic authentication protocol. Kerberos 5 is specified as shown in Figure 1.

1. Client to Kerberos: c, tgs

2. Kerberos to client: {Kc,tgs}Kc, {Tc,tgs}Ktgs

3. Client to TGS: {Ac,s}Kc,tgs, {Tc,tgs}Ktgs

4. TGS to client: {Kc,s}Kc,tgs, {Tc,s}Ks

5. Client to server: {Ac,s}Kc,s, {Tc,s}Ks

Where:

c = client Kx = x’s secret key
s = server Kx,y = session key for x and y
a = client’s network address mKx = m encrypted in x’s secret key
v = beginning and ending validity time for a ticket Tx,y =x’s ticket to use y
t = time-stamp Ax,y = authenticator from x to y

Figure 1: Kerberos 5 messages.

90

5.1 Kerberos protocol algebraic specification

To define an algebraic specification of the kerberos 5 protocol, four Finite State Automata (FSA) are
proposed. The switching conditions, that allow to move from one state to an other, are established. In
other terms, each entity among the four aforementioned ones (i.e., client, server, TGS, Kerberos) will
interact with the three remaining ones through the corresponding FSA. According to this reasoning, the
axiom section of the algebraic specification is easily deduced from these triggering conditions. Figure 2
illustrates the four modules.

In the following, we consider each module by giving the transition conditions and the related axioms.

5.1.1 The Kerberos server module

The kerberos server is characterized by three states: (0) Kerberos is waiting for client’s request, (1)
Kerberos is checking client’s identity, and (2) Kerberos is generating a session key and a TGT. We give
here after the conditions for each transition.

01 : receive(c, tgs)
12 : indb(c)
10 : ¬indb(c)
20 : send(encrypt(sessionkey(c, tgs), kc) ∧ encrypt(tgt(c, tgs), ktgs))
We thus obtain a set of axioms describing the Kerberos server module.
Φ01 kerberosstate(S) = waitingforclreq ∧ receive(c, tgs)⇒

nextkerberosstate(S) = checkingclid
Φ12 kerberosstate(S) = checkingclid ∧ indb(c)⇒

nextkerberosstate(S) = generatingkeyandTGT
Φ10 kerberosstate(S) = checkingclid ∧ ¬indb(c)⇒

nextkerberosstate(S) = waitingforclreq
Φ20 kerberosstate(S) = generatingkeyandTGT ∧ send(encrypt(sessionkey(c, tgs), kc)∧

encrypt(tgt(c, tgs), ktgs))⇒ nextkerberosstate(S) = waitingforclreq

5.1.2 The client module

The client is characterized by five states: (0) the client is idle, (1) the client is waiting for a session key
and a TGT to communicate with the TGS, (2) the client is waiting for a ticket and a session key that he
shares with the server for communication purposes, (3) the client is waiting for the session to be opened
by the server, and (4) the client is connected.

The set of axioms describing the client module are given in the following.

Φ01 clientstate(S) = idle ∧ send(c, tgs)⇒ nextclientstate(S) = waitingforkeyandTGT
Φ12 clientstate(S) = waitingforkeyandTGT ∧ receive(encrypt(sessionkey(c, tgs), kc)∧

send(enkrypt(auth(c), sessionkey(c, tgs)), encrypt(tgt(c, tgs), ktgs)))⇒
nextclientstate(S) = waitingforkeyandticket

Φ23 clientstate(S) = waitingforkeyandticket∧
receive(encrypt(sessionkey(c, s), sessionkey(c, tgs)), encrypt(ticket, ks))∧
decrypt(encrypt(sessionkey(c, s), sessionkey(c, tgs)))∧
send(enkrypt(auth(c), sessionkey(c, s)), encrypt(ticket, ks))⇒
nextclientstate(S) = waitingforcx

Φ34 clientstate(S) = waitwetheringforcx ∧ openconnection(c, s)⇒
nextclientstate(S) = clientisconnected

Φ40 clientstate(S) = clientisconnected ∧ ¬validity(openconnection(c, s))⇒
nextclientstate(S) = idle

Φ10 clientstate(S) = waitingforkeyandTGT ∧ ¬indb(c)⇒ nextclientstate(S) = idle
Φ20 clientstate(S) = waitingforkeyandticket ∧ receive()⇒ nextclientstate(S) = idle

5.1.3 The TGS module

The ticket granting server is characterized by three states: (0) the TGS is waiting for a client’s message
comporting the session key and the TGT, (1) the TGS is checking the information sent by the client,

91

0: Client is idle

1: Client is waiting for a session key and a TGT
to communicate with the TGS

ticket to communicate with the server
2: Client is waiting for a session key and a

4: Client is connected

to be established
3: Client is waiting for the connection

client id
is not OK

server opens connection

time is over

Request sent to Kerberos

Client sends a req to the TGS

Client sends a req to the server

info are not OK

(a) Client module

client’s request
0: Kerberos is waiting for

client’s identity
1: kerberos is checking

key and a TGT
2: Kerberos is generating a session

identity is not OK req received

identity is OK

Session key and TGT are sent

(b) Kerberos module

0: TGS is waiting for a client’s request

2: TGS is generating a ticket and a session key

1: TGS is checking the info sent by the client

req received info is not OKTicket sent

info is OK

(c) TGS module

authenticator and the session key
0: Server is waiting for the client’s

1: Server is checking the info sent by the client

2: Connection is established

Check is OK

Tim is over

req received info is not OK

(d) Server module

Figure 2: Kerberos 5 protocol modules.

92

and (2) the TGS is generating a ticket and a session key to be shared by the client and the server.
The axioms describing the behaviour of the TGS module are given below.
Φ01 tgsstate(S) = waitingforclreq ∧

receive(enkrypt(auth(c), sessionkey(c, tgs)), encrypt(tgt(c, tgs), ktgs))⇒
nexttgsstate(S) = checkinginfo

Φ12 tgsstate(S) = checkinginfo ∧ aresimilar(decrypt(tgt(c, tgs), ktgs), auth(c))∧
(timestamp ≃ currenttime)⇒
nexttgsstate(S) = generatingticketkey

Φ10 tgsstate(S) = checkinginfo ∧ (¬aresimilar(decrypt(tgt(c, tgs), ktgs), auth(c))∨
¬(timestamp ≃ currenttime) ∨ (alreadiexist(decrypt(tgt(c, tgs), ktgs), timestamp)))
⇒ nexttgsstate(S) = waitingforclreq

Φ20 tgsstate(S) = generatingticketkey∧
send(encrypt(sessionkey(c, s), sessionkey(c, tgs)), encrypt(ticket, ks))
⇒ nexttgsstate(S) = waitingforclreq

5.1.4 The server module

The server is characterized by three states: (0) the server is waiting for the client’s authenticator and
the session key that they will share, (1) the server is checking the information sent by the client, and (2)
the server opens a connection to for the client.

The server module operaions are executed in conformance with the following axioms.

Φ01 serverstate(S) = waitingforclreq ∧
receive(enkrypt(auth(c), sessionkey(c, s)), encrypt(ticket, ks))⇒
nextserverstate(S) = checkinginfo

Φ20 serverstate(S) = checkinginfo ∧ aresimilar(auth(c), ticket)⇒
nextserverstate(S) = connected

Φ10 serverstate(S) = checkinginfo ∧ ¬aresimilar(auth(c), ticket)⇒
nextserverstate(S) = waitingforclreq

Φ20 serverstate(S) = connected ∧ ¬validity(openconnection(c, s))⇒
nextserverstate(S) = waitingforclreq

5.2 Test case selection

This section aims at selecting the test cases from the algebraic specifications afore mentioned. Uniformity
and regularity hypotheses are applied to reduce the exhaustive test sets.

5.2.1 Testing the Kerberos server module

The exhaustive test set for this wethermodule is defined as follows:

Exhaustkerberos = {ΦΠkerb
|Φ ∈ Ax, Πkerb = Πs : var(Φ)s → TΠs

|s ∈ {clients, TGS, states}}

Test set reduction
As test set reduction is considered, we apply hypotheses to each axiom separately. For instance, for

the first axiom (Φ01), we apply the uniformity hypothesis according to the following manner:
(H1) Consider some representative clients such that two of them do not belong to the same network.

Consider also a number of ticket granting servers.

(∀t0 ∈ clients, ∀u0 ∈ TGS)(P |= Φ01(t0, u0)⇒ (∀t ∈ clients, ∀u ∈ TGS)(P |= Φ01(t, u)))

5.2.2 Testing the client module

The exhaustive test set for this module is defined as follows:

Exhaustclient = {ΦΠcl
|Φ ∈ Ax, Πcl = Πs : var(Φ)s → TΠs

|s ∈ {servers, TGS, states, time}}

93

Test set reduction
Similarly to the Kerberos module, we apply hypotheses to each axiom within the client policy. For

instance, for the axiom Φ40, we apply the uniformity hypothesis according to the following manner:
(H1) Consider some representative servers such that they belong to different networks and provides

different services. Consider also a number of ticket granting servers.

(∀t0 ∈ servers,∀u0 ∈ TGS)(P |= Φ40(t0, u0)⇒ (∀t ∈ servers,∀u ∈ TGS)(P |= Φ40(t, u)))

In addition, we apply the regularity hypothesis to the validity variable (time) such that we consider
an interval of time greater than the validity interval (H2).

5.2.3 Testing the TGS moduwetherle

The exhaustive test set for this module is defined as follows:

ExhaustTGS = {ΦΠT GS
|Φ ∈ Ax, ΠTGS = Πs : var(Φ)s → TΠs

|s ∈ {clients, TGS, time, states}}

Test set reduction
We give here the test reduction hypothesis applied to the axiom Φ12. Here also, we consider the

uniformity and regularity hypotheses.
(H1) Consider representative clients belonging to different networks and some ticket granting servers.
(H2) Consider current time and timestamp values such that they belong to a given interval and try

to chose values that are equal in some cases and sometimes different.

5.2.4 Testing the server module

The exhaustive test set for this module is defined as follows:

Exhaustserver = {ΦΠsrv
|Φ ∈ Ax, Πsrv = Πs : var(Φ)s → TΠs

|s ∈ {clients, time, states}}

Test set reduction
The uniformity hypothesis can be applied for instance to the axiom Φ01 as follows:
(H1) Consider clients belonging to different networks.

(∀t0 ∈ clients)(P |= Φ01(t0)⇒ (∀t ∈ clients)(P |= Φ01(t)))

6 Conclusion

Algebraic specifications constitute a useful tool to generate test cases following a formal process. This
paper has proved the efficiency of algebraic specifications in modeling SPs and deriving associated test
sets. Using the proposed approach, we can verify the conformance of a SP to its specification, detect
implementation errors in SPs, and assess SP efficiency. Two hypotheses, uniformity and regularity, have
been proposed to prevent the generation of infinite test sets.

References

[1] F. Siewe, A. Cau and H. Zedan, “A Compositional Framework for Access Control Policies Enforce-
ment,” ACM Conference on Computer Security, FMSE’03, pp. 32-42, Washtington, D.C., 2003.

[2] J. Loeckx, H.D. Enrich and M. Wolf, “Specification of Abstract Data Types,” Wiley Teubner, 1996.

[3] L. Cholvy and F. Cuppens, “Analyzing Consistency of Security Policies,” IEEE Symposium on
security and privacy, Oakland, USA, 1997.

94

[4] M.C. Gaudel, “Testing can be formal too,” TAPSOFT95, LNCS. Springer Verlag, Vol. 915, pp.
82-96, May 1995.

[5] M. Hamdi and N. Boudriga, “Algebraic Specification of Network Risk Management,” ACM Workshop
on Formal Methods in Security Engineering, pp. 52-60, Washington, D.C., 2003.

[6] M. Hamdi, N. Boudriga, M.S. Obaidat, “Security Policy Guidelines,” Handbook of Information
Security, H. Bidgoli, Editor, 2005.

[7] S. Barman, “Writing Information Security Policies,” New Riders, 2002.

95

Attack on Sun’s MIDP Reference Implementation of SSL

Kent Inge Fagerland Simonsen, Vebjørn Moen, and Kjell Jørgen Hole
Department of Informatics

University of Bergen, Norway

Contact author: Vebjørn Moen, moen@ii.uib.no

Abstract

Key generation on resource-constrained devices is a challenging task. This paper describes a
proof-of-concept realization of an attack on Sun’s reference implementation of the Mobile Information
Device Profile (MIDP). It is known that the MIDP implementation has a flaw in the generation of
the premaster secret in SSL. Our attack exploits the flaw to recover the symmetric keys used in an
SSL session.

1 Introduction

Running Java programs on resource-constrained devices like cellular phones and personal digital assis-
tants require a specialized run-time environment. The Connected Limited Device Configuration (CLDC)
[1] provides a set of Application Programming Interfaces (APIs) and a virtual machine for this environ-
ment. Together with a profile such as the Mobile Information Device Profile (MIDP) [2], it provides the
possibility to develop Java applications to run on devices with limited memory, processing power, and
graphical capabilities.

MIDP is a collection of APIs building on CLDC, providing some more advanced capabilities. Appli-
cations that comply with this standard are called MIDlets. Many companies have been involved in the
development of MIDP, including Ericsson, NEC, Nokia, Palm Computing, Research In Motion (RIM),
DoCoMo, LG TeleCom, Samsung, and Motorola.

MIDP has support for the Hyper Text Transfer Protocol (HTTP), where the information is sent
in the clear, and secure HTTP, denoted HTTPS, which supports authentication, confidentiality, and
integrity. The security of HTTPS is provided by Secure Socket Layer (SSL), or its successor Transport
Layer Security (TLS).

As with many other cryptographic protocols, the security of SSL and TLS depends on generating
secret key material. The randomness used in the process of generating the key material decides the
strength of the resulting keys.

The first version of SSL in Netscape was shown to create key material using time [3] as input to a
Pseudo-Random Number Generator (PRNG); this input is called a seed. Seeding with time is a common
mistake, since it is difficult to get access to a good seed on a general purpose computer. Creating
truly random numbers on a deterministic device such as a computer is impossible. We need to access
a hardware source to get some randomness—strong sources of randomness include thermal noise and a
radioactive decay source. Creating good random numbers in a constrained environment such as a cellular
phone is truly a challenge, but the security in SSL and most other crypto systems depend on a source
for randomness.

It has previously been commented [4] that the reference implementation of MIDP provided by Sun
generates the premaster secret, from which the message authentication and encryption keys in SSL are
derived, with a PRNG seeded with current time. Sun offers the reference implementation, but it is
intended that every manufacturer of MIDP devices should port the implementation to their products.
We describe an implementation of an attack on an SSL session between a server and a client using Sun’s
MIDP reference implementation which successfully recovers the SSL premaster secret, and consequently
the authentication and encryption keys used in the SSL session.

96

Client
1

2

3

4

5

6

7

8

9

ClientHello

ServerHello

Certificate

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

ChangeCipherSpec

Finished

Finished

Server

Figure 1: The 9 messages that SSL uses to establish an encrypted communication channel.

In Section 2 we give a brief introduction to SSL, Section 3 considers randomness, Section 4 describes
the attack on SSL in MIDP, as well as the implementation of the attack, and Section 5 concludes the
paper.

2 SSL

This section is not meant to give a complete description of the SSL protocol; for a complete descrip-
tion [5] is recommended. We will consider the simplest case of SSL, namely establishing an encrypted
communications channel.

The situation is that a client wants to establish a secure session with a server. To do this the client
and server exchange SSL messages. Figure 1 shows the SSL handshake used to establish a shared secret.

1. ClientHello: The client asks the server to begin the negotiation of the security services used by
SSL. This message contains fields for a version number (3.0 for SSLv3 and 3.1 for TLS), and a 32-
byte nonce used as seed in the generation of the premaster secret. The SSL specification suggests
that 4 of these 32 bytes contain the time and date to avoid client reuse of this 32-byte random
number. A session ID to identify the specific SSL session, a list of cryptographic primitives that the
client can support, and some more fields not mentioned here are also a part of the ClientHello.

2. ServerHello: The server responds to the ClientHello. This message contains fields for a version
number, a 32-byte nonce where 4 bytes are used for time and date, a session ID number, a Cipher-
Suite field which determines the cryptographic parameters, such as algorithms and key sizes. The
ServerHello also contains some more fields not discussed here.

3. Certificate: The server sends a certificate containing the public key information.

4. ServerHelloDone: Tells the client that the server is finished with the initial negotiation messages.

5. ClientKeyExchange: The client generates the premaster secret, encrypts it with the public key
received in the server certificate and sends the result to the server.

6. ChangeCipherSpec: This message tells the server that from now on any message received from the
client will be encrypted with the agreed algorithm and key.

97

7. Finished: This message from the client to the server allows the server to verify that the negotiation
has been successful. It contains a hash of key information, and contents of all previous SSL
handshake messages exchanged by the client and server. Also notice that this message is encrypted.

8. ChangeCipherSpec: This message tells the client that from now on all messages from the server
will be encrypted.

9. Finished: The client can now verify that the SSL negotiation has been successful. Just as for the
finished message from the client it contains a hash of key information, and contents of all previous
SSL handshake messages, and it is also encrypted.

After finishing the above protocol the client and the server share symmetric keys for message authen-
tication and encryption, and using the certificate received from the server in message 3 the client can
verify that it is talking to the correct server. Note however that the described SSL negotiation does not
allow the server to authenticate the client. Observe also that “Finished” messages can be used by the
server and the client to verify that the other part has the correct key.

3 Randomness and PRNGs

The security of SSL rests on the infeasibility of testing all possible keys used for encryption. If the key
space is too large, then the brute-force attack will take too much time. But if an attacker can reduce
the number of keys to be tested, she might be able to crack the key.

Many applications use easily available sources of randomness to create an initial value, or seed. This
seed is then used as input to a PRNG. The PRNG expands the seed into a longer, random-looking bit
stream. For a non-security application the seed only needs to change every time the program runs, but
when we use it to generate cryptographic keys, the seed also needs to be as unpredictable and unguessable
as the key itself for an attacker.

Consider a system using 128-bit keys. A brute-force attack on such a system would need to check on
average 2127 keys, which is a huge number and clearly infeasible on a modern computer. What happens
if these 128 bits are generated with a PRNG? Assuming that all the details about the PRNG are known
to the attacker, the security of the cryptographic key now depends upon the seed. In other words, the
number of possible seeds gives the number of possible cryptographic keys. If the PRNG is seeded with
milliseconds since midnight, January 1, 1970 in the GMT timezone, and the attacker knows which year
the seed is created, she only needs to check 365 · 24 · 3, 600 · 1, 000 = 31, 536, 000, 000 ≈ 235 different keys,
which is a relatively small task for a modern computer.

Using PRNGs to create cryptographic keys requires that there exists at least as many equally likely
seeds as possible keys, to avoid that the PRNG reduces the effective key length.

3.1 Creating a seed

The seed is essential for the security of the system. RFC1750 [6] gives some recommendations for security
in randomness. Essentially there are two strategies: either use a reliable hardware source of randomness
or use a mixing function to combine several more or less random inputs to create a “pool” of random
data, e.g. Yarrow [7] and /dev/random in GNU/Linux.

Radioactivity decay source, Gaussian white noise and spinning disks [6, 8] are all examples of hardware
sources of randomness. A small addition in hardware and software to access these sources, could solve
the seed problem.

The /dev/random in GNU/Linux is an RNG which collects environmental noise from devices and
other sources into an entropy pool, and keeps an estimate of the number of available bits in the entropy
pool. When random numbers are requested they are created from the pool. Gutmann [9] describes
some practical solutions of how to create random numbers for use in cryptographic protocols and for key
material.

98

4 The Attack

The source code for Sun’s reference implementation of MIDP is available for download from Sun, but it
does not contain the source code for SSL and the PRNG. By decompiling the SSL.jar which comes with
the compiled version of MIDP we obtained the Java byte code, and from that we discovered how the
seeding of the PRNG is implemented.

The PRNG is seeded with the current time in milliseconds and 16 static bytes. The PRNG also allows
manual seeding, but this is not used in the reference implementation. First, we give a brief overview of
how the PRNG works and what the idea of the attack is, then more details are given in the remainder
of the section.

The PRNG uses the MD5 hash function to mix input and the current state, and it is reseeded with
current time and the previous seed for each block of data that is generated. The entire MD5 output is
used, which gives a block size of 16 bytes.

During the SSL handshake a PRNG object is constructed on the client. The PRNG object generates
a 32-byte nonce sent in the clear, as well as a 48-byte premaster secret which is sent encrypted. The
first two bytes of the 48 bytes used for the premaster secret are discarded to make room for some version
information.

The PRNG is seeded 5 times with time in milliseconds, and one can be certain that all the time
seeds come in proximity of each other. Since the nonces are sent in the clear, it seems reasonable to split
the process in two parts. First, the time seeds used to create the client nonce are found so that we can
synchronize our clock with the clock on the device, and then we guess the next three time seeds that
lead to the premaster secret.

For each suggestion for the premaster secret we need to generate the encryption/decryption and
message authentication keys, decrypt a package and check the Message Authentication Code (MAC)
value.

4.1 The PRNG

The handshake procedure uses the same PRNG object to create the nonce and the premaster secret. The
pseudo code version of the decompiled PRNG from Sun’s reference implementation of MIDP is shown
in Figure 2.

When the PRNG is constructed it initializes the MD5 digest and the updateSeed() method is called,
where a time seed together with a constant are used to create the first state. The updateSeed() method
feeds the current state and the current time in milliseconds in that order and calls the doFinal() method
whose output is the next state. The digest is reset after every doFinal().

The generateData() method writes the pseudo random data to an array (which it takes as an
argument). When it runs out of random data (every 16 bytes) it digests the current state and calls
the updateSeed() method. The data resulting from hashing the current state is said to be the pseudo
random data, and is written to the array until it is full, or more data is needed. Note that randomBytes
is a global array.

The generation of the nonce and premaster in the MIDP SSL is illustrated in Figure 3. The client
generates 5 different 16-byte values with this PRNG, the first two outputs are used for the known nonce
and the three next outputs are used for the unknown premaster secret. To generate the first 16-byte, a
16-byte constant found in the decompiled Java byte code and current time in milliseconds are hashed
and the output is the first state, which again is hashed to yield the first 16-byte of output. At the same
time the state and current time in milliseconds are digested and the output is the next state. The next
four outputs needed to create the nonce and premaster secret, are generated in a similar manner; digest
the state to get the output, and digest the state together with current time to get the next state.

4.2 The attack step-by-step

1. Sniff an SSL session and record the starting time.

2. Retrieve the client nonce and the server nonce. These are sent in the clear in the ClientHello

and ServerHello messages.

3. Decide the start and stop time, i.e., in which time interval did the client seed the PRNG.

99

constructor() {

initialize digest;

updateSeed();

}

updateSeed() {

digest.update(seed);

digest.update(currentTimeMillis);

seed = digest.doFinal();

}

generateData(byte[] buf, int off, int len) {

int i = 0;

int byteAvailable = 16;

while(true) {

if(bytesAvailable == 0) {

randomBytes = digest.doFinal(seed);

updateSeed();

bytesAvailable = 16;

}

while(bytesAvailable > 0) {

if (i == len)

return;

buf[off+i] = randomBytes[--bytesAvailable];

i++;

}

}

}

Figure 2: Parts of the code of the PRNG from Sun’s reference implementation of MIDP.

Figure 3: How MD5 is utilized to generate the pseudo random data used for nonce and premaster in the
reference implementation of MIDP SSL. The 16-byte constant is known from the decompiled Java byte
code.

100

4. Since the client nonce is sent in clear, we know the first and second output of the PRNG. Find the
value between start and stop time that was used to create the first 16 bytes of the client nonce by
trying all possible values.

5. When the time seed that were used to generated the first 16 bytes is found, the PRNG can be set
in the correct state. Then try all possible time seeds from the start time until the stop time, until
the next 16 bytes of the nonce is found.

6. We now know exactly when the client’s nonce was created according to the clients internal clock.
Using this information we try to find the premaster secret which the client generates a short time
after creating the nonce. Exactly how short this time is, is determined by the client device, its load,
the speed of the network connection and many such factors. The amount of uncertainty about the
time period in which the premaster secret is generated affects the complexity of the search for the
premaster secret. Use the time seeds found in step 4 and 5 to set the state of the PRNG, then
generate all possible values for the next three time seeds. Then use the suggested values together
with the client nonce and server nonce to generate a candidate for the premaster secret and check
if it is correct.

for each t1 in time interval

for each t2 in time interval ≥ t1

for each t3 in time interval ≥ t2

premaster = generatePreMasterCandidate(

PRNG state,t1,t2,t3)

check(premaster)

4.3 Checking the premaster

There are several approaches to check if the suggested premaster secret is correct. One good suggestion
is to create the keys used in SSL (encryption and message authentication keys) based on the premaster
secret. Then we decrypt a package and attempt to verify the MAC. If the MAC verifies, we have a
suggestion for the premaster secret. Any false positives can be eliminated by using more packets and
MACs.

One other method is to use the Finished packets in the SSL handshake protocol, which contain
a hash of the key material together with other known data. Yet another method could be a known
plaintext attack on an SSL connection.

4.4 Time complexity

Given a start time tstart and finished time tstop then ∆t = tstop − tstart denotes how many milliseconds
the SSL handshake takes on the device we are attacking. Using the client nonce and guessing the first
time seed of the PRNG takes O (∆t) time, since we can compare the first output of the PRNG with
the first half of the client nonce, and similarly guessing the second time seed also takes O (∆t) time.
Notice that this step allows us to synchronize with the device since finding one of the seeds tells us the
local time on the device. We can use this to calculate an exact t̂start, t̂stop for the key generation and
∆t̂ = t̂stop − t̂start where tstart ≤ t̂start < t̂stop ≤ tstop.

We need to guess three time seeds to generate a suggestion for the premaster secret, which have time

complexity O
((

∆t̂
)3

)
. However, since the time seeds are generated sequentially with approximately the

same amount of work between each generation, it is possible to implement the attack so that it divides ∆t̂
into three time-slots and searches the first time-slot for the first time seed, and so on... Estimated time

complexity for the search for the premaster secret is O
((

1/3 ·∆t̂
)3

)
= 1/27 · O

((
∆t̂

)3
)
. Resulting in

a total time complexity of:

2 · O (∆t) +
1

27
· O

((
∆t̂

)3
)

.

This way of implementing the attack might be too optimistic, considering a pre-emptive kernel, and
a more conservative estimate would be:

2 · O (∆t) + ·O
((

∆t̂
)3

)
.

101

4.5 Implementation

The attack was tested with a simple SSL client MIDlet written in J2ME and a simple SSL server
implemented in J2SE. We used Ethereal [10] to sniff the traffic between the two programs and recover
one encrypted SSL package. The attack code guessed keys and decrypted the package and checked the
MAC value, utilizing methods from TinySSL [11] for key generation, decryption and MAC calculation.

The MIDlet first ran on a Nokia 6600 and a SonyEricsson P900 over GPRS. However, we were unable
to recover the time from the client nonce, which led to the conclusion that Nokia and SonyEricsson have
made their own implementation of the PRNG, or the seeding of the PRNG.

The same MIDlet was then tested on the emulator in Sun J2ME Wireless Toolkit 2.1 over the loop
back interface, where the attack successfully recovered the shared premaster secret.

4.5.1 How long to find the keys?

On average an SSL handshake took approximately 20–30 seconds over GPRS with both the SonyEricsson
P900 and the Nokia 6600; the timings include the time it took to enter user input requested by the phones
during an SSL connection.

Remember that ∆t̂ corresponds to the exact time it takes to execute the SSL handshake depicted
in Figure 1. When we tested the attack on the emulator, it was found that ∆t̂ was less than 200
milliseconds. To simulate the uncertainties associated with a real mobile phone, the initial ∆t was set
equal to 40 seconds, allowing for very course guesses of the start time tstartand stop time tstop. The
attack recovered the premaster secret in less than a second on a laptop with an Intel Pentium M processor
running at 1600MHz. It is likely that the attack on an SSL connection between a real phone and a server
will take more time, since all the seeds to the PRNG were created within 25 milliseconds on the emulator.

5 Conclusion

We have shown that Sun’s reference implementation of SSL in MIDP is vulnerable to a key recovery
attack because of a poor choice of seed to the PRNG. As far as we know the described attack has not been
implemented before. However, we have not been able to find any real mobile devices with MIDP that
are vulnerable to this attack. Since very little information is publicly available, we can only speculate
whether the manufacturers of mobile devices have found a good solution to the difficult problem of
selecting a good seed, or if an insecure technique is used to generate the seed.

Today, games are the most common applications on mobile phones. Most of the games do not
communicate with a server. However, the security of SSL is essential for the creation of many client-
server applications, such as online banking and e-commerce applications. All these applications need a
good seed. The problem with creating good seeds could be solved by adding hardware RNG to mobile
devices, which could also offer true randomness to 3rd party software developers.

References

[1] Connected Limited Device Configuration (CLDC), http://java.sun.com/products/cldc/, last
visited: September 6, 2005.

[2] Mobile Information Device Profile (MIDP), http://java.sun.com/products/midp/, last visited:
September 6, 2005.

[3] Ian Goldberg and David Wagner, “How Secure is the World Wide Web?,” Dr. Dobb’s Journal,
January 1996, pp. 66–70.

[4] Dean Povey, “Wireless Java Security,” http://jdj.sys-con.com/read/37377.htm, last visited:
September 6, 2005.

[5] Stephen Thomas, “SSL and TLS Essentials: Securing the Web,” Wiley Computer Publishing, 2000.

[6] D. Eastlake, S. Crocker, J. Schiller, “RFC 1750, Randomness Recommendations for Security,” De-
cember 1994, http://www.ietf.org/rfc/rfc1750.txt

102

[7] J. Kelsey, B. Schneier, and N. Ferguson, “Yarrow-160: Notes on the Design and Analysis of the
Yarrow Cryptographic Pseudo-Random Number Generator,” Sixth Annual Workshop on Selected
Areas in Cryptography, Springer Verlag, August 1999, pp. 13–33.

[8] Don Davis , Ross Ihaka , Philip Fenstermacher, “Cryptographic Randomness from Air Turbulence
in Disk Drives,” Proceedings of the 14th Annual International Cryptology Conference on Advances
in Cryptology, August 21-25, 1994, p.114–120.

[9] P. Gutmann, “Software generation of practical strong random numbers,” Proceedings of the Seventh
USENIX Security Symposium, 1998, pp. 243–257.

[10] Ethereal network protocol analyzer, http://www.ethereal.com, last visited: September 6, 2005.

[11] TinySSL, http://www.xwt.org/javadoc/javasrc/org/xwt/util/SSL java.html, last visited:
September 6, 2005.

103

ESAF - an Extensible Security Adaptation Framework

Andreas Klenk, Marcus Masekowsky, Heiko Niedermayer, Georg Carle
Computer Networks and Internet, University of Tübingen, Germany

Abstract

The Extensible Security Adaptation Framework (ESAF) is designed to make configuration more
flexible and avoid protocol-dependent application development. Among its features are the seamless
integration of new protocols, exchangeability of corrupt protocols and utilization of the best protocol
available for communication. This choice is based upon security policies specified by the administra-
tion, the user, and the applications. The security support is end-to-end and layer-independent. It
also includes transport layer and quality of service requirements since the transport layer is trans-
parent for applications using ESAF. High-level policies provide a fine-grained support for defining
requirement levels. Requirements are therefore not binary, but scalar.

Keywords Security Adaptation, Virtualization, Security Context Negotiation, XML Security Poli-
cies, Quality of Protection.

1 Introduction

During the last decades the number of computers drastically increased as well as the demand for com-
munication. This trend raises the issue on how to handle and guarantee security in those systems,
considering their vast complexity. Traditional manual security management approaches reach their lim-
its of applicability. Huge human resources are necessary to setup the systems to communicate securely
and keep them running in the face of a constantly changing network environment. This administrative
overhead makes it difficult to introduce new innovative services into the network and sometimes even
impossible to use them at all.
As more and more computers are introduced into the network the problem gets even worse. Especially
in ubiquitous scenarios where computers and other electronic helpers are embedded everywhere in the
environment, it is not feasible to make a manual configuration for any communication and any device.
The complexity and the unforeseeable number of possible interactions and communication interfaces
require a self-configuration capability for the security and communication functions of the devices. A
solution to this problem is offered by the virtualization of the communication mechanisms.

1.1 Technologies

During the last decade numerous security technologies evolved which are able to guard the user from
attacks and intrusions. Security protocols like IPSec, SSL, TLS, SRTP are thoroughly evaluated but they
require a careful configuration to guarantee security. Users without expert knowledge are often unable
to make the right decisions and introduce severe vulnerabilities. Most large-scale networks that can be
found in companies and universities are insecure due to misconfiguration of a few individual workstations.
We propose a framework that can take the burden of making the right configuration decision away from
the user and still offer experts the flexibility to tune specific configuration details.

1.2 The Configuration Problem

Protocols like IPSec suffer under the configuration complexity as Bruce Schneier[1] already stated in his
survey on this protocol ”Even though the protocol is a disappointment – our primary complaint is with
its complexity – it is the best IP security protocol available at the moment.” Hence, the challenge today
is not to design a secure protocol but to configure a protocol to be secure!

104

Security configuration today can be done either at system level, for example by managing security poli-
cies or associations for IPSec, or at application level. Configuration at the system level is usually done to
reflect the highest demand for security and therefore must use the protocol and cryptographic algorithm
which offers the best security guarantees. The choice to use the ”best” security protocol reflects only
badly the true security needs at a given time. Which level of security is required depends a lot on what
the user wants to do. During a session only certain data need strong protection. Other data like, for
example, background images require less security. Another example for reduced security requirements is
communication in trusted environments. The security requirements are volatile and change frequently
even during the runtime of an application. It is obvious that security configuration needs to be done at a
finer granularity and must be dynamic in contrast to the state today with static configuration at system
level.

Some applications try to deal with the configuration of security protocols on their own and are there-
fore forced to support the protocol interface. Such applications break if old protocols become unavailable
even if new security protocols are introduced into the system as a replacement. The ESAF deals with this
problem by offering the application virtualization of communication. Virtualization makes it possible to
introduce new communication and security protocols transparently. The application utilizes an abstract
communication interface to hide the particular protocol. However, in case of ESAF the application can
still control the communication context by specifying high level policies.

In contrast to the needs of applications an administrator prefers to have a single control point where a
security policy can be specified and enforced. ESAF can provide this by using obligatory system policies
which define the minimal security level. These system policies defined by the administrator must always
be fulfilled for any communication. Application specific policies can only request higher security levels.
As an option the ESAF framework can keep an audit of the communication contexts and inspect the
applied configurations in detail. This audit helps to detect possible attacks and provides a mean to check
the correctness of the decisions of the ESAF system.

The heterogeneity of today’s network topologies and the vastly differentiating available security pro-
tocols at the end systems introduce additional challenges for protocol configuration. The prime task is
to identify possible security configurations supported at the end systems. In a next step a consensus
must be reached about the configuration that meets the requirements for the hosts best. This exchange
during the security context negotiation must be sufficiently secured and designed with care to reduce the
risk of vulnerabilities.

1.3 Structure of the document

The structure of the document is as follows. First, we present Related Work in Section 2. Then, the
design goals which led to the development of the Extensible Security Adaptation Framework (ESAF) are
discussed in Section 3. In Section 4 we finally introduce ESAF with its architecture and components.
We deal with security considerations in Section 5 and finally summarize our approach in the Section 6.

2 Related Work

Several projects strive to provide flexibility for communication. We take a closer look at some research
endeavors. The terminology of [2] helps us to categorize the systems.
The literature shows two main directions how to solve the adaptivity issue. One is to provide coordi-
nated distributed adaptation functionality inside the networks like Yarvis proposed with the Conductor
framework[3]. Conductor intercepts the communication and redirects it to the framework. Agents inside
the network adapt the data streams according to a plan made by the Conductor framework at the data
source. Although conductor provides some flexibility by altering the data streams it only provides rudi-
mentary security services. Unspecified encryption algorithms are used to provide security services.
The other approach is to support the virtualization at the end-systems. The Generic Security Ser-
vice Application Program Interface(GSS-API) [4] is standardized by the IETF and aims at providing a
generic interface to use end-to-end security independent of the security mechanism and the communi-

105

cation protocol. The GSS uses tokens for the establishment of the security context and the protection
of the communication. The application is responsible for the token exchange via a suitable transport
protocol. GSS-API is well-established as an interface for authentication and key exchange. However the
token based approach introduces a GSS dependent overhead for each message. Secure communication
protocols, for instance SSL/TLS, cannot be accessed through this interface due to the peculiar message
protection mechanism. Quality of protection can be achieved at the prize of loss of transparency of the
underlying security mechanism. Furthermore, the API only covers security services and cannot provide
for an abstraction of communication mechanisms. The communication and hence the context negotiation
must be handled by applications itself.
The Common Data Security Architecture (CDSA)[5] is such an end-to-end cryptographic framework for
creating security-enabled applications for client-server environments. The Framework implements its
own security services at application layer to protect data transfers at run time. Hence it is not possible
to use standardized, widely-used security protocols at different protocol layers. Policy based security
configuration is not considered.
The Iceberg project[6] is similar to the Transformation, Aggregation, Caching and Customnization
(TACC) architecture[7]. Thus it is a pure proxy system, specially designed for mobile devices with
few resources. Proxy systems provide their services to legacy applications but fail to adapt to specific
requirements of the applications. Secure protocols like IPSec or SSL are not supported and it is difficult
to adapt the project to utilize these protocols.
The Chisel Framework[8] can be described as a reflective, application- and user-aware, end-system-based
architecture. It is possible to specify adaptation policies to influence the adaptation process. Their reflec-
tive approach lets them change technical behavior without modifying their adaptation system. Security
concerns were not in focus of this project and hence the framework fits only badly for the provisioning
of security services.
In [9] Stiller introduced the DaCaPo++ system which uses protocol composition based on module chains.
It is an application-aware system for the use on end-systems. Applications can influence their Quality
of Service by selecting suitable protocols among a set of predefined protocols. This makes applications
dependent on the supported protocols and future changes may cause problems with legacy applications.
Security functionality is provided by proprietary security modules, thus security of the communication
is difficult to proof because non standard protocols are utilized.
The Celestial Project[10] was developed at the North Carolina State University and is an application-
aware and protocol-oriented security policy management system. The core component is the Security
Management Agent(SMA), which performs the security protocols configuration and exchanges configu-
ration messages with other Celestial nodes for connection setup. The SMA is implemented as a kernel
module and offers additionally a simple socket interface for applications. SMNAs also reside at middle-
boxes on the data path and influence the connection setup by adding their own security policies to the
message. Security services can be provided by those middleboxes and are therefore not end-to-end. Thus
a high level of trust is required in the unprotected link with the middleboxes and of course the trust-
worthiness of the middleboxes must be assured. Celestial introduced a proprietary protocol called ISCP
for the exchange of configuration messages and uses undisclosed algorithms and encryption functions for
protecting the message exchange. The management of the security policies is done at the application
level without an option for the administrator to influence or confirm the configuration. Therefor Celestial
lacks the capability to enforce a system wide security policy. If a critical bug of a security protocol is
exposed Celestial cannot easily adapt its policies.

3 Architecture Design Goals

While trying to provide communication and security virtualization it is important to state the require-
ments such a system must fulfill. Two basic principles are always visible in the design: a) be as au-
tonomous as possible during connection establishment b) provide control at all stages and transparency
of the state for the system.

We consider authentication to be out of scope for this document. That it can be provided with other
means, say out-of-band or using a PKI infrastructure.

106

Protocol

Wrapper

Application

ESAF

Virtualization

Layer

Host A

IPSec

SCTP

Host B

ESAF

Runtime

Environment

Protected

Communication
Negotiation of

Security Context

ESAF

Runtime

Environment

Control

Interface

Protocol

Wrapper

Application

ESAF

Virtualization

Layer

IPSec

SCTP
Control

Interface

Figure 1: Extensible Security Adaptation Framework

• Self-Configuration: The communicating entities must find a configuration set that fulfills at least
the minimal security and communication requirements of all participating entities. A consensus
must be reached about which protocols and which configuration fits the requirements best. Self-
configuration must be performed in a secure manner.

• Intrusion Handling: Security mechanisms sometimes comprise flaws and if these are disclosed a
responsible administrator must react. Currently, one has to wait till an update becomes available
to fix the flaw. It is usually no option to disable the protocol because a lot of applications would
stop working. The mechanism must be able to disable protocols without harming the functionality
of the system.

• Communication Virtualization: Communication interfaces must be abstracted and generalized to
allow the exchangeability of underlying protocols. The abstract interface must provide all function-
alities necessary for communication. It shall be possible to take control over the communication
but must be able to work autonomously with self configuration.

• Context Adaptation: A secure perimeter requires maybe less security measures than a hostile en-
vironment. The computational resources that are available determine what kind of protocol is
applicable at all. The context determines the communication requirements.

• Large Degree of Control: Different stakeholders take interest in the configuration of the connection.
It must be possible for all participants to express their configuration demands. Administrators want
to enforce a minimum security level whereas users take a large interest in the performance of the
system. Applications can optimize the performance by adapting the security to the actually per-
formed task.

• Ease of Control: The control must not only be possible but also be easy to implement. The method
to express the requirements must be straight forward to formulate and to modify. The requirements

107

must be human understandable to allow administrators to make sure that the security context of-
fers adequate protection. It must be possible to trace the state of the system during configuration
for each message exchange.

• System Enhancement: Systems undergo many changes in the course of their lifetime. Protocols
are added and configuration changes frequently. The installed applications should be able to take
advantage of new system capabilities without being redesigned.

• Security: The architecture itself must be designed with security in mind. Possible weaknesses of
the architecture must be detected to avoid introducing new security holes in the system.

4 Extensible Security Adaptation Framework

The Extensible Security Adaptation Framework (ESAF) was designed to provide applications with a
novel interface that provides virtualization especially for security. Applications can take control over
the security protocols without the need to know anything about the parameters and interfaces of the
protocol at all. The decision which protocol and which configuration should be used has to be derived
directly form the security and communication requirements of the different stakeholders in the system:
user, application, system, communication partners and many other instances determine the configuration
needs.
These requirements are defined in high level policies. These policies describe in an abstract form the
required security and communication parameters. The ESAF can map these high level policies internally
onto system capabilities policies to derive the particular configuration that must be applied to the pro-
tocols.
Virtualization offers a compelling solution to solve two problems at once. The security and communica-
tion requirements must be formulated independently from a particular protocol, but they must still be
expressive enough to state the requirements in necessary depth. The usage of the security protocol must
be generic enough to replace the protocol in the system without the need to reconfigure or rebuilt the
existing applications.
Exchangeability of the protocols only works if the necessary configuration does not introduce hard de-
pendencies to a specific protocol. The socket interface achieves today a certain level of abstraction for
applications. It is not possible to exchange the ”old” protocol with a new innovative and unforeseen
protocol without breaking the application. This is especially true in cases when, for example, security
was formerly provided through SSL, but now IPSec is the only secure communication option. Most often
such an exchange is not possible at all.
Our solution is to introduce a similar interface to the standard socket interface but offer generic config-
uration with high level policies.
ESAF not only acts system local, but can also assist the applications with the establishment of secure
connections. A security context negotiation is performed during connection setup to determine the re-
quirements of the communication partners. High level policies are exchanged and their intersection leads
to a list of supported and required protocols for the connection. A choice can be made then, what the
”best” protocol for this session will be.
In order to proof the concept we already implemented basic mechanism of ESAF for Linux in C++. The
ESAF environment is still under development and misses central functionalities like mechanisms for key
exchange or the use of certification authorities. For the present we made the assumption that the entities
possess means to authenticate their communication partners.
The next subsections will highlight the individual specialties of the different tasks of the ESAF approach.

4.1 Architecture

The layered architecture was designed to achieve communication virtualization and configuration trans-
parency for the application. Consequently the ESAF Virtualization Layer is the core of the framework.
This layer is the generic communication interface for the application. It accepts high level policies as

108

Application

ESAF Runtime

Environment

ESAF

Virtualization

Layer

Control

Interface
Session

Policy

Configuration

Offer

Application

Policy

System

Capabilities

Policy

1.) 2.)

Notification

System

Policy

Negotiation &

Policy

Management

Figure 2: ESAF Policy Processing

configuration requests and chooses autonomously appropriate communication setups. The application
utilizes the Generic Socket Interface of the ESAF library to carry out the communication then.
The Virtualization Layer uses internally the generic Protocol Wrapper interface. This wrapper also com-
prises a generic interface and takes system capabilities policies for configuration. The wrapper allows
the ESAF to easily introduce new protocols into the system. The system capabilities policies allow to
configure the protocols in depth while still being able to provide interchangeability of the particular
protocols.
The ESAF Runtime Environment is designed as a daemon running constantly in the system. One func-
tionality of the runtime is to make protocol configurations which require root privileges, for example of
IPSec. Another aim is to keep the ESAF Virtualization Layer comparable lightweight and implement
policy related functionalities here. Retrieval of the high level policies is such a functionality whereas the
daemon can keep track of the currently active security contexts.
The Control Interface is part of the application. The application is responsible for accessible ports from
outside of the system and runs the control interface there. A remote host, willing to connect, initially
negotiates a security context for the communication link, before data exchange can commence. The Con-
trol Interface allows the negotiation of security contexts during connection setup and the modifications
of the context during runtime.

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
< !DOCTYPE e s a f h i g h l e v e l p o l i c y SYSTEM ” e s a f h i g h l e v e l p o l i c y . dtd”>
<e s a f h i g h l e v e l p o l i c y>

<s e cu r i t y r equ i r ement s>
<message authent i ca t ion>

<minimum>5</minimum>
< i d e a l>7</ i d e a l>

</ message authent i ca t ion>
<da t a i n t e g r i t y>

<minimum>7</minimum>
< i d e a l>10</ i d e a l>

</ da t a i n t e g r i t y>
<c o n f i d e n t i a l i t y>
. . .

</ c o n f i d e n t i a l i t y>
< t r a f f i c f l o w c o n f i d e n t i a l i t y>

109

. . .
</ t r a f f i c f l o w c o n f i d e n t i a l i t y>
<non−r epud ia t i on>
. . .

</non−r epud ia t i on>
. . .
. . .

</ s e cu r i t y r equ i r ement s>

<communicat ion requirements>
<connec t ion type>connect ion−o r i en t ed</ connec t ion type>
< r e l i a b i l i t y> r e l i a b l e</ r e l i a b i l i t y>
<sequenc ing>yes</ sequenc ing>
<e r r o r c o n t r o l>yes</ e r r o r c o n t r o l>
<performance>

<minimum>5</minimum>
< i d e a l>10</ i d e a l>

</ performance>
</ communicat ion requirements>

</ e s a f h i g h l e v e l p o l i c y>

Listing 1: High Level Policy

4.2 Requirements Description Language - RDL

We defined the Requirements Description Language RDL to pass configuration requests along. The
public interface of ESAF accepts High Level Policies whereas internally a system capabilities policy is
used to describe the installed protocols.
We decided to use XML as a policy language, because it is easily extensible. Different versions of the
ESAF can choose to ignore sections they do not understand. This is of course only possible if the section
provides information marked as optional.

4.2.1 High Level Policies

It is important that these policies are truly protocol and configuration independent and describe the full
range of requirements in a general manner. For such a policy language it is important to identify a set
of language constructs and keywords that are able to express the full range of communication require-
ments.
The security of a communication link is usually judged based on the degree it provides the following
characteristics: authentication, integrity, confidentiality and non-repudiation. We identified two more
parameters of high importance for secure communication: reliability and performance.

Security protocols are not equally optimized for all identified parameters. The level of security varies
depending on key lengths and utilized encryption algorithms. The performance of the algorithm may also
be an important factor, imagine a resource constrained device like a handheld computer. This tradeoff
between security and perfromance is also termed Quality of Protection(QoP) [11]. These thoughts led
us to the decision to attach a scalar value to each service requirement to express the importance of the
parameter on a scale between 0 and 10. The value 0 would mean ”no importance” while 10 would give
the parameter the highest priority. To differentiate even further we introduced the notion of minimum
as a knock out barrier and ideal as the desired configuration value.

The security requirements are kept apart from the communication requirements in the policy. Inside
the security requirements element each parameter is stated with its minimum and ideal value. This ele-
ment describes the typical security requirements as stated above. The tag communication requirements
encloses parameters like performance or reliability. Listing 1 depicts an example of such a high level
policy.

110

High level policies which reside at the same system can be joined by the ESAF. The application
specifies an application dependent high level policy as well as the administrator can specify a system
policy. These policies can easily be unified because they refer to the same system capabilities policy. The
algorithm is straight forward, all minimum elements of the policy are compared and always the higher
value is kept.

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
< !DOCTYPE e s a f s y s t em ab i l i t y SYSTEM ” e s a f s y s t em c apab i l i t y . dtd”>

<e s a f s y s t em c apab i l i t y>
<s uppo r t e d s e c u r i t y p r o t o c o l s>

<s e c u r i t y p r o t o c o l id=” i p s e c ”>
. . .

</ s e c u r i t y p r o t o c o l>
. . .

</ s uppo r t e d s e c u r i t y p r o t o c o l s>

<supported communicat ion protoco l s>
<t r a n s p o r t l a y e r>
. . .

</ t r a n s p o r t l a y e r>
<network laye r>
. . .

</ network laye r>
</ supported communicat ion protoco l s>

</ e s a f s y s t em c apab i l i t y>

Listing 2: Excerpt of System Capabilities Policy

4.2.2 System Capabilities Policy

High level policies helped the stakeholders express their requirements. Now the question is how these
high level policies get mapped onto particular protocols providing the desired properties. Our approach
is to use system capabilities policies. These policies describe the available communication and configura-
tion means of the system.
The basic elements of this format are the security protocols and the communication protocols. Here are
the descriptions what a protocol can do and how it must be configured. If critical bugs in a security
protocol are disclosed, the administrator can easily disable the corresponding entries in the system ca-
pabilities policy or degrade the security level. This will allow that the applications to use more secure
protocols for their connections. The user will not even notice the change and the application does not
have to bother.

. . .
<s uppo r t e d s e c u r i t y p r o t o c o l s>

<s e c u r i t y p r o t o c o l id=” i p s e c ”>
<s u ppo r t e d s e c u r i t y s e r v i c e s>

<c o n f i d e n t i a l i t y>
<enc r a l go r i thm id=”aes128−cbc”>

<key l ength>128</ key l ength>
<s e c u r i t y l e v e l>9</ s e c u r i t y l e v e l>
<performance>6</performance>

</ enc r a l go r i thm>
<enc r a l go r i thm id=”aes256−cbc”>

<key l ength>256</ key l ength>
<s e c u r i t y l e v e l>10</ s e c u r i t y l e v e l>
<performance>4</performance>

</ enc r a l go r i thm>
<enc r a l go r i thm id=” twof ish128−cbc”>
. . .

</ enc r a l go r i thm>
. . .

</ c o n f i d e n t i a l i t y>

111

<message authent i ca t ion>
. . .

</ message authent i ca t ion>
<non−r epud ia t i on>

. . .
</non−r epud ia t i on>
. . .

</ s u pp o r t e d s e c u r i t y s e r v i c e s>
<r equ i r ed communica t ion pro toco l s>

< !−−pro toco l s , which can be used with t h i s s e c u r i t y p ro t o co l −−>
</ requ i r ed communica t ion pro toco l s>

</ s e c u r i t y p r o t o c o l>
. . .

</ s uppo r t e d s e c u r i t y p r o t o c o l s>
. . .

Listing 3: Security Services in the System Capabilities Policy

The system capabilities policy describes in detail the possible configuration options for each security
protocol and a system local security rating. We call policies at this detail low level policies. These
elements correlate directly with the elements of the high level policy. It is now possible to determine all
possible encryption algorithms in the system which can provide a certain security service, for example,
confidentiality.
Listing 3 shows an excerpt of the security section of an example system capabilities policy. Here are some
supported configuration options for IPSec security services defined. This particular part shows some
available encryption algorithms. Note how the key-length of 256bits for the AES algorithm increases the
security level to 10 but decreases the performance level to 4. If implementations get more efficient or
algorithms are considered less secure it is easy to change this policy to reflect the changes. The secu-
rity protocol tag can contain special information for each algorithm on how to configure the algorithm.
In this example it is the key length element.
The system must be aware of the dependencies between the different protocols. Each security protocol
contains the section required communication protocols which determines in what combinations the pro-
tocol can be used.

4.3 Communication Interface

The communication interface provides abstraction of the actual protocols. Virtualization is accomplished
by using high level policies. The interface itself must be general enough to allow the exchangeability of
the underlying protocols but must must not limit the way a protocol can be used. The level of abstrac-
tion of the BSD socket interface[12] has already proved itself. The Socket++ interface[13], we chose to
mimic, is an evolution of the BSD socket interface and tries to enhance the ease of use for programmers.
We added the method negotiate policy to the interface for configuration by the means of high level poli-
cies. This method performs internally several steps to establish an agreement about the configuration of
the communication link as described in the next section 4.4. After the agreement is reached it establishes
the communication with these parameters.

class Secure Connect ion
{
private :

void n e g o t i a t e p o l i c y (const std : : s t r i n g &from , const std : : s t r i n g &to , const std : :
s t r i n g &po l i c y) ;

. . .
public :

inl ine Secure Connect ion (const std : : s t r i n g &from , const std : : s t r i n g &to , const std : :
s t r i n g &po l i c y) {
. . .
this−>n e g o t i a t e p o l i c y (from , to , po l i c y) ;

}
˜ Secure Connect ion () ;

112

void send (const std : : s t r i n g &data) ;

s td : : s t r i n g r e c e i v e () ;

void di s connec t () ;

void r e n e g o t i a t e p o l i c y (std : : s t r i n g ∗ po l i c y) ;

. . .
} ;

Listing 4: An Excerpt of the Secure Connection Class

The concept of using high level policies for configuration allows to extend the functionality of the
framework without changing the interface. Applications must not be rebuilt to include these new func-
tionalities. The extensible structure of the XML parameter will allow us to support low level policies
in the future. These policies contain additional configuration options at the detail level of the system
capabilities policy. One interface can be used then to provide loose or close control depending on the
needs of the application.

4.4 Security Context Negotiation

When a connection has to be established it is necessary to perform a security context negotiation. The
participants must agree on a set of possible protocols and a selection must then be made which protocols
to use. At the moment ESAF supports only end-to-end communication for two participants.
Figure 3 shows the sequence of the negotiation. First a connection request must be made in step 1) by
A. For this reason the ESAF at host A joins the high level policy of A with the system capabilities policy
of system A. It tries to determine a set of protocols and configurations meeting the requirements. Only
the entries which possess a security rating of equal or better then the minimum requirement specified by
the high level policy will be included and form a special policy, the Configuration Offer. The generated
Configuration Offer is now sent to host B inside the connection request. As an option the high level
policy can be included to inform B about the utilized security ratings for host A.

After host B received the request, it starts processing it together with its local policies. First, it must
evaluate its own high level policy provided by its server application and join it with its system capabil-
ities policy to get the locally available configuration options. Then, the algorithm starts to determine
the adequate configuration taking the minimum and ideal values into account. If the configuration is
found the connection is prepared and a Context Prepared message is sent to A in step 2), containing the
Session Policy.

In case host B is not able to find a possible intersection it will send an Agreement Failed message back
to A and attach its own high level policy and system capabilities policy. In the failure case host A could
try to adapt its policies to find at least one possible communication link with host B. This modification
should not be done automatically but through human intervention because it could lead to degradation
of the security level.

After host A received the Session Policy, the connection setup of the protocol can start with the ex-
changed configuration information as shown in step 3). Furthermore, the application can always perform
a runtime modification of the communication setup by renegotiating the parameters, as shown in step
4).
Of course, the ESAF middleware on host A must verify that the selected configuration is consistent with
the request it sent in step 1). This must be done to detect manipulation attempts. However, it is a
matter of mutual trust that the two hosts do not misuse their various decision options. Authentication
of messages is very important for the negotiation process to avoid manipulation attempts of the messages.

113

Host A Host B
1.) Connection Request

2.) Context Prepared

3.) Communication Setup

[4.) Runtime Modification]

Configuration

Offer

Session

Policy

Figure 3: Security Context Negotiation Sequence

5 Evaluation

In this section we briefly evaluate the security aspects of the ESAF system. A thorough analysis and
solutions to reduce possible problems are future work.

With respect to the security of the protocols that the system will use, we can state the following.
ESAF does not use self-designed new security protocols, but uses well-known and well-evaluated protocols
like IPSec or SSL and their implementations in current systems. This is not expected to be a weakness
in ESAF.

More important for a future evaluation of ESAF is the analysis of the impact of and threats to ESAF
itself. ESAF could be the point of attack. This could be due to weaknesses in the ESAF implementation.
The control interface could be vulnerable because it accepts connections and could be misused for buffer
overflows or DoS attacks. To limit this threat the control interface is active in the application and not
in the runtime. Configuration weaknesses could be introduced by an attacker when she is able to modify
low-level security policies system locally and propagate an insecure protocol as secure. Other possible
problems could arise from the interaction of ESAF with security protocols.

We will discuss these points in detail and propose possible solutions in the future.

6 Conclusion

This document describes a framework for the virtualization of secure communication configuration called
Extensible Security Adaption Framework. Applications using the framework are unaware of the utilized
security mechanisms and the complex configuration thereof. They must only state their communication
and security requirements and the ESAF will autonomously select and establish the best matching com-
munication setup. Protocols can easily be introduced into the system or disabled if a critical vulnerability
of a certain protocol is discovered. Because the ESAF virtualization hides the protocol stack completely
from the application, it does not matter anymore at which layer security functionalities are provided.
Abstraction is reached by specifying two human-readable policy formats. One high level format describes
the requirements whereas the other format describes particular protocols and configuration options at
the system level. These XML policies are not only used internally but also for the connection setup. The
parties wishing to establish a link exchange security policies and leave the connection setup up to the
ESAF.
Although the implementation is under progress and the concept advances there are still open issues.
First of all a thorough security investigation must be undertaken. Then issues like authentication and
key exchange must be supported by this framework.
Our conclusion is that the ESAF approach can provide security virtualization and allows self-configuration.
Of course, the benefits of ESAF are currently only available to applications which support the framework.
However, the prospect of autonomous and secure self-configuration of communication is tempting.

114

References

[1] N. Ferguson and B. Schneier, “A cryptographic evaluation of IPsec,” tech. rep., 3031 Tisch Way,
Suite 100PE, San Jose, CA 95128, USA, 2000.

[2] N. L. Nesrine Yahiaoui, Bruno Traverson, “Classification and comparison of adaptable platforms,”
2004.

[3] M. Yarvis, P. Reiher, and G. Popek, “A reliability model for distributed adaptation,” 2000.

[4] J. Linn, “Generic security service application program interface, version 2.” IETF, 1997.

[5] T. O. Group, “Common security: Cdsa and cssm, version 2 (with corrigenda),” 2000.

[6] R. H. K. Morley Mao, “A framework for universal service access using device ensemble.”

[7] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier, “Cluster-based scalable network
services,” in Symposium on Operating Systems Principles, pp. 78–91, 1997.

[8] J. Keeney, “Chisel: A policy-driven, context-aware, dynamic adaptation framework,” 2003.

[9] B. Stiller, C. Class, M. Waldvogel, G. Caronni, and D. Bauer, “A flexible middleware for multime-
dia communication: Design, implementation, and experience,” IEEE Journal on Selected Areas in
Communications, vol. 17, pp. 1614–1631, Sept. 1999.

[10] C. Xu, F. Gong, I. Baldine, L. Han, and X. Qin, “Building security-aware applications on celestial
network security management infrastructure.,” in International Conference on Internet Computing,
pp. 219–226, 2000.

[11] C. E. Irvine, T. E. Levin, and T. D. N. et al, “Overview of a high assurance architecture for
distributed multilevel security,” Proceedings of the 2002 IEEE Workshop on Information Assurance
and Security T1B2 1555 United States Military Academy, West Point, NY, 17–19 June 2002, 2002.

[12] S. J. Leffler, M. K. JcKusick, M. T. Karels, and J. S. Quarterman, “The design and implementation
of 4.3 bsd unix operating system.” Addison-Wesley, 1989.

[13] G. Swaminathan, “C++ socket classes (1.12),” 2004.

[14] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S. Rollins, and Z. Xu,
“Peer-to-Peer Computing,” Tech. Rep. HPL-2002-57, HP Laboratories, Palo Alto, March 2002.

[15] M. Yarvis, “Challenges in distributed adaptation,” 2000.

[16] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau, “Extensible markup language
(xml) 1.0 (third edition),” 2004.

[17] S. Naqvi and M. Riguidel, “Vipsec: Virtualized and pluggable security services infrastructure for
adaptive grid computing,” 2004.

[18] A. Mukhija and M. Glinz, “Casa – a contract-based adaptive software architecture framework,”
2003.

[19] J. Li, M. Yarvis, and P. Reiher, “Securing distributed adaptation,” Computer Networks (Amsterdam,
Netherlands: 1999), vol. 38, no. 3, pp. 347–371, 2002.

[20] D. Maughan, M. Schertler, M. Schneider, and J. Turner, “Internet security association and key
management protocol (ISAKMP).” Internet Draft (draft-ietf-ipsec-isakmp-08), 1997.

[21] A. Keromytis, “Some ipsec performance indications,” 2001.

[22] S. Rao, M. Formanek, and M. Riguidel, “Prospect of new concepts in securing the cyberspace:
Virtual paradigms, infospheres and pervasive computing,” 2004.

[23] N. Yahiaoui, B. Traverson, and N. Levy, “Classification and comparison of adaptable platforms,”
2004.

115

Transparent Anonymization of IP Based Network Traffic

Lexi Pimenidis and Tobias Kölsch∗

RWTH-Aachen University,
Computer Science Department Informatik IV,

Ahornstr. 55, D-52074 Aachen, Germany

{lexi,koelsch}@i4.informatik.rwth-aachen.de

Abstract

This paper presents an approach to enhance the usability of anonymizing networks by creating
a virtual anonymous IP-network. An anonymization layer is hidden behind the operating system
and transparently reroutes all network traffic. This enables the user to perform all IP based network
access without adaption of the used programs. The provided IP can be used to provide services on
the network anonymously. The generality of the approach also enables typical IP based services like
DNS to be provided to the anonymous hosts.

1 Introduction

The distribution and vast popularity of global networks like the Internet allow end users to communicate
world wide. Unfortunately most end users and even professionals do not pay enough attention to secure
their systems and network traffic against intrusions, eavesdropping or data analysis. It is difficult to
cause awareness to these problem, as the threats are often invisible. As a result sensible data is send
carelessly through the network. However, not only the content of a message contains sensible information
that has to be protected, e.g. by encryption. The address information that is included in most network
transmissions can also contain sensitive information. So sending encrypted data in regular intervals to
the web server of a certain political party leaks information of political affiliation.

To counter this leakage of information several anonymization techniques have been proposed, devel-
oped, and deployed. E.g. Mixminion [DDM03] anonymizes email traffic on different network layers,
freenet [CSWH00] provides an anonymous storage and publication system, JAP [BFK00] and Mor-
phMix [RP02] are anonymizing HTTP-proxies, and Tor [DMS04] provides a Socks proxy and anonymizes
TCP/IP streams on the transport layer.

A problem common to all of these techniques is that they are developed for a special purpose. As a
result they can not be used by all programs that use the Internet to perform day to day work.

Tor is the one notable exception. The general Socks4a interface it provides, gives all application that
support this general proxying protocol the ability to anonymize their traffic. Applications not supporting
it can be started using the torify command, which redirects calls to the networking functions of the
operating system. However, this approach still bears some problems. First, the configuration overhead
is significant, as it has to be figured out for every application if it supports the Socks4a protocol and
the application has to be configured to use it. This is complex and error prone, especially as the user
usually gets no feedback, whether the traffic is really anonymized or not. Second, the torify approach
does not prevent the torified programs to issue dynamic name service (DNS) requests, that disclose the
users target of interest.

Another problem with Tor is that the back channels it provides are not adequate for general usage.
The setup of such channels has to be done in the Tor configuration file, and is as such bound to a restart

∗Mr Pimenidis and Mr Kölsch are funded by the European Commission’s 6th Framework Program. Thanks to Dr.
Doğan Kesdoğan and George Danezis for their invaluable help

116

of the anonymizer. Another deficiency of the present approach is that the anonymous domain names
are represented by a cryptographicaly hashed URL that is usually difficult to remember and can not be
accessed without using Tor.

The communication suite formerly known as “Tarzan”[FM02] would qualify for a piece of software
that actually does provide the envisioned ease of communication. Alas, it has to be compiled by the user,
is still in experimental status and primarily supports only FreeBSD. Since we’re looking for a solution
that can be accomplished with software that is known to work, and does so on a variety of operating
systems, we have to choose other components.

Since the configuration needed to communicate anonymously with existing techniques is for experts
only, the set of users is small. This reduces the anonymity set provided by a technique. As a result the
users are not as well protected as they could be and they are possibly prone to stigmatization for using
anonymization techniques.

Our solution to this problem are Virtual Anonymous Networks (VAN). They introduce an anonymiza-
tion layer that is hidden behind the operating systems and allow transparent access to the global network
through an anonymizing overlay network. The approach provides users with truly anonymous IP ad-
dresses, that can be used for sending and receiving IP packages. As a result all their traffic is hidden
behind this temporary address. The user side configuration is by this reduced to setting up just one
system instead of having to adapt every program.

We built the proposed architecture using publicly available tools and evaluated its functionality to
ensure practicability and usability. The resulting network allowed easy, anonymous, TCP/IP based
peer-to-peer communication for all applications without additional configuration.

In section 2 we will describe VANs in more details. Some informations about the proof-of-concept
network we created to verify our ideas are given in section 3. The results will be discussed in detail in
section 4 and an outlook will be given in section 5.

2 Virtual Anonymous Networks

We propose to deploy an IP based overlay network that is able to anonymize data streams, but looks
like any other IP based network to the user. Clients can connect to this network, like they dial up to
an Internet service provider. But the IP address they get, is not linkable to them. They can then send
and receive data anonymously over this virtual network. Additionally it is possible to add typical service
functionality to this network, like DNS. The IP communication itself is not restricted by the approach.
However, the operators of the network may introduce restrictions, e.g. using a firewall, to control the
traffic flow.

The overlay network consists of two additional network layers. An anonymizer on the lower layer
hides the host’s real IP address against the VAN servers. We chose Tor for this purpose. The second
layer is provided by a virtual private network (VPN) that provides the anonymous IP addresses. Open-
VPN [ope04] was chosen to provide this for our implementation. Both tools are installed on every host
that should get an anonymous address.

Using the anonymization layer, the VPN clients are then able to connect to one of the VPN servers
and receive an IP address from the servers private IP range. Consequently the client can communicate
anonymously with other clients in the same virtual network. If different virtual networks are intercon-
nected, all clients can communicate with each other, without knowing the other user’s identity.

After our approach is set up every client computer will have at least two IP addresses. The first one
is that of the real network device. All traffic that uses this address is not automatically protected and
will be routed directly to its destination. The second IP is that provided by the VPN server. Messages
that are sent or received by the host on this address can not be linked to its real IP address. It now
depends upon the routing of the operating system, which traffic will be anonymized and which will be
send directly into the Internet. One possible configuration could send local traffic directly, while sending
traffic to remote hosts through the VAN.

In the following we describe the used tools and give a more concise description of the implementation
of our method.

117

2.1 The Anonymizing Overlay Network

As the users host should be anonymous towards the VAN server, all traffic to him is proxied through
an anonymizer. As pointed out earlier we chose Tor [DMS04]. Tor has the most general approach to
anonymize network traffic and it is capable of relaying real time TCP traffic through untrusted networks.
Another advantage of Tor is that it can be run on various operating systems, e.g. Windows and Linux.
It also does a basic form of network load balancing because the clients choose their paths through the
Tor network at random.

Tor in its current form is not designed to cope with global observers or similar threats often considered
in actual research [KAP02, Dan03, KP04, MD04]. But it does a good job in hiding information from
locally restricted attackers, as network administrators or other local authorities.

The Tor network consists of Tor servers and clients. A client that wants to communicate, builds
a tunnel that randomly passes through some of the servers. TCP/IP packages of a client application
that are to be sent to a host in the Internet, are relayed through this tunnel. The last Tor server then
proxies the connection to the final destination and sends the answers back through the tunnel. The
way in which the tunnel is instantiated guarantees that each server only knows his predecessor and his
successor. So only the first server knows the client and only the last server knows the final destination.
Also the appearance of the sent packages is changed at every hop such that two non neighboring Tor
servers cannot link individual packages to each other based on their appearance.

The Tor client provides a Socks4a interface for applications. This protocol is capable of handling
unresolved URLs, such that IP addresses do not have to be retrieved before a TCP connection is set
up. As presented in Section 1, applications that do not support proxying with Socks4a can be made
to compatible using the torify command. However explicit DNS resolution undermines the gained
anonymity.

2.2 The VPN Overlay Network

A VPN server allows multiple clients to connect. Each client receives an IP from a given range, and all
traffic on this virtual overlay network is then either forwarded to the participating clients or masqueraded
to outside IPs (masquerading is also known as network address translation). After the initialization of
the VPN, the users are able to communicate with each other, as if they were on a single LAN sharing IPs
from the same range, although they actually are not and their external IPs are from completely different
networks.

Under normal conditions each client needs a unique certificate to authenticate himself to the server.
Obviously we do not want to give away a client’s identity this way, so we configure the server to accept
multiple connections with the same certificate and publish a single client certificate that is needed to
connect to the server. On the other hand, it is desirable for the servers to have each a unique certificate
so no attacker can impersonate them.

Although a single VPN server would be sufficient to protect anonymity, we want multiple VPN
servers for scalability reasons. This leads to a routing problem for traffic between different VPNs. A
simple solution is to create a fully connected network between the VPN servers. This can be done by
interconnecting the VPN servers to each other. Traffic to the other networks is then directly forwarded
to the target VPN server, who then forwards the data to its destination. If the amount of VPNs increases
some more dynamic routing method for packages between the private networks might be necessary.

We use OpenVPN 2.0 [ope04] as virtual private network solution. This choice was made because it
runs on most major platforms, it is easy to set up, and it is easily adapted for our purpose.

To protect the users DNS queries, a DNS server can be installed on the VAN server. We used the
popular bind [bin] server for this.

2.3 Connecting and Using the Network

In order to use our virtual anonymous network (VAN), the user needs to install a Tor-client and an
OpenVPN-client. After he starts the Tor client, he connects the VPN client to a VAN server through the
Tor network. The server provides him with an IP address that can be considered anonymous. The VPN
client then replaces the default gateway on the user’s computer with the VAN server. He also configures
the computer to redirect all DNS-queries to the VAN’s DNS server. As soon as the second connection

118

is established, the user’s Internet traffic is effectively anonymized without the need to further configure
applications.

It is even possible to configure only the gateway of a local area network. This anonymizes the entire
networks outgoing traffic without the need to configure each single computer. The gateway is set up
as described above. Though this reduces the setup effort, this solution suffers from the typical effect
of masquerading: inbound connections on the anonymous IP-address of the gateway can not easily be
targeted to the single machines in the network. Additionally, local observers are able to completely
compromise the system.

3 Implementation

To build the proposed architecture we used a closed network of nine networked computers. Five of them
were running as Tor and VAN servers. The remaining four were used as clients as shown in Figure 1.

Clients

Servers

Real IPs

Anonymizer

VAN

10.8.1.1

192.168.203.128 192.168.203.129 192.168.203.130 192.168.203.131 192.168.203.132

10.8.5.110.8.4.110.8.3.110.8.2.1

10.8.2.100 10.8.4.123 10.8.5.3 10.8.5.83

192.168.203.136192.168.203.135192.168.203.133192.168.203.134

VPN 5VPN 4VPN 2

Figure 1: Our experimental network consists of five interconnected VAN servers and four clients. The
clients IPs are anonymized by the Tor network and their VAN IPs are used for inter communication.
The picture does not show that the VAN servers also act as Tor servers. Also some connections between
the VAN servers are left for clarity.

Setting up the Tor nodes in an closed environment requires us to replace the default directory server
by one of our Tor nodes. This node also receives the other nodes’ fingerprints to classify them as trusted.
The nodes interconnect as soon as they are started.

Prior to starting the VPN-servers, it is necessary to create a certificate authority and create keys and
certificates for the participants. We created one certificate per VPN-server and one for all clients. After
starting the VAN-servers, they need to be interconnected pairwise.

On the four client computers the Tor client needs to be installed and configured to use the local Tor
network, instead of the global one. After the Tor client successfully connects, the VPN-client can be
started. The client connects to a random VAN-server to avoid linkability with prior IPs and for load
balancing purposes. It then redirects non-local traffic to the VAN-server through the Tor network.

For testing purposes we pinged the clients pairwise and transmitted data by TCP and UDP without
any problems.

119

4 Discussion

Once set up, the presented method enables the user to communicate anonymously without any further
adjustment of programs. The anonymizing network prevents the VAN-server or an observer from learning
the identity of a user through his IP address, so the VAN IP address can not be linked to the individual.

One of the advantages given for free by using OpenVPN is that of being able to resume broken down
network connections. This is especially interesting for mobile users.

Also, having regular IPs as addresses, it is possible to assign ordinary fully qualified domain names
to anonymized IPs. Such, a name like medical-forum.net can be resolved to one of those IPs. The DNS
entry has to be changed every time, the service changes it’s IP, but there are established solutions to
this problem (e.g. dyndns.org).

Anonymity in VANs Security properties, like the degree of anonymity, have to be reconsidered in
compound architectures because they may be weaker than those of the single parts it consists of.

The anonymity of users in VANs is not better than that of ordinary Tor. Especially as the anonymous
IP stays the same over a longer period of time and is the origin of requests from exactly one user, his
different communications can be linked to each other. Also, if an attacker finds out a user’s anonymous
IP, he can attack this user although he does not know his real address. This is impossible against Tor
users without VAN. Direct attacks against an anonymous IP include port scanning and fingerprinting.
However, the countermeasures known from regular IP networks can be applied here, e.g. fire-walling
inbound traffic. If those techniques are correctly applied, active adversaries gain little more information
than passive ones.

Problems and Issues In this section we are going to discuss open problems and issues related to the
proposed architecture. Where possible we will suggest a solution.

One problem is, how to distribute the OpenVPN certificate for the client computers. This can be
solved in different ways: VAN servers can run a HTTP server where they provide access to the needed
software and certificates. Another solution is to package it directly with the VAN client software.

Another problem is that a central authority is needed to provide disjunct IP-ranges and certificates to
the operators of the VAN-services. This authority might also support the routing between local networks
of the VAN, as our approach is only suitable for very small VANs.

Another issue is that the anonymous IPs are not accessible to outside hosts. A solution to this would
be to use globally assigned IPs and have the range’s owner provide a gateway to the VAN. However it
might not be a good idea to make the services available to outsiders, as this reduces their motivation to
use the system. As a result they do not increase the anonymity set.

For a large scale system, the choice of the IP-range of the virtual network is also crucial. The private
IP-ranges 10.0.0.0/8 and 192.168.0.0/16 are used too often in LANs, such that collisions are likely in
a global environment. However mostly the lower values of these ranges are usually used such that sub
ranges with higher values might be a fine choice. Also the private range 172.16.0.0/12 is seldomly used
and might be a good choice in a global environment. A wide support of IPv6 will help here.

Although it looks convenient to apply DNS-services on anonymous IPs, this allows certain imperson-
ation attacks on anonymous services. If a service recently changed its IP, an attacker can try to gain the
old IP to impersonate the earlier owner. The use of SSL secured connections that use a certificate which
refers to the DNS entry and is reliably certified by some root CA can solve this problem.

Last but not least, this architecture does not protect the user who identifies himself by his choice of
software, the fingerprint of his operating system, or by sending their identity on the application layer.
Application layer filters and proxies can provide some help at this stage, but there is no satisfying solution
right now.

5 Conclusion and Outlook

We have presented an architecture based on Tor and OpenVPN that enables transparent anonymization
of all IP based network traffic and provides users with anonymized IP addresses. This approach reduces
the configuration overhead, as it only has to be performed at one single point instead for every single

120

application that’s traffic should be anonymized. This decreased complexity also increases reliability, as
the user only has to assure this one system is working correctly.

Since the degree of protection of anonymity networks grows with the number of active users, we
consider it important for them to be highly usable and versatile. We showed that current techniques can
be extended by existing software in a way that allows most convenient and secure usage of anonymity
networks.

Furthermore we discussed arising problems and validated the practicability of our approach by setting
up a prototype and evaluating it experimentally.

We look forward to see some of our ideas implemented in a single piece of software, possibly even as
kind of a plug-in to Tor or another anonymity system. Alternatively some out of the box package of our
prototype could lead to a larger popularity and result in the required anonymity set.

References

[BFK00] Oliver Berthold, Hannes Federrath, and Stefan Köpsell. Web MIXes: A system for anony-
mous and unobservable Internet access. In Proceedings of Designing Privacy Enhancing
Technologies: Workshop on Design Issues in Anonymity and Unobservability, pages 115–
129. Springer-Verlag, LNCS 2009, July 2000.

[bin] ISC BIND, Berkeley Internet Name Domain. http://www.isc.org/sw/bind/.

[CSWH00] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: A distributed
anonymous information storage and retrieval system. In Proceedings of Designing Privacy
Enhancing Technologies: Workshop on Design Issues in Anonymity and Unobservability,
pages 46–66. Springer-Verlag, LNCS 2009, July 2000.

[Dan03] George Danezis. Statistical disclosure attacks: Traffic confirmation in open environments. In
Gritzalis, Vimercati, Samarati, and Katsikas, editors, Proceedings of Security and Privacy in
the Age of Uncertainty, (SEC2003), pages 421–426, Athens, May 2003. IFIP TC11, Kluwer.

[DDM03] George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion: Design of a Type III
Anonymous Remailer Protocol. In Proceedings of the 2003 IEEE Symposium on Security and
Privacy, May 2003.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation onion
router. In Proceedings of the 13th USENIX Security Symposium, 2004.

[FM02] Michael J. Freedman and Robert Morris. Tarzan: A peer-to-peer anonymizing network layer.
In Proceedings of the 9th ACM Conference on Computer and Communications Security (CCS
2002), Washington, DC, November 2002.

[KAP02] Dogan Kesdogan, Dakshi Agrawal, and Stefan Penz. Limits of Anonymity in Open Environ-
ments. In Proceedings of Information Hiding, 5th International Workshop. Springer Verlag,
2002.

[KP04] Dogan Kesdogan and Lexi Pimenidis. The Hitting Set Attack on Anonymity Protocols. In
Proceedings of Information Hiding, 7th International Workshop. Springer Verlag, 2004.

[MD04] Nick Mathewson and Roger Dingledine. Practical traffic analysis: Extending and resisting
statistical disclosure. In Proceedings of Privacy Enhancing Technologies workshop (PET
2004), LNCS, May 2004.

[ope04] The OpenVPN-project. http://openvpn.sourceforge.net/, 2004.

[RP02] Marc Rennhard and Bernhard Plattner. Introducing MorphMix: Peer-to-Peer based Anony-
mous Internet Usage with Collusion Detection. In Proceedings of the Workshop on Privacy
in the Electronic Society (WPES 2002), Washington, DC, USA, November 2002.

121

Reducing system call logs with selective auditing

Ulf Larson and Erland Jonsson
Department of Computer Engineering
Chalmers University of Technology.

412 96 Göteborg, Sweden
{ulfla, erland.jonsson}@ce.chalmers.se

Abstract

Event auditing today is a resource consuming process. Rapidly increasing performance of hard-
ware results in event production at a faster rate. Complex software, multiprogramming and extensive
connectivity between software components makes it both difficult and resource demanding to dis-
criminate between malicious and benign system events. Thus, an exhaustive auditing approach is
not feasible and there is need for a more efficient solution. We propose a method called selective
auditing, where only a specific subset of system events are recorded. This will significantly reduce
the required amount of auditing and will produce smaller audit logs of higher quality. We illustrate
the benefits of the selective auditing method by executing four buffer overflow attacks and show that
the logs generated by selective auditing are significantly reduced in size while still giving the same
detection rate.

Keywords: Intrusion detection, system calls, auditing, data reduction

1 Introduction

Auditing facilities is a vital part of every operating system. Auditing is used for monitoring system
resources during system operation and for finding the correct position to roll a system back to after
failure. For intrusion detection purposes, auditing is used as the input upon which the detector bases
its decision. An extensive amount of audit log data causes the detection process to progress more
slowly. Also, extensive auditing uses up system resources. The performance of today’s hardware results
in a high-volume event production. Complex software, multiprogramming and extensive connectivity
between software components makes it both difficult and resource demanding to discriminate between
malicious and benign system events. In this paper we use selective auditing for reducing the resources
spent on auditing. An audit source that uses selective auditing captures a subset of all system activity.
The specific subset is a function of the data used for configuration of the audit source. In this paper,
the subset is a function of observed differences between normal and abnormal system operation. Barse
and Jonsson [BJ04] developed a framework for extracting such a subset consisting of useful log items, or
manifestations, from audit logs. Larson et al. [LBJ05] continued the work by creating the METAL tool
for automation of the most resource demanding step of the framework.

In this paper we use manifestations extracted by the METAL tool to configure a system call based
audit source, syscalltracker1, to use selective auditing. We then run four buffer overflow type attacks to
investigate to what extent the selective auditing reduces the sizes of the logs generated. To measure the
reduction we compare the size of the logs to the size of logs generated in the case where the subset of
system activity equals the set of all system activity. The output data from METAL and the input data
to the system call auditing tool is not compatible and must thus be parsed. We perform the parsing by
building a rule generator that takes as its input data the METAL manifestations and produces as its
output rules written in a format accepted by syscalltracker.

The outline of the paper is as follows. Section 2 presents related work in the field of manifestation
extraction and log reduction. Section 3 describes the manifestation extraction framework, automation

1Syscalltracker is an open source tool and it can be downloaded from http://syscalltrack.sourceforge.net.

122

of the extraction process and the syscalltracker auditing tool. In Section 4 we describe how we generate
the data needed to measure log size reduction and how syscalltracker rules are generated from extracted
manifestations. Section 5 describes our experiments and the method for reduction measurement. Results
are presented and discussed in Section 6 and future work in Section 7. Section 8 concludes the paper.

2 Related Work

Data reduction is an important part of intrusion detection. Audit sources of today generates massive
amounts of data that needs to be stored and processed, and data reduction methods are used both
for reducing the amount of storage space needed and for providing the intrusion detection system with
a smaller amount of input data. The majority of reduction methods are used in anomaly detection
systems for e.g. reducing classification time, but there also exist methods proposed for misuse detection.
In addition to this, we also have the traditional compression methods that does not take into consideration
the removal of unnecessary items but only reduces the space used.

Pure compression can be achieved by for example reducing the log files into relational databases. One
such tool is SmarterStats [Inc05], that is reported to have a reduction rate of 85%. This will reduce the
consumed space, but will not attempt to make any decision regarding the usefulness of the log items.

For anomaly detection purposes, methods such as data filtering and data clustering have been used.
Data filtering means that data is removed from the data set with heuristic or expert methods. Here,
rules are created that separates interesting data from benign. DIDS [SSTG92] and MIDAS [SSHW88] are
examples of systems that use heuristic filtering. To overcome the problem with constant updates of the
rule set, adaptive filtering can be used. Adaptive filtering can be performed, for example by using neural
networks, to adapt to changes in behavior over time. This approach is taken by Debar et al. [DBS92].

Data clustering is used to reduce storage space by either grouping, or clustering, events according to a
distance measure or storing characteristics of groups of events instead of the events themselves. Distance
clustering uses distance measures like the k-nearest neighbor algorithm to calculate the shortest distance
from the event to possible candidate clusters. The event can then be represented by a point in the
closest cluster, thus reducing the event to a point. Lane and Brodley [LB98] proposes a greedy clustering
algorithm together with a similarity measure to reduce storage space for user profiles. Their method
operates on sequences of command line entries.

Characteristics storage are used in NIDES [DN85]. Here, descriptive statistics is used to reduce the
size of log files. This is done by splitting events into components and for each component calculating a
frequency score. An average is taken over the components of the event and events with a low score are
considered as unusual. Axelsson [Axe04] use a similar but simpler approach when studying large web
server logs.

Even though most work has been done for anomaly detection, data reduction has also been attempted
for misuse detection. Kuri et al. [KNMH00] address the performance problem when large amounts of data
are to be searched fast. They apply their approach to a misuse detection system by applying a pattern
matching technique. In their approach, an input stream consisting of user level command sequences
are filtered in order to remove large parts of the stream that do not contain any attacks. This leaves a
smaller amount of data to be analyzed by a slower algorithm. Yet another approach is the one taken
by God́inez et al. [GHM05]. They use N-Gram models to address the problem on analyzing repetitive
spurious patterns. They are using system call sequences as input and their model reduce the log size by
tagging the most frequent sequences with labels. When a labeled sequence is encountered, the sequence
is replaced by the label, thus reducing the log size.

Of the methods mentioned above, the expert filtering approach is the method that is closest to our
work. However, since our expert knowledge is taken as output from an automated tool, the expert does
not need to be present to provide the expert knowledge.

3 Manifestation logging and extraction

Our approach to selective auditing depends on that manifestations are available as input. The mani-
festations we use arise from preprocessing of system call audit log files. We will discuss the method of
retrieving, or extracting, these manifestations and also briefly discuss the properties of the auditing tool

123

that is used to record the system calls, but we begin with discussing the foundation for our ideas, the
manifestation extraction framework.

3.1 Manifestation extraction framework

Our selective auditing method is based on results from the framework presented by Barse and Jons-
son [BJ04]. Their framework consists of eight steps and with the overall purpose to find differences
between logs created during normal system operation and abnormal system operation. The logs must
be generated in a controlled lab system where few other activities are going on. The auditing is started
right before the execution of the normal program behavior or the execution of the abnormal program
behavior. The auditing is stopped as soon as possible after the program has finished its actions. The
eight steps of the framework are:

1. Identify different parts of the attack, i.e. attack events.
2. Determine normal events to which the attack events can be compared.
3. Classify the attack events by their usefulness.
4. Extract event traces by logging successful attack events, and the corresponding normal attack

events.
5. Extract attack manifestations by comparing traces.
6. Classify the attack manifestations.
7. Create attack indicators by using information from the attack manifestations.
8. Define the log data requirements of the attack by studying the attack indicators.

For our purposes, we use the framework to extract attack manifestations, classify them and converting
them into rules for a system call auditing tool. Throughout this paper, the term attack manifestations
refer to the events, sequences of events or parts of events that are recorded in a log during an attack but
not during normal behavior. For extraction purposes we use the automated Manifestation Extraction
Tool for Analysis of Logs (METAL), developed by Larson et al. [LBJ05].

3.2 Automatic extraction of manifestations using METAL

METAL implements step five of the framework, thus extracting the manifestations from the logs. The
operation of METAL is shown in Figure 1.

As seen in Figure 1, METAL consist of four modules called preprocessor, sanitiser, process matcher
and extractor. The preprocessor prepares input data for analysis by dividing the input logs into separate
processes. The process division decision is based on process ID (pid) and process name entries in the file.
By using both pid and process name, one file can be created for each process, including forked processes.
Processes that are considered as belonging to the logging process itself are removed. The result of the
preprocessing is one directory containing the processes extracted from the normal log and one directory
containing the processes extracted from the attack log.

The sanitiser removes parts of log entries that will disturb matching and comparison by applying a
set of rules to each file. The set of rules is created by manually inspecting log files and locating the log
items that always change. For example, the return value of the time system call always differ and should
therefore not be considered when comparing logs.

The process matcher compares log files generated by processes active during normal operation to log
files generated during an attack to find which processes that are changed by the attack. Each log file
in the normal directory is compared to each log file in the attack directory and the degree of difference
is recorded. The degree of difference is calculated by comparing system call sequences using the tree
based approach as explained in [FHSL96]. First, a profile of the system call sequences for one process is
created and then, the sequences from the other process is matched against the profile. This procedure is
then repeated by matching all processes from the first log directory with each process in the second log
directory. The degree of difference is the number of mismatching sequences divided by the total number
of matches made.

The extractor extracts five manifestation types and writes the manifestations into report files, denoted
as Attack reports in Figure 1. Each comparison between normal and attack activity made by METAL
generates n attack reports, where n is the number of processes that were considered to be involved in

124

Figure 1: Log comparison in the METAL tool

the attack. The attack report contains the name of the process that caused the manifestations together
with the manifestations themselves, grouped by type of manifestation. In Figure 1 the types are denoted
as syscall, seq, args, rets and diff. The types are briefly described as follows: syscall, or Unique system
calls, denotes the system call names that can be found in one log but not in the other. seq, or Unique
sequences, denotes sequences of system calls that can be found in one log but not in the other. args,
or Unique arguments, denotes the system call arguments that can be found in one log but not in the
other. Arguments are grouped by system call and argument vector position and compared. rets, or
Unique return values, denotes the system call return values that can be found in one log but not the
other. Return values are as arguments grouped by system call and compared. diff shows the differences
between files by applying the UNIX diff command.

3.3 System call auditing tool

For auditing, we use a publicly available tool called syscalltracker [FKM+05]. syscalltracker is a tool for
capturing system calls and writing them to a file or device. For each specific event that the user want to
monitor, a rule is created. A rule is made of a rule id, which is a number, a filter expression that states
what conditions that should hold for the system call, and an action, that states what should be done
when the rule is matched. The filter expression is made up from process field variables such as process
id, command issued and effective user id as well as operators like ’==’ and ’&’. Consider below Figure 2
showing the rule for matching execution of a command shell by a program called tcpdump.

The rules are written by the user and stored in a configuration file. This file is loaded into syscall-
tracker during runtime.

125

rule
{

syscall_name = execve
rule_name = tcpdump_exec_sh
filter_expression {COMM == ‘‘tcpdump’’}
action {

type LOG
log_format { %comm issued execve command}

}
when = before

}

Figure 2: A syscalltracker rule for matching execution of a command shell by the tcpdump program

4 Producing data for reduction measurement

Selective auditing means that we can choose what events we want syscalltracker to log for a specific
attack. In order to instrument syscalltracker to log a selected subset of all events we must first have
prior knowledge of what events that are interesting and what events that can be discarded. We have
chosen to use as input the manifestations extracted by the METAL tool.

In order to generate the manifestations, we first use syscalltracker with a configuration file that
allow us to capture all events generated by all active processes, as described in [LBJ05]. We call this
configuration file REFERENCE.conf. We start syscalltracker, load REFERENCE.conf into syscalltracker and
capture normal process activity. Normal activity is saved to a file called REFERENCE NORMAL.log. We
then start syscalltracker again, load REFERENCE.conf and capture attack activity. This activity is saved
to a file called REFERENCE ATTACK.log.

We then use the METAL tool to generate one set of Attack reports for each attack. As input to
METAL we use the REFERENCE NORMAL.log and the REFERENCE ATTACK.log for each attack respectively.
This procedure is described in Section 3.2 and shown in Figure 1. Figure 3 illustrates how the attack
reports are created.

Figure 3: Creating the Attack reports

Each Attack report contains a number of manifestations, the number is the same as the number of
differences between the REFERENCE NORMAL.log and the REFERENCE ATTACK.log

The next step is to convert the Attack reports into a configuration file containing rules that syscall-
tracker can accept as input. Since we want to log events caused by an active attack, we need only consider
parts of the Attack report file. As seen in Figure 4, each type of manifestation has two parts, of which
we will use the part caused by the attack. For future references to this part of the attack report we use
the expression manifestations present in attack but not in normal.

In Figure 4 the attack part is represented by the 11 execve system call. Each Attack report contain
one section for each manifestation type. In Figure 1, these types are referred to as Syscall, Seq, Args,
Rets and Diff. The Diff manifestation type can not be used to generate rules and is therefore excluded.

For converting the Attack report into a configuration file we have built a tool called the rule gen-
erator. The rule generator is used once for each Attack report and its internal operation is further
described in Section 4.1. The output of the rule generator consists of one rule for each manifestation

126

==

Unique system calls from [normal] 8972_tcpdump

4_write

==

Unique system calls from [attack] 8782_tcpdump

11_execve

Figure 4: The two parts of the manifestation type syscall

in the Attack report file. The collection of rules is stored in a syscalltracker compatible configura-
tion file referred to as ADAPTED.conf. When we have finished this step, the ADAPTED.conf contains
contributions from all tested attacks. To perform the selective auditing, we now start syscalltracker,
load the ADAPTED.conf file and capture once again attack activity. This activity is saved into a file
called ADAPTED.log. This procedure is repeated once for every attack that we want to include in our
experiment.

We now have all the information we need to calculate the ratio between the REFERENCE ATTACK.log

and the ADAPTED.log files which gives the reduction percentage. The formula for calculating the reduc-
tion percentages is given in Section 5.4.

4.1 Internal operation of the rule generator

We use the rule generator to create configuration files for the syscalltracker tool. The rule generator takes
as input the METAL generated attack reports and outputs configuration files for the syscalltracker tool.
The operation of the rule generator consists of three steps. Figure 5 illustrates the internal operation of
the rule generator.

Figure 5: Internal operation of the rule generator

The Attack report preprocessor accepts k attack reports, where k is a non-negative integer. From
these reports, the manifestations from the manifestations present in attack but not in normal parts are
extracted. All manifestation types syscall, seq, args and rets are extracted and written to the Formatted
attack report. The Formatted attack report is then used as input to the Rule extractor together
with a rule database. The rule database contains all manifestations extracted during previous use.
The rule extractor reads the database and the formatted attack report and merges them into an
updated version of the rule database. The updated version is used both as input to the Configuration
file generator and as the new rule database for future use. The configuration file generator also receives
data from two files called the Template file and the System structs file. The template file contains
static information and instructions regarding the formatting of the configuration file and the system

structs file contains detailed information about operating system structures (structs). The information
contained in the system structs file is necessary when constructing filter expressions that includes the
use of struct fields. The configuration file generator creates from its input a parseable configuration file
for use as input to syscalltracker. As an example of output format from the configuration file generator,
consider Figure 6. The attack report for the execve system call executed by the tcpdump process has
been transformed into a syscalltracker rule. This rule instruments syscalltracker to log all execve calls if

127

the calling process is tcpdump.

/* A rule to log 11_execve calls. */
rule
{
syscall_name = execve
rule_name = rule_number_171
filter_expression
{ COMM == "tcpdump" }
action{

type = LOG
log_format{syscall: %pid[%comm]: %sid_%sname, euid=%euid, uid=%uid (rule%ruleid)}

}
when = before

}

Figure 6: A sample rule as generated by the configuration file generator

5 Experiments

The rule generator is implemented in the Python programming language and arguments, i.e. input and
output file names, are provided at the command line when the program is invoked. The attacks that we
use are four buffer overflow attacks and the target system is a RedHat 6.2 system. The data from the
attacks is collected by syscalltracker. The log reduction is calculated by comparing the size of the logs
generated with selective auditing and the logs generated by logging all activity in the system.

5.1 Choosing attacks

We have chosen to use buffer overflow type attacks in our experiments and the following four attacks
were used: The first attack is a remote exploit that targets a vulnerability in the tcpdump program.2

The second attack is a remote format string stack overwrite vulnerability targeting the wu-ftpd service.3

The third is a buffer overflow attack against the dip program4 and the fourth is a buffer overflow attack
targeting the xlock program5. The decision of using only buffer overflow attacks is based on that we at
a later step will be able to investigate and possibly identify general similarities and attempt to make a
generalization from the data. Such a generalization would be a first step towards identifying items that
are common for this group of attacks. The generalization would also be the first step towards collecting
manifestations with intention of finding unknown attacks that are constructed in the same way as the
investigated attacks. This would further prove the usefulness of the approach.

5.2 Experiment setup

For the experiments we use the following system setup. One attack system running RedHat Linux 9
with a 2.4.20 kernel and one target system running RedHat Linux 6.2 with a 2.2.19 kernel and with
syscalltracker installed. The target system also has the vulnerable software packages installed. The
attack and target systems are connected via a TCP/IP network. Remote attacks are carried out over the
TCP/IP connection and local attacks are carried out by first logging in via ssh from the attack system
to the target system and then executing the attack.

5.3 Experiment execution

The experiment is executed according to the method described in Section 4. For each attack, we first
execute the attack program. After the attack program has generated the command shell, we issue the

2Tcpdump AFS ACL packet buffer overflow vulnerability, Bugtraq ID 1870, CVE-2000-1026.
3Wu-ftpd remote format string stack overwrite vulnerability, Bugtraq ID 1387, CVE-2000-0573.
4dip buffer overflow vulnerability, Bugtraq ID 86, CVE-1999-0137.
5xlockmore user supplied format string vulnerability, Bugtraq ID 1585, CVE-2000-0763.

128

whoami command6 and finish with the exit command.

5.4 Measurement of log size reduction

After collecting the data we measure the log size reduction. The following formula is used to derive the
reduction percentage.

reduction percentage = (1−
size(ADAPTED.log) kB

size(REFERENCE ATTACK.log) kB
) x 100

The result of a calculation using the formula is a decimal number between 0 and 100 representing the
log size reduction in percent. The closer to 100 the reduction percentage is, the greater the reduction.

6 Results and discussion

We present the reduction percentage for the four attacks. Note here that the ADAPTED.log for each case
is generated by using an ADAPTED.conf file that contains contributions from all used attacks. That is,
before starting to generate ADAPTED.log files we first collect manifestations from all attacks.

We further discuss the reasons for the different reduction rates. The results are presented in Table 1.
Table 1 is organized as follows: The first column contains the name of the attack. The second column
contains the size of the REFERENCE ATTACK.log. The third contains the size of the ADAPTED.log and the
fourth contains the reduction percentage.

Table 1: Measuring reduction of log file size
Attack Log file size reduction

Ref. size Adp. size Red. %
tcpdump 1500 kB 1.8 kB 99.9
wu-ftpd 840 kB 35 kB 95.8
dip 1400 kB 160 kB 88.6
xlock 1860 kB 670 kB 64.0

As seen in Table 1 we have a significant reduction in size for both the tcpdump (99.9%) and the
wuftpd (95.8%) attacks. We have a good reduction rate for the dip attack (88.6%) and a moderate
reduction for the xlock attack (64.0%).

By observing the content of the logs we can find the reasons for the reduction percentage in the
various cases. The logs with the highest reduction percentage, i.e. the tcpdump and the wuftpd logs,
contained many matches on unique system calls and few matches on arguments and return values. A
unique system call is logged with only the system call name and the return value, thus generating fewer
output bytes to the log. Also, these processes generates few read and write calls and the major part of
the argument strings are short. The dip log contain about as many read and write calls as the tcpdump

and wuftpd logs, but the argument strings are longer. Also, since this attack is carried out over ssh on
a local account, long strings are sent over ssh to the attacker, thus creating strings with long arguments
in the log. In addition, the padding of ’\0’ to make strings 4096 bytes long also increases the size of the
log. The moderate reduction of the xlock log has two reasons. First, due to large differences between
the attack and the normal input logs, METAL produces a somewhat erroneous output for this attack,
i.e. it mismatches processes. This causes many manifestations to appear that otherwise should not be
in the list of manifestations. Second, a high degree of read and write operations are present in the log.
Many of these also coincides with the manifestations that erroneously are present in the log.

For addressing the quality of the traces we make the following assumptions: Any resulting trace, or
manifestation, is a function of one rule present in the syscalltracker configuration file. These rules are
generated by the METAL tool and one extracted manifestation give rise to one rule. The manifestations
are observed differences between an attack and an approximation of a corresponding normal behavior.
The coverage of the traces is dependent of the extraction method in METAL and using additional

6We assume that this is a normal command issued by the attacker to find out whether the attack was successful or not.

129

extraction methods would possibly yield more rules and thus resulting in a larger log, possibly containing
more traces. Whether the quality of the traces would be improved by this or not is not yet investigated.

7 Future work

Future work includes developing METAL into a general tool that can extract manifestations from different
kinds of attacks. We will also run more attacks, both buffer overflow attacks and other types of attacks.
This will enable us to draw conclusions about similarities that may be generalizable for many attack
types.

8 Conclusions

We have used an existing method for manifestation extraction and adapted it to the specific case of
reducing the size of system call logs. As input we used attack reports containing manifestations. These
manifestations were transformed into rules suitable for usage with syscalltracker. We used two different
rule sets to gather data for comparison. We ran four attacks with both rule sets and collected data
with syscalltracker. The logs were compared and the results were summarized. From the results we
observe a significant decrease in log size. For the three relevant attacks we got an average log reduction
of 95 percent. We conclude that while our approach at this stage only finds known attacks, we plan
to use the data as input for generalizable with intention of finding previously unknown attack based on
generalizable similarities in manifestations.

References

[Axe04] Stefan Axelsson. Visualising intrusions: Watching the webserver. In Proceedings of the
19th IFIP International Information Security Conference (SEC2004), Tolouse, France, 22–
27 August 2004. IFIP.

[BJ04] Emilie Lundin Barse and Erland Jonsson. Extracting attack manifestations to determine
log data requirements for intrusion detection. In Proceedings of the 20th Annual Computer
Security Applications Conference (ACSAC 2004), Tucson, Arizona, USA, December 6-10
2004. IEEE Computer Society.

[DBS92] Herve Debar, Monique Becker, and Didier Siboni. A neural network component for an
intrusion detection system. In Proceedings of the 1992 IEEE Computer Sociecty Symposium
on Research in Security and Privacy, pages 240–250, Oakland, CA, USA, May 1992. IEEE,
IEEE Computer Society Press, Los Alamitos, CA, USA.

[DN85] Dorothy E. Denning and Peter G. Neumann. Requirements and model for IDES—A real-time
intrusion detection system. Technical report, Computer Science Laboratory, SRI Interna-
tional, Menlo Park, CA, USA, 1985.

[FHSL96] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and Thomas A. Longstaff. A sense of
self for Unix processes. In Proceedings of the 1996 IEEE Symposium on Research in Security
and Privacy, pages 120–128. IEEE Computer Society Press, 1996.

[FKM+05] S Fish, G Keren, Mulix, A Shalem, and E Shemer. System call tracker - design, implemen-
tation, goals. http://linuxclub.il.eu.org/lectures/44, June 2005.

[GHM05] F God́inez, D Hutter, and Raúl Monroy. Audit file reduction using n-gram models (work in
progress). In Proceedings of the Ninth International Conference on Financial Cryptography
and Data Security, 2005.

[Inc05] SmarterTools Inc. Introducing smarterstats 3.x. http://www.smartertools.com/

Products/SmarterStats/Overview.aspx, September 2005.

130

[KNMH00] Josué Kuri, Gonzalo Navarro, Ludovic Mé, and Laurent Heye. A pattern matching based
filter for audit reduction and fast detection of potential intrusions. In RAID ’00: Proceedings
of the Third International Workshop on Recent Advances in Intrusion Detection, pages 17–
27, London, UK, 2000. Springer-Verlag.

[LB98] Terran Lane and Carla E. Brodley. Temporal sequence learning and data reduction for
anomaly detection. In 5th ACM Conference on Computer & Communications Security,
pages 150–158, San Francisco, California, USA, 3–5 November 1998.

[LBJ05] Ulf Larson, Emilie Lundin Barse, and Erland Jonsson. METAL - a tool for extracting
attack manifestations. In Proceedings of Detection of Intrusions and Malware & Vulnerability
Assessment workshop (DIMVA), Vienna, Austria, July 7-8 2005.

[SSHW88] Michael M. Sebring, Eric Shellhouse, Mary E. Hanna, and R. Alan Whitehurst. Expert
systems in intrusion detection: A case study. In Proceedings of the 11th National Computer
Security Conference, pages 74–81, Baltimore, Maryland, 17–20 October 1988. NIST.

[SSTG92] Steven R Snapp, Stephen E Smaha, Daniel M Teal, and Tim Grance. The DIDS (distributed
intrusion detection system) prototype. In Proceedings of the Summer USENIX Conference,
pages 227–233, San Antonio, Texas, 8–12 June 1992. USENIX Association.

131

Some security problems raised by

open multiapplication smart cards

Serge Chaumette Damien Sauveron∗†

LaBRI, Laboratoire Bordelais de Recherche en Informatique
UMR 5800 – Universite Bordeaux 1

351 cours de la Liberation, 33405 Talence cedex, FRANCE.
{serge.chaumette,damien.sauveron}@labri.fr, http://www.labri.fr/

Abstract

Multiapplication smart cards now make it possible to have several applications sharing the same
physical piece of plastic.This raises new security problems by creating additional ways to attack
them. This is particularly true with future open multiapplication cards that allow anybody to
load his/her own application. For example an attacker can load her own programs to determine the
physical signature of instructions using measurements on side channels (electromagnetic or power
signal) and build a database of the whole set of instructions in order to reverse-engineer an application
already installed on the card. The vulnerabilities of these cards are the topic of this paper. The
attacks are described for open multiapplication cards in general and illustrated by means of code
samples for Java Cards.

KEYWORDS: Smart Cards, Java Cards, Open Multiapplication Cards, Security, Attacks.

1 Introduction

Even though multiapplication smart cards allow several applications to share the same medium, dynam-
ically loading a new application requires the knowledge of authorization keys. With the open multiap-
plication smart cards this constraint will not exist anymore.

The aim of this paper is to describe new security problems that arise when dealing with these open
multiapplication smart cards. First we will present the common way to explore and attack classical
smart cards and then we will clearly define what are closed multiapplication smart cards and open
multiapplication smart cards. In section 4 we will show the general attacks against these new cards.
Then, in the context of the open multiapplication smart cards, we will expose in section 5 some physical
characterization methods and we will investigate in section 6 how to use them in order to achieve
effective attacks on these cards. Finally, we will present our experiments, the related work and we will
conclude. The contributions of this paper are the description of the physical characterization methods
to characterize a platform and the explanation of the new threats of these methods in the context of
open multiapplication smart cards.

2 Exploring and attacking closed smart cards

Even though there are not many ways to explore a closed card (i.e. a card that does not allow codes to
be uploaded after it has been issued) before trying to attack it, there are at least two possibilities that
remain:

∗LaBRI (Talence, FRANCE) and LMSI (Limoges, FRANCE).
†This work was partly supported by a doctoral grant from the french ministry of research and SERMA Technologies.

132

• Software approach. Since loading code on a closed card is impossible, the only accessible infor-
mation are its external interfaces. More precisely, the only visible external interface of a card
is its communication port. The communication architecture between a smart card and a reader
connected to a host can be seen as a protocol stack, from the physical layer to the application
layer (see Fig. 1). It is described in the ISO7816-3 [1] and ISO7816-4 [2] standards. One common

Application Layer: Application Protocol Data Unit

Electrical signals Layer

Transport Layer: Transmission Protocol Data Unit

Figure 1: Stack of communication protocols.

possibility to set up an attack at the level of the communication layer is to send all the possible
APDU commands to the card, in order to identify all the services available from the outside and
to perform fuzzing attacks1. But these kinds of attacks are quite inefficient because it is easy to
block the unwanted APDUs.

• Hardware approach. Based on the results obtained by Kocher, the main path of attack to explore
a card without damaging it, is to observe side channels [3] such as the physical emanations from
the chip or the time consumptions [4]. The power analysis (PA) [5, 6] or electromagnetic analysis
(EMA) [7, 8] methods make it possible to identify patterns corresponding to operations achieved
by the card. These attacks are carried out as a blind man, or a semi-blind man if the specifications
of the card operations are known.

The non-invasive attacks cited above are fundamental in order to succeed to build the dictionary
that we propose in section 6.1. Besides, smart cards are prone to many other invasive (e.g. micro-
probing) and non-invasive (e.g. glitches2 on the different pads of the card or fault-injection with
laser) attacks [9, 10, 11, 12] which are out of the scope of this paper (but they can be used as
described in sections 4.3 and 6.2).

3 Two types of multiapplication smart cards

A multiapplication card is able to embed several applications. Today, these applications do not run
simultaneously because common OS of smart cards have a single thread. The two main standards of
multiapplication cards are Java Card [13, 14] and MULTOS [15]. Recently, two new technologies ap-
peared with the birth of Smartcard.NET [16, 17] by Hive-Minded and of the MultiApplication BasicCard
ZC6.5 [18] by ZeitControl. Windows for Smart Cards by Microsoft can also be cited even though it does
not seem to be active any longer. Java Card was the first to appear but all these technologies share
many concepts anyway. The architecture of multiapplication smart cards (see Fig. 2) consists of:

• an embedded Operating System that supports the loading and the execution of several applications.
The OS is a runtime environment with a virtual machine (VM) that provides security features (e.g.
a firewall between applications).

• the applications that are interpreted by the VM.

3.1 The closed multiapplication smart cards

Until now no multiapplication technology was completely proven secure by formal methods to reach the
high level of security required to allow it to run uncertified applications that may embed malicious code
to attack the assets of the platform and those of the other applications. To prevent these problems,

1Fuzzing attacks consist in giving all the possible values to the parameters of a service.
2A glitch is a sudden change in voltage in an electrical current.

133

Multi−Applicative Operating System

Hardware (chip)

Application 1 Application 2 Application 3

Figure 2: Architecture of a multiapplication smart card.

the smart card issuers began to support standards such as GlobalPlatform [19] which specifies how to
securely load, install and manage applications on a card. Indeed this standard is used to easily set up
and use cryptographic mechanisms to authorize or prevent the loading of an application on the card. For
example the application can be digitally signed off-card by a trusted party, e.g. the card issuer. Once
loaded, the card can check the signature and accept or reject the application. The major drawback of
this solution is its centralized model because of the trusted third party required to sign the application;
it thus decreases flexibility.

For short, if the user does not own the authentication keys, she can only use the card as a closed
platform; else, if she owns the keys she will be able to load her code and to apply the internal attacks
presented in section 4. She will also be able to use the physical characterization methods shown in
section 5 to set up attacks as described in section 6. All these methods are intended to the ITSEF3 or
card manufacturers (who can access the keys) to test the security.

Note that in our paper, GlobalPlatform compliant cards are considered as closed cards since knowledge
of keys are needed to load a new application.

3.2 The open multiapplication smart cards

Although Java Card designers first thought it was impossible to embed a verifier due to the resource
constraints of the smart cards, on-card verifiers have been developed [20, 21, 22, 23, 24, 25, 26]. Among
the different solutions that have been proposed, three of them (i.e. the defensive VM, the verifier based
on code transformation and the stand-alone verifier) allow to bypass the signature step of the application
without jeopardizing the card security and thus allow everybody to freely load his/her own application
– i.e. anyone can still load a rogue application but it will eventually be rejected by the verifier or
blocked by the defensive VM. Note that the verifier based on code transformation [22, 23] requires an
off-card program to normalize the application whereas the two others (i.e. the defensive VM [24] and
the stand-alone verifier [26]) are stand-alone. We only consider as open multiapplication cards the
multiapplication cards based on one of these two stand-alone solutions. Both are equivalent [25] but
the defensive VM dynamically checks each executed bytecode whereas the stand-alone verifier statically
checks the application once at load time and it is associated with an offensive VM that does not check
the bytecode at execution time.

In the past, the FIPR (Foundation for Information Policy Research) thought that the multiapplication
cards were a bad idea, except in limited applications such as GSM SIM cards [27]. Nevertheless they are
now a reality but they are only available as closed cards. However, even if these open multiapplication
smart cards are not yet available on the market, they most probably are the future of smart cards since
all the research projects presented above will contribute to make them as secure as required in a near
future.

4 Internal attacks

Obviously a common problem of the open multiapplication cards is the possibility to load a malicious
application to create internal attacks. Such an application may:

3Information Technology Security Evaluation Facility.

134

• identify available services on the card, collect information and then try to deduce the possible
behavior of an official4 application (since it cannot use unavailable services!);

• directly attack the VM and the firewall.

4.1 Identification of services and collection of information

The preliminary fundamental steps required to attack a card are the identification of the services that it
offers and the collection of information regarding its OS and the loaded applications. There are several
ways to achieve these operations.

First, to identify the services offered by the card, the documentation may be helpful. If it is not
accessible, an attacker can try to load an application on the card to test every service defined in the
specifications of the technologies supported by the card. For example, to identify the cryptographic
services of a Java Card, she can load an application that uses the Cipher.getInstance method in a
proper way5 with all the valid parameters.

Second, if the card supports special mechanisms similar to the GlobalPlatform management functions
(e.g. the GET STATUS command) the simplest way to collect information is to send the proper APDU
commands. Else the attacker can also load an application on the card to achieve this task. For example,
to detect all the available applications on a Java Card and to work out if they offer services (through
the Shareable interface), she can use the JCSystem.getAppletShareableInterfaceObject method
and fuzz it. Note that this particular method may return false negative results due to access control
rules defined by the targeted applications to share their services. If it succeeds and the attacker obtains
Shareable interfaces, she can then try to apply the illegal reference casting method cited in [28].

4.2 Attacks against the VM and the firewall

There exist many attacks directed against the VM and the firewall but we do not detail them here
because they have already been explained in the literature: for example two attacks against the firewall
mechanism (AID impersonation and illegal reference casting that provides access to all interface methods
of a class) are described in [28]; based on type confusion, attacks against the VM are shown in [29]; there
also exist attacks coming from problems in the specifications such as those presented in [30].

A bad specification or a bad implementation can also lead to attacks against the VM. For example
the program of listing 5 that forges a reference would normally be rejected by an open multiapplication
card: at loading time for those based on the stand-alone verifier; at execution time for those based on
the defensive VM. But an attacker should always try to load such malicious codes to test if there are
implementation problems or not.

The piece of code shown listing 5 (provided in Java Card Virtual Machine bytecode language) forges
a reference (since the saload bytecode reads a short at an index in an array and it normally takes
two arguments, one of reference type – i.e. an object, the array to read – and one of short type – i.e.
the index –, but it gets here two arguments of short type) and tries to read one short of the object by
considering it as an array. This function enables (if the call succeeds) to traverse all the allocation table
(using all the possible values of Address) and to read the contents of all objects as if they were short

arrays.
Note if the reference type is represented as a memory address (i.e. the equivalent of a pointer) in

the VM implementation this code allows to traverse all the memory.

4.3 Mixed hardware and software attacks

To improve the efficiency of the attacks on the card, it is possible to elaborate simultaneous hardware and
software attacks. Using hardware attacks makes it possible to create faults at software level [10, 11, 12]
(e.g. to bypass verification). These modifications of the normal behaviour can be exploited by the
loaded application to access unauthorized services or information. To perform hardware attacks, it is
still possible to use equipments such as a laser, source of heat, etc.

4An application installed by some trustworthy organization, e.g. a banking application.
5If the card supports the garbage collection mechanism, the method can be called directly anywhere in the code, else,

the call should be inserted in the constructor, the application should be installed on the card, it should test if the service
is available and it should be deleted to avoid to overflow the heap with multiple instances of the Cipher class.

135

Listing 5: Get short value at the specified address
short readShortAtAddress (short Address) {

sload_1 // Get the Address local variable. We hope this short will be considered as a reference

sconst_0 // Represent the index 0 in the false array starting at Address

saload // Try to get one short and push it on the stack. If this operation succeeds the stack
// is not well implemented since the saload bytecode should only accept that the first
// argument is of reference type (and not a short type as Address) and that the
// object referenced is also a short array

sreturn
}

One problem of these kinds of attacks is the precision required (in space but especially in time) to
induce usable faults. To improve it, we need to have a better localization of where the trigger should be
placed in the software execution. To achieve this task, we can use the physical characterization methods
described in section 5.

For example it is possible to try to bypass the firewall checks with attacks described in section 6.2.
A very good paper [31] also illustrates how to achieve mixed hardware and software attacks on the VM
of a PC using a lamp as source of heat.

5 Physical characterization methods

Once the services have been identified, an interesting possibility to set up attacks against these services
and the applications which use them, consists in observing their physical signatures using measurements
on side channels. For example an attacker may load her own programs on an open multiapplication card
to determine the physical signature of basic instructions in order to build a database of the whole set
of instructions to reverse-engineer (from its execution trace) an official application already installed on
the card. In this section we present the applicable physical characterization methods that we identified
in the context of open multiapplication smart cards and in the following section we will show how they
can be exploited to set up real attacks.

The main physical signals that can be observed come from side channels such as the power con-
sumption, the electromagnetic emissions or the execution time. For instance it is possible to use a
cryptographic service and determine the characteristics of the physical signals emitted during the execu-
tion of this service (duration in time, location of the best electromagnetic emissions, power consumption,
etc.). This characterization can target the use of a whole service or an elementary operation, e.g. the
interpretation of a single bytecode or a sequence of bytecodes. Note that in the remainder of this pa-
per, the term “signature” will refer to the physical signature and not to the digital signature discussed
section 3.

The difficulty to isolate a pattern from all those composing the trace leads to set up reliable charac-
terization methods to determine the physical signature of the interesting pattern. For example, Fig. 3
shows the difficult task to identify the pattern to observe in the normal execution trace of an applet6.

OS

Hardware

Application

the command APDU
Arrival of

Layers

Time
ISO7816 interface

Pattern to observe

the response APDU
Departure of

Figure 3: Trace of a normal execution in the layers.

6Java Card applications are also called applets.

136

We identified two main ways to easily, efficiently and quickly determine the physical signatures. The
first which is also the simplest is achieved by using glitches on the I/O channel of the card, i.e. sending
output data from the card to the reader. The second consists in causing the pattern to observe to be
repeated. In the following sections we present these two approaches and discuss their advantages and
drawbacks. We eventually propose a hybrid method that overcomes the problems and takes the best of
the two previous methods.

Note that if the physical characterization methods explained below can be applicable on a closed
card, it is always in a special context (e.g. the user who wants to attack the card owns the key to load
her program). But with open multiapplication smart cards these methods can be applicable without
restriction.

5.1 The glitches based method

This method consists in enclosing the targeted pattern with events that are visible from outside the smart
card (i.e. for the attacker). The only visible event to an external observer that the card can produce is
the emission of bytes on the communication channel. Fig. 4 shows that it is easier to locate a pattern in
the trace if the execution is glitched using this event.

OS

Hardware

Application

Pattern to observe

Bytes of
synchronizationthe command APDU

Arrival of

Layers

Time
ISO7816 interface

the response APDU
Departure of

Figure 4: Trace of a glitched execution in the layers.

The code inserted to trigger the glitches causes an overhead and thus the pattern to observe does not
appear at the same instant in the first trace and in the second trace (i.e. the pattern in the second trace
is time shifted).

Another advantage of this approach is that the trace to save is shorter (because the area to observe
is smaller – i.e. only the part of the signal between the glitches) and thus it is possible to get a better
sampling of the signal, still producing the same amount of data.

For more details, the reader is refered to one of our previous papers [32]. It presents the methodology
to easily set up test suites with the tools provided by the JCatools suite [33, 34]. The JCatools suite
was developed during the Java Card Security project between the LaBRI and the ITSEF of SERMA
Technologies. The paper also describes how to modify the CAP7 file by working at bytecode level to
improve the precision of the observation.

5.1.1 Preventing this characterization method from being used

Some solutions to prevent this characterization method from being used can be implemented. For
instance, it is possible:

• to introduce a random delay on the I/Os to block these attacks. But it is a bad solution because
with many tries it should still be possible to cope with this randomness.

• to store all the data in a buffer until the end of the execution before sending the buffer on the
I/O. This would most likely require a second buffer much bigger than what remains acceptable on
a card.

7The standard binary file format of the Java Card platform.

137

• to store the data in a buffer until their size reaches a fixed threshold before sending them on the
I/O. In this case the hacker may instrument her applet to generate the exact amount of data needed
to obtain a response on the I/O and to work out the beginning of the pattern to observe.

• to store the data as previously in a buffer but with a random threshold. A hacker could still bypass
this security using a probabilistic technique.

For all these reasons we believe that mixing a random delay and a random threshold storage of the
data in a buffer seems to be a solution that may be worth considering.

Note that even if the manufacturers find a better other, effective, countermeasure, it will still be
possible to locate the pattern by enclosing it with something that induces high power consumption (e.g.
a cryptographic mechanism) to produce an event visible from the outside.

5.2 Repeated pattern based method

Since the manufacturers can add the countermeasures proposed above, we consider another method that
still makes it possible to capture the signature of the operations achieved on the card. This solution
consists in repeating many times an identical sequence so that it is easier to locate the area to study and
then to identify the elementary pattern.

OS

Hardware

Application

the command APDU
Arrival of

Layers

Time
ISO7816 interface

4x Pattern to observe

the response APDU
Departure of

Figure 5: Trace of a multiple patterns execution in the layers.

For instance inserting the code shown listing 6 in a Java Card applet makes it easier to find the dup

elementary pattern. The physical emanations corresponding to the execution of the above program will

Listing 6: Patterns method
. . .
// assume that there is at least one element on the stack
dup // pattern to observe
dup // pattern to observe
dup // pattern to observe
dup // pattern to observe
. . .

contain four times the pattern corresponding to the dup operation.

5.2.1 Preventing this characterization method from being used

The first solution to prevent such a characterization method from being used is to put constraints on
the on-card verifier to check for instance that the loaded code does not contain a sequence of two dup

bytecodes, i.e. dup dup. Indeed the converter will produce a dup2 and not this sequence. But it is
not possible to do such verifications for all the possible bytecodes due to the fact that it would require
a verifier capable of understanding the semantic of the sequence of bytecodes at application level (i.e.
what the application wants to do). The verifier can only understand the semantic of the sequence of

138

bytecodes at VM level (i.e. if the chain of bytecodes is valid). A defensive VM can do the same checks
but the solution remains the same.

A better solution would be to use hardware countermeasures (e.g. a random internal clock or asyn-
chronous processors [35, 36]) to better jam the physical emanations.

5.3 The hybrid method using both glitches and patterns

This method minimizes the overhead caused by the transitions between the application layer, the OS
layer and the chip layer (only two glitches for the sequence) due to the insertion of glitches. It allows
to easily locate the sequence of identical patterns in the trace and then it is easy to find the elementary
pattern in the located sequence. An example of this hybrid method to observe sxor is shown listing 7.

OS

Hardware

Application

4x Pattern to observe

the command APDU
Arrival of

Layers

ISO7816 interface

synchronization
Bytes of

Time

the response APDU
Departure of

Figure 6: Trace of a glitched multiple patterns execution in the layers.

Listing 7: Sample code used by the hybrid method
. . .
aload_1 //
sconst_0 // Here are
sconst_m1 // several arguments
sconst_m1 // needed to the
sconst_m1 // execution of
sconst_m1 // the patterns
sconst_1 // to observe and
aload_1 // the glitches
sconst_0 //
sconst_1 //
invokevirtual 0 x0 0 xc // glitch 1
sxor // pattern to observe
sxor // pattern to observe
sxor // pattern to observe
sxor // pattern to observe
invokevirtual 0 x0 0 xc // glitch 2
. . .

6 Applications of the physical characterization methods

Based on the physical characterization methods explained above we describe in this section two possible
applications:

• the matching attack that allows to reverse-engineer an official applet;

• the physical attack that allows to quickly work out the feasibility of an attack against an official
applet.

Note that even though an attacker has access to blank smart cards of the same model as that of the
targeted open multiapplication card and she develops and loads her own OS on it, the physical charac-
terization methods would be useless to compare the two implementations since the OS would be different
and so would be the physical signatures of all the operations.

139

6.1 Matching attack

This attack consists in matching the signal identified for the pattern in the malicious applet with the
signal of an official applet to reverse-engineer it. The first step required to set up this attack is to build a
dictionary matching pattern signals with bytecode instructions. The second step is to identify patterns of
the dictionary in the execution trace of the official applet to discover the operations effectively performed.
It is a difficult task but there are research projects in progress to automatically recognize patterns in
a signal [37]. If this attack succeeds, it jeopardizes the confidentiality of the code of the official applet
(i.e. the code is known) but it does not imply that an attack will be possible against the execution
of this official applet. Nevertheless in the Common Criteria8 [38] evaluation method, the code of an
official applet is often an asset to protect and such an attack is then considered a problem. Moreover,
the knowledge of the code enables the use of analysis tools to find breaches of security. Finally, it is also
possible to combine the knowledge of the code with the attacks described below.

6.2 Physical attacks

Thanks to the physical characterization methods presented above it is possible to quickly evaluate the
feasibility of an attack against an official applet. Using the mixed hardware and software attacks pre-
sented in section 4.3, a hacker is in the best experimental position to easily and quickly attack a card
implementation (e.g. to try to bypass the access conditions or perturb a cryptographic algorithm) with-
out needing to perform many useless tests, thus saving a lot of time. If her attacks succeed then she
can attack an official applet or the platform. For instance if she knows a way to attack a cryptographic
algorithm that the official applet uses, she can try to set up the attack against this algorithm by calling
it from her own applet and enclosing it by glitches to quickly test if its implementation is secure. It is
also possible to add a glitch just before accessing the data of the targeted applet so as to synchronize
a physical attack to try to bypass the checks of the firewall thanks to the disturbance of the hardware
component.

7 Experiments

A few years ago, Sebastien Garcia9 carried out experiments based on identical techniques to achieve
matching attacks with the power and electromagnetic emanations for the ITSEF of SERMA Technologies.
He worked at the assembly language level and he obtained interesting results but with the product that
he used it was very hard to get a good dictionary because for some instructions it was even difficult to
differentiate the signals. We are in a different situation. A bytecode is in fact a sequence of assembly
language instructions that represents a bigger pattern than a single assembler instruction, therefore we
believe that it may be possible to effectively build such a dictionary of Java Card bytecodes. Furthermore,
since each bytecode corresponds to a really different sequence of assembler instructions, it is most likely
that their signature will also be significantly different.

We have carried out some experiments on Java Cards at the ITSEF of SERMA Technologies using
the physical characterization methods described in this paper in order to develop a methodology to
reverse engineer official applications. We succeeded to build our characterization tests with the JCatools
software environment [33, 34] that we have developed and we have encountered no problem to load them
on all the Java Cards (since the sequence of operations is legal from the bytecode verification point of
view). Nevertheless these tests were performed unsuccessfully on Java Cards of the GemXpresso Pro
family already certified at level EAL5+ of the Common Criteria. Based on our expertise, we now are
sure this was not a good idea to begin with these products since we were only given two full days to
make our experiments. Moreover we wanted to work on the most interesting – but also the most difficult
– tests: the physical identification of bytecodes (we had already successfully tested the attacks described
in section 6.2 during real evaluations of other products). We focused our efforts on the electromagnetic
emanations (since this domain was the most interesting for SERMA Technologies and since most of the

8The Common Criteria for Information Technology Security Evaluation, abbreviated “CC”, defines a language for
defining and evaluating information technology security systems and products. The framework provided by the CC allows
a manufacturer to define a set of security functional and assurance requirements for his product. The CC also provides
evaluation laboratories with procedures for evaluating the products or systems against the specified requirements.

9IXL laboratory of the University Bordeaux 1.

140

time the integrated circuit chips of the Java Cards already have very good countermeasures against the
power analysis approach) but we have failed to establish a simple dictionary. This is mainly due to the
many expensive techniques required by the recent chips to really perform a systematic and complete
search (removing the shield against the electromagnetic emanations, etc.). Moreover in our case the
measurement of the electromagnetic emanations is specific for a given sample of a specific model of
an integrated circuit chip because of the precision required for the antennae. However with a better
equipment it may be possible to have the same measurements for all the samples of a chip model. So
it should also be noted that if someone succeeded to establish such a dictionary it should be significant
only for an individual chip type (perhaps a family of chips that integrate the same technology).

Some attacks presented in this paper or some improved versions are used by the ITSEF of SERMA
Technologies to test and attack Java Card platforms, applets and their services for instance within the
framework of a Common Criteria evaluation. We succeeded to load applications using a code similar
to the one shown listing 5 and to execute them on real “old” Java Cards. Besides, we often used the
physical characterization methods to be in the best experimental positions in order to perform attacks
against cryptographic algorithm implementations (see Section 6.2). Most of the time these attacks are
used with the theoretical assumption that the attacker could load her code (cards evaluated are not yet
open). Obviously this assumption is taken into account in the quotation of the attacks to know if they
exceed the desired evaluation assurance level.

8 Related work

Some similar projects on multiapplication smart cards [39, 40, 41] have been carried out in 1999 by
the Gemplus teams. They addressed many issues related to code loading, the virtual machine, object
sharing, the information flow between the applets, but they did not identify the attacks based on the
physical characterization methods that we have described in section 6. More recent work focused on
different topics: the project presented in [42] enables a smart card issuer to verify that a new applet
securely interacts with already loaded applets; in [43] a generic security model for operating systems of
multiapplication smart cards is presented, that formalizes the main security aspects of secrecy, integrity,
secure communication between applications and secure loading of new applications.

Our approach is thus original: we have not found any related work based on the physical methods that
we propose to use to characterize a platform. Perhaps they have already been used for power analysis or
electromagnetic analysis of closed smart cards. Nevertheless such an approach has never been presented
as a killer method to characterize any product because if it were used it could only be in a restricted
context (i.e. with many assumptions: e.g. “code loading is forbidden on this closed smart card but using
it anyway saves a lot of time for the identification of the interesting patterns; if this method were not
used it would still be possible to achieve the same goal – although this is not obvious”). The contribution
of this paper is to clearly introduce these methods to characterize open multiapplication cards. In this
context, these methods really threaten the security because it is not possible to prevent code that uses
them from being loaded since this is a valid operation.

9 Conclusion and future work

This paper describes what open multiapplication smart cards are and it surveys the problems that they
raise. The majority of the problems and attacks presented in this paper (i.e. sections 5 and 6) were
unpublished till now and we hope that sharing our experience with others interested in the area will help
to secure the future open smart cards. Even if the problems raised and the countermeasures proposed
may sometimes seem obvious, we have already used them successfully during a real product evaluation to
quickly set up attacks. It should be noted that people at the Smart Card Centre of the Royal Holloway
(University of London) seem to begin working in the same direction [44]. In the near future, at the
XLIM10 laboratory of the University of Limoges we will continue our experiments so as to get a bytecode
dictionary.

10The laboratory will be created in 2006 and will gather in particular people of physics specialized in the antennas – old
IRCOM laboratory –, people of mathematics specialized in the cryptographic – old LACO laboratory – and people of
computer science specialized in the information security – old LMSI laboratory.

141

References

[1] International Organization for Standardization: Information technology – Identification cards – Integrated
circuit(s) cards with contacts – Part 3: Electronic signals and transmission protocols. ISO (1997)

[2] International Organization for Standardization: Identification cards – Integrated circuit cards – Part 4:
Organization, security and commands for interchange. ISO (2005)

[3] Muir, J.A.: Techniques of Side Channel Cryptanalysis. Master’s thesis, University of Waterloo, Ontario,
Canada (2001) Master of Mathematics in Combinatorics and Optimization.

[4] Kocher, P.: Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems. In: Proceedings
of the 16th Annual International Cryptology Conference on Advances in Cryptology, Springer-Verlag (1996)
104–113

[5] Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Proceedings of the 19th Annual International
Cryptology Conference on Advances in Cryptology, Springer-Verlag (1999) 388–397

[6] Coron, J.S., Kocher, P., Naccache, D.: Statistics and Secret Leakage. In: Proceedings of Financial Cryp-
tography (FC2000). Volume 1962 of Lecture Notes in Computer Science., Springer-Verlag (2001) 157–173

[7] Quisquater, J.J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and Countermeasures for Smart
Cards. In: Proceedings of E-smart 2001. Volume 2140 of Lecture Notes in Computer Science., Springer-
Verlag (2001) 200–210

[8] Gandol, K., Mourtel, C., Olivier, F.: ElectroMagnetic Analysis: Concrete Results. In: Proceedings of
CHES’2001. Volume 2162 of Lecture Notes in Computer Science., Springer-Verlag (2001) 251–261

[9] Kömmerling, O., Kuhn, M.G.: Design Principles for Tamper-Resistant Smartcard Processors. In: Proceed-
ings of the USENIX Workshop on Smartcard Technology (Smartcard ’99), Chicago, Illinois, USA (1999)
9–20

[10] Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s Apprentice Guide to Fault
Attacks. In: Proceedings of Workshop on Fault Detection and Tolerance in Cryptography, Italy (2004)

[11] Giraud, C., Thiebeauld, H.: A survey on fault attacks. In: Proceedings of CARDIS’04, Smart Card Research
and Advanced Applications VI, Toulouse, France, Kluwer academic publisher (2004) 159–176

[12] Skorobogatov, S., Anderson, R.: Optical Fault Induction Attacks. In: Proceedings of Workshop on Crypto-
graphic Hardware and Embedded Systmes (CHES 2002), San Francisco Bay (Redwood City), USA (2002)

[13] Chen, Z.: Java Card
TM

Technology for Smart Cards: Architecture and Programmer’s Guide. The JavaTM

Series. Addison-Wesley (2000)

[14] Sun microsystems: Java Card
TM

2.2.1 Specifications. Sun microsystems (2003)

[15] MULTOS: The MULTOS
TM

Specification. (http://www.multos.com/)

[16] Hive-Minded: Smartcard.NET. (http://www.hiveminded.com/)

[17] SmartCards Trends: .NET Brings Web Services to Smart cards. SmartCards Trends 1 (2004) 12

[18] ZeitControl: BasicCard. (http://www.basiccard.com/)

[19] GlobalPlatform: GlobalPlatform. (http://www.globalplatform.org/)

[20] Rose, E., Rose, K.: Lightweight bytecode verification. In: In Workshop on Fundamental Underpinnings of
Java, OOPSLA ’98 Workshop., Vancouver, Canada (1998)

[21] Casset, L., Burdy, L., Requet, A.: Formal Development of an embedded verifier for Java Card Byte Code.
In: Proceedings of the IEEE International Conference on Dependable Systems & Networks, Washington,
D.C., USA (2002)

[22] Leroy, X.: On-Card Bytecode Verification for Java Card. In: Proceedings of the International Conference
on Research in Smart Cards, E-Smart 2001, Springer-Verlag (2001) 150–164

[23] Leroy, X.: Bytecode verification on Java smart cards. Software-Practice & Experience 32 (2002) 319–340

[24] Cohen, R.M.: Defensive Java Virtual Machine Version 0.5 alpha. (1997)

[25] Barthe, G., Dufay, G., Jakubiec, L., Melo de Sousa, S.: A Formal Correspondence between Offensive and
Defensive JavaCard Virtual Machines. In: Proceedings of VMCAI’02. Volume 2294 of Lecture Notes in
Computer Science., Venice, Italy, Springer-Verlag (2002) 32–45

[26] Deville, D., Grimaud, G.: Building an “impossible” verifier on a Java Card. In: 2nd USENIX Workshop on
Industrial Experiences with Systems Software, Boston, USA (2002)

142

[27] Foundation for Information Policy Research: Framework for Smart Card Use in Government – Consultation
Response. http://www.cl.cam.ac.uk/users/rja14/cards.html (1999)

[28] Montgomery, M., Krishna, K.: Secure Object Sharing in Java Card. In: Proceedings of the USENIX
Workshop on Smartcard Technology (Smartcard ’99), Chicago, Illinois, USA (1999)

[29] Witteman, M.: Java Card Security. Information Security Bulletin 8 (2003) 291–298

[30] Betarte, G., Giménez, E., Chetali, B., Loiseaux, C.: FORMAVIE: Formal Modelling and Verification of
Java Card 2.1.1 Security Architecture. In: Proceedings of E-Smart 2002, Nice, France (2002) 215–229

[31] Govindavajhala, S., Appel, A.: Using Memory Errors to Attack a Virtual Machine. In: Proceedings of IEEE
Symposium on Security and Privacy. (2003)

[32] Chaumette, S., Sauveron, D.: An efficient and simple way to test the security of Java Cards. In: Proceedings
of 3rd International Workshop on Security In Information Systems : WOSIS 2005, (Miami, Florida, USA)

[33] Chaumette, S., Hatchondo, I., Sauveron, D.: JCAT: An environment for attack and test on Java Card. In:
Proceedings of CCCT’03 and 9th ISAS’03. Volume 1., Orlando, FL, USA (2003) 270–275

[34] Hatchondo, I., Sauveron, D.: The JCatools website. (http://sourceforge.net/projects/jcatools/)

[35] Moore, S., Anderson, R., Cunningham, P., Mullins, R., Taylor, G.: Improving Smart Card Security using
Self-timed Circuits. In: Proceedings of ASYNC’02. (2002) 211–218

[36] Jacques J.A. Fournier, S.M., Li, H., Mullins, R., Taylor, G.: Security Evaluation of Asynchronous Circuits.
In: Proceedings of CHES’2003. Volume 2779 of Lecture Notes in Computer Science. (2003) 137–151

[37] Quisquater, J.J., Samyde, D.: Automatic Code Recognition for smart cards using a Kohonen neural network.
In: Proceedings of the 5th Smart Card Research and Advanced Application Conference (CARDIS’02). (2002)

[38] CCIMB: International Common Criteria home page. (http://www.commoncriteriaportal.org/)

[39] Girard, P., Lanet, J.L.: Java Card or How to Cope with the New Security Issues Raised by Open Cards?
In: Proceedings of Gemplus Developer Conference, Paris, France (1999)

[40] Girard, P., Lanet, J.L.: New Security Issues raised by Open Cards. In: Information Security Technical
Report. Volume 4. (1999) 19–27

[41] Girard, P.: Which security policy for multiapplication smart cards? In: Proceedings of the USENIX
Workshop on Smartcard Technology (Smartcard ’99), Chicago, Illinois, USA (1999) 21–28

[42] Bieber, P., Cazin, J., Girard, P., Lanet, J.L., Wiels, V., Zanon, G.: Checking Secure Interactions of Smart
Card: Applets Extended Version. Computer Security 10 (2002) 369–398 Special issue on ESORICS 2000.

[43] Schellhorn, G., Reif, W., Schairer, A., Karger, P., Austel, V., Toll, D.: Verification of a Formal Security
Model for Multiapplicative Smart Cards. In: Proceedings of ESORICS 2000. Volume 1895 of Lecture Notes
in Computer Science. (2000) 17–36

[44] Smart Card Centre of the Royal Holloway (University of London). (http://www.scc.rhul.ac.uk/projects.
php)

143

Use of Rijndael Block Cipher on J2ME Devices

for Encryption and Hashing

Serdar S. Erdem1, Aysel Uyar1, Hacı H. Kılınç1, Mustafa Toyran1,2

1 Elektronik Bölümü, Gebze Yüksek Teknoloji Enstitüsü, Turkey
serdem@gyte.edu.tr

2 UEKAE, TÜBİTAK, Turkey
mtoyran@uekae.tubitak.gov.tr

Abstract

The Rijndael is a block cipher with variable block and key size. The Rijndael with 128 bit block
size is adopted as the Advanced Encryption Standard (AES) in 2000 and has become widely used in
the bulk data encryption. This work investigates the efficient implementations of the Rijndael for the
32 bit resource limited mobile devices using Java 2 Micro Edition (J2ME). It presents some general
implementations of the Rijndael encryption and decryption supporting all possible block sizes and
discusses the use of these implementations to construct hash functions. Fast key scheduling is crucial
for the performance of the block cipher based hash functions. Thus, an efficient implementation of
the Rijndael key scheduling algorithm for the resource limited devices is also presented.

The implementations are tested on the java phone platform and their performances are compared
with the performances of the implementations in a public Java crypto library. Also, the perfor-
mances of the hash functions based on these implementations are evaluated and compared with the
performances of the popular hash algorithms.

Keywords: Rijndael cipher; Advanced encryption standard; Block Ciphers; Hash algorithms; Wire-
less security; J2ME; Java phones.

1 Introduction

Today, there are a wide variety of mobile devices on the market. People use them for communication,
entertainment, connecting to internet, m-commerce, online banking and many other ways. The advances
in technology improve the storage capabilities and computational power of these devices significantly.
Nowadays, for a reasonable price, consumers can buy a mobile phone or PDA having MBytes of mem-
ory and a 32 bit processor operating at several hundred MHz. Moreover, many mobile devices have
lightweight multithreaded operating systems which can run third party applications developed with Java
and even C++. The Java enabled phones are the most common and easily affordable examples of these
devices. A small Java virtual machine (KVM) placed in the Java phones runs the applications developed
with J2ME (Java 2 Micro Edition). The J2ME platform supports a basic runtime environment with the
core Java libraries. Several companies provide free development tools for J2ME. The J2ME platform
and its tools allow developers to design numerous applications and utilities for mobile devices.

The mobile devices are widely used in security sensitive applications such as m-commerce and online
banking, which require strong cryptography. The cryptographic algorithms and primitives required for
these applications can be implemented with J2ME. The Bouncy Castle lightweight API [2] and the IAIK
JCE Micro Edition API [8] are the important examples of the cryptographic libraries build for J2ME.

This work presents some efficient implementations of the Rijndael cipher having different features
from the common implementations and evaluates their performances in Java phones. The encryption,
decryption and key scheduling timings of the implementations are compared with the timings of the
corresponding implementations in the Bouncy Castle library. The hash functions construction from the

144

block ciphers are discussed [12]. The performances of the hash functions constructed from our Rijndael
implementations are evaluated and compared with the timings of the popular hash functions.

Our implementations have the following features.

1. The secret key is expanded with an optimized key schedule avoiding integer division and modulo
operations, which are expensive in the constrained devices. This key schedule runs three times
faster in Java phones than the one implemented in the Bouncy Castle lightweight API.

2. All the key sizes and block sizes permitted by the Rijndael specifications in [3, 7] are supported
without a significant sacrifice in the speed. The Rijndael is extendable to different block sizes and
key sizes easily though many cryptographic libraries support only the parameters mandated by the
Advanced Encryption Standard (AES), which is a subset of the Rijndael.

These features increase the potential uses of our implementations. For example, a fast key schedule
is very beneficial for the devices with low dynamic memory such as mobile phones. This is because the
expanded key of a block cipher is quite large, thus recomputing its bytes as needed in each encryption
and decryption may be preferred to storing it into the precisious dynamic memory.

Also, key scheduling is a computational bottleneck for the hash functions based on the block ci-
phers. The improved key scheduling presented in this work enables the construction of the fast hash
functions based on the Rijndael. The hash functions producing hash values in different sizes can easily
be constructed using a general Rijndael implementation supporting different block and key sizes.

The results show that the encryption and the decryption throughput varies between the order of
a few Kbit/s and a few Mbit/s depending on the phone used. Also, for the computation of the hash
values larger than 200 bits, the hash functions based on the Rijndael are faster than the dedicated hash
algorithms including SHA224 and SHA256. SHA224 and SHA256 are the alternatives for the widespread
hash algorithm SHA1, for which a collision attack is reported recently [13].

The remainder of this paper is organized as follows. The next section gives mathematical preliminaries
needed to understand the Rijndael algorithm. Section 3 gives the details of the Rijndael encryption,
decryption and key expansion. Also, it presents a highly optimized key expansion method supporting
all the allowed key sizes. Section 4 describes some Rijndael encryption and decryption implementations
which can handle all the allowed block sizes beside the 128 bit AES block size. Section 5 has the timing
results, comparisons and an evaluation of the hash functions based on the Rijndael.

2 Mathematical Preliminaries

The transformations used in the Rijndael are based on the finite field arithmetic. The data bytes are
treated as elements of GF(28) in these transformations. The GF(28) elements are the polynomials of
degree 7 or less, with binary coefficients. A data byte b with the bits b7, . . . , b1, b0 represents the following
field element.

b = b7x
7 + · · ·+ b1x + b0

For example, the byte C2 = (1100 0010)2 represents

C2 = x7 + x6 + x

The arithmetic in GF(28) is similar to the polynomial arithmetic except the following differences.

1. The addition and the subtraction of the binary coefficents are both defined as XOR operation

2. The results of the arithmetic operations are reduced modulo a degree 8 irreducible polynomial.
The Rijndael uses the irreducible polynomial 11B = x8 + x4 + x3 + x + 1.

As a result, addition and subtraction of elements in GF(28) are performed XORing their corresponding
coefficients. Also, multiplication of elements can be performed by succesive multiplications by 02 = x
and additions. The operation“multiplication by 02 = x in GF(28)” is called xtime and can be used to
implement some Rijndael transformations. This operation can be performed as follows.

x · b = x(b7x
7 + · · ·+ b1x + b0) mod x8 + x4 + x3 + x + 1

= (b6x
7 + · · ·+ b1x

2 + b0x)− (b7x
4 + b7x

3 + b7x + b7)
(1)

145

As understood, the multiplication of the element b by 02 = x can be performed at the byte level by
shifting its byte representation one bit left and, if b7 is nonzero, subtracting (XORing) the result with
1B = x4 + x3 + x + 1.

3 The Rijndael Cipher

The Rijndael [3, 4, 5, 6] is a symmetric block cipher with a variable block size and key size. The Rijndael
with 128 bit block size is adopted as the AES in Oct 2000 by NIST. This new standard is a replacement
for the obsolete DES (Data Encryption Standard).

The Rijndael algorithm encrypts data in nb word blocks with an nk word key where a word is 32
bits. nb and nk can be 4, 5, 6, 7 or 8 words (128, 160, 192, 224 or 256 bits) independently of each other
[3, 7]. The 128 bit encryption is sufficient for most security applications. This corresponds the Rijndael
encryption with the parameters nb = nk = 4. The larger values for nb and nk enhance the security
further. Figure 1 illustrates the Rijndael encryption. The encryption starts with the addition (actually
bitwise XOR) of the plaintext block with a subkey (key 0). Then, it continues with the nr rounds of a
nonlinear transformation where nr = max(nb, nk) + 6.

round
1

round
nr

plaintext

key 0 key 1 key nr

Key Expansion

ciphertext

key nb word
transmission

nk word
transmission

Figure 1: AES encryption and key expansion.

Each round uses a different subkey (key 1, 2, ... , nr) called the round key. Each subkey is nb words.
They are all generated by the expansion of the nk word key with a key scheduling algorithm. The key
scheduling algorithm needs to work only one time. Once the subkeys are generated, they can be stored
in memory and used in the encryption of the multiple data blocks.

The nb word intermediate results between the rounds are called state. Let {s0,j , s1,j , s2,j , s3,j} denote
the bytes of the jth word of a state. The Rijndael algorithm arranges these bytes in a (4 × nb) state
matrix as shown below.

state =




s0,0 s0,1 . . . s0,nb−1

s1,0 s1,1 . . . s1,nb−1

s2,0 s2,1 . . . s2,nb−1

s3,0 s3,1 . . . s3,nb−1


 (2)

The encryption rounds consist of four transformations which process the state matrix. These are

SubByte, ShiftRow, MixColumn, and AddRoundKey

transformations in order. The final round omits the MixColumn transformation.
The decryption is illustrated in Figure 2. It is the inverse of the encryption operation. From the last

plaintext

key 0key nr

ciphertext inverse
round 1

inverse
round nr

key nr — 1

Figure 2: AES decryption.

146

one to the first one, the inverses of the encryption steps are performed in the reverse order. Naturally,
the subkeys are used in the reverse order too. The decryption rounds perform the transformations

InverseShiftRow, InverseSubByte, AddRoundKey, and InverseMixColumn

in order. These are the inverses of the four transformations in the encryption rounds. The final round
omits the InverseMixColumn transformation. Also, note that the inverse of AddRoundKey is equivalent
to itself. This is because the addition is actually defined as XOR (exclusive or) operation in the Rijndael.

3.1 SubByte and Inverse SubByte Transformations

The SubByte transformation substitutes each byte in the state matrix with another byte using a fixed
256 byte lookup table as shown below.

state =




sbox[s0,0] sbox[s0,1] . . . sbox[s0,nb−1]
sbox[s1,0] sbox[s1,1] . . . sbox[s1,nb−1]
sbox[s2,0] sbox[s2,1] . . . sbox[s2,nb−1]
sbox[s3,0] sbox[s3,1] . . . sbox[s3,nb−1]




where sbox[] denotes the lookup table for the SubByte transformation. The inverse SubByte transfor-
mation performs the inverse operation by using another 256 byte lookup table.

The SubByte transformation is actually a nonlinear function over GF(28). sbox[si,j] = f · (si,j)
−1 +g

where f = 1F = x4 + x3 + x2 + x + 1 and g = 63 = x6 + x5 + x + 1. If si,j = 0, sbox[si,j] = g.

3.2 ShiftRow and Inverse ShiftRow Transformations

The ShiftRow transformation cyclically shifts left (rotates left) the rows of the (4×nb) state matrix in (2).
The shift amounts depend on the row number i = 0, 1, 2, 3 and the plaintext block size nb = 4, 5, 6, 7, 8.
Table 1 gives the shift amount for each row.

shift
row# i

0 1 2 3
4,5,6 0 1 2 3

nb 7 0 1 2 4
8 0 1 3 4

Table 1: Cyclic shift amounts for each row in ShiftRow transformation.

After ShiftRow transformation, the new elements of the state matrix, ŝi,j , are as follows




ŝ0,j

ŝ1,j

ŝ2,j

ŝ3,j


 =




s0,j

s1,(j+1 mod nb)

s2,(j+sh2 mod nb)

s3,(j+sh3 mod nb)




Here, sh2 and sh3 are the shift amounts for the 2nd and the 3rd rows respectively. sh2 = 2 or 3 and
sh3 = 3 or 4 according the block size nb. The inverse ShiftRow transformation cyclically shifts the rows
to the right instead of the left to undo the ShiftRow transformation.

3.3 MixColumn and Inverse MixColumn Transformation

The MixColumn transformation operates on the columns of the (4 × nb) state matrix in (2). The
MixColumn transforms each column into a new column by multiplying it with a (4× 4) constant matrix
in GF(28) as shown below.




s0,j

s1,j

s2,j

s3,j


 =




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02







s0,j

s1,j

s2,j

s3,j


 (3)

147

Above, the bytes in the constant matrix and the state matrix are viewed as GF(28) elements and, their
addition and multiplication are carried out according to the rules of GF(28) arithmetic.

The inverse MixColumn transformation is the following matrix multiplication.



s0,j

s1,j

s2,j

s3,j


 =




0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E







s0,j

s1,j

s2,j

s3,j


 (4)

The equation (4) gives really the inverse transformation because the multiplication of the (4×4) constant
byte matrices in (3) and (4) in GF(28) yields the identity matrix.

3.4 AddRoundKey Transformation and Key Scheduling

The AddRoundKey transformation XORs the nb word plaintext block with an nb word subkey. The
Rijndael uses nr +1 subkeys as seen in Figure 1. The required (nr +1)nb word key material is generated
from the nk word secret key by a key expansion algorithm. In this section, we first illustrate the key
expansion algorithm of the Rijndael. Then, we present an implementation avoiding the modulo and
division operations, which are slow on the resource limited devices.

The key expansion algorithm consists of a series of expansion rounds. Each expansion round generates
a new nk word key material as output, taking the key material generated by the previous round as input.
Figure 3 illustrates the kth key expansion round having the input words Wj and the output words Ŵj for
j = 1, . . . , nk− 1. The inputs of the inital key expansion round are the words of the secret key. Because

W
0

W
nk - 1

$W
0

$W
nk - 1

Key expansion
round k 1-

Key expansion
round k

Figure 3: Key expansion round having the input words Wj and the output words Ŵj .

we need (nr + 1)nb word key material, the round number k = 1, . . . , ⌈(nr + 1)nb/nk⌉.
The input and output words of the kth round are related as follows.

Ŵ0 = W0 XOR f(Wnk−1, k)

Ŵj = Wj XOR Ŵj−1 for j = 1, . . . , nk − 1

where f is a transformation on the 32 bit words. Let the word w have the bytes b0, b1, b2 and b3 from
least to most significant. f is the following nonlinear transformation.

f(w, k) = f







b0

b1

b2

b3


 , k


 =




sbox[b1]
sbox[b2]
sbox[b3]
sbox[b0]


XOR




Rcon[k]
00

00

00




where Rcon[k] is a table of constants such that Rcon[k] = 02k−1 = xk−1 in GF(28). As can be understood,
the transformation f rotates a word 8 bits right, performs the SubByte transformation to its bytes and
XORs it by an 8-bit constant Rcon[k].

If nk > 6, the expansion round becomes

Ŵ0 = W0 XOR f(Wnk−1, k)

Ŵj = Wj XOR Ŵj−1 for j = 1, 2, 3

Ŵ4 = W4 XOR g(Ŵ3)

Ŵj = Wj XOR Ŵj−1 for j = 5, . . . , nk − 1

where g is a transformation performing the SubByte transformation to the bytes of its input.
The key expansion algorithm can be found in [3, 7]. Below, we introduce a more efficient implemen-

tation avoiding remainder and division operations.

148

Algorithm 1. Key expansion

INPUT: The screet key words keyj for j = 0, . . . , nk − 1,

the expanded key length Wlen = nb(nr + 1).

OUTPUT: The expanded key words Wj for j = 0, . . . , W len− 1.

1. for(j = 0 to nk − 1)

2. Wj = keyj

3. for(k = 1 and j = nk in the 1st iteration;

break if j ≤Wlen− nk in each iteration;

k = k + 1 and j = j + nk in the iterations other than the 1st)

4. Wj = Wj−nk XOR f(Wj−1, k)

5. Wj+1 = Wj−nk+1 XOR Wj

6. Wj+2 = Wj−nk+2 XOR Wj+1

7. Wj+3 = Wj−nk+3 XOR Wj+2

8. if(nk = 4) continue

9. if(nk > 6) tmp = g(Wj+3)

10. else tmp = Wj+3

11. Wj+4 = Wj−nk+4 XOR tmp

12. if(nk = 5) continue

13. Wj+5 = Wj−nk+5 XOR Wj+4

14. if(nk = 6) continue

15. Wj+6 = Wj−nk+6 XOR Wj+5

16. if(nk = 7) continue

17. Wj+7 = Wj−nk+7 XOR Wj+6

18. if(j < Wlen)

19. Wj = Wj−nk XOR f(Wj−1, k)

20. j = j + 1

21. while(j < Wlen)

22. Wj = Wj−nk XOR Wj−1

23. j = j + 1

Here, the first nk words of the expanded key are set to the secret key. The remaining Wlen − nk
words are generated by a series of iterations. Each iteration expands the key nk words. Let q be the
number of the iterations. Then, we have

Wlen− nk = q ∗ nk + r

for some r < nk. If r = 0, the iteration stops. If not, r more words are generated. Also, we use only the
transformation f but not g in this last expansion, because of the fact that r < 4 for all possible values
of nb when nk > 6.

4 A General Implementation for 32 Bit Processors

In this section, we present general Rijndael encryption and decryption algorithms for 32 bit processors,
which support variable block sizes. In this work, we consider only 32 bit platforms because the common
J2ME devices like the java enabled phones have 32 bit processors. Moreover, the KVM, java virtual
machine for J2ME, is designed for 16 and 32 bit processors.

Our implementations are based on the three basic methods mentioned in the AES proposal [3].

1. The first method uses two 256 byte lookup tables for the SubByte and the Inverse SubByte trans-
formations. We will call this method RJ.

149

2. The second one uses two additional 1 Kbyte lookup tables to perform the substitution layer and
the MixColumn layer efficiently. We will call this method RJ+.

3. The third one uses eight additional 1 Kbyte lookup tables to perform the substitution layer and
the MixColumn layer efficiently. We will call this method RJ++.

Let w be a 32 bit word with the bytes b0, b1, b2 and b3 from least to most significant. For 32 bit
platforms, the following byte extraction and word construction operations are helpful.

b0 = byte0(w), b1 = byte1(w), b2 = byte2(w), b3 = byte3(w)

w = {b0, b1, b2, b3}.

These operations can easily be implemented in the programming languages such as C, Java and assembly
with some shift and AND operations. Also, some Rijndael transformations perform rotations on the 32
bit operands. In our notation, ROR8(w), ROR16(w) and ROR24(w) denote the rotation of w 8, 16 and
24 bits right respectively.

In our implementation design, we use an (nb + sh3− 1) word array to store the state matrix where
sh3 is the shift performed by the ShiftRow transformation in the third row of the state matrix. Let
s0, s1, . . . , snb+sh3−1 denote this array. snb, snb+1, . . . , snb+sh3−1 are the redundant words used to ease
the ShiftRow transformation. On the other hand, for j < nb,

sj = {s0,j , s1,j , s2,j , s3,j}

in encryption and

sj = {s0,nb−1−j , s1,nb−1−j , s2,nb−1−j , s3,nb−1−j}

in decryption where si,j are the byte elements of the (4 × nb) state matrix in (2). Then, sj for j < nb
contains the jth column of the state matrix in encryption, while it contains the (nb − 1 − j)th column
of the state matrix in decryption. That is we store the columns in reverse order during decryption. The
practical significance of storing the state matrix columns in reverse order during decryption is that the
inverse ShiftRow transformation becomes equivalent to the ShiftRow transformation.

4.1 RJ

The method RJ uses a 256 byte lookup table for the SubByte and another 256 byte lookup table for the
inverse SubByte transformation. Let us call these tables sbox[·] and isbox[·] respectively. The SubByte
and ShiftRow transformations can be performed for all possible values of the block size nb as follows.

Algorithm 2. SubByte and ShiftRow transformations for the method RJ.

INPUT: The words s0, . . . , snb−1 storing the state matrix such that sj = {s0,j , s1,j , s2,j , s3,j}

OUTPUT: The words s0, . . . , snb−1 storing the transformed state matrix.

REDUNDANT: The words snb, snb+1, . . . , snb+sh3−1.

1. for(j = 0 to sh3− 1)

2. sj+nb = sj

3. for(j = 0 to nb− 1)

4. b0 = byte0(sj), b1 = byte1(sj+1), b2 = byte2(sj+sh2), b3 = byte3(sj+sh3)

5. sj = {sbox[b0], sbox[b1], sbox[b2], sbox[b3]}

Here, the words s0, s1, . . . , ssh3−1 are first copied into the redundant words. Then, the substitutions
and the left shifts are performed. Because the redundant words snb, snb+1, . . . , snb+sh3−1 are set to
s0, s1, . . . , ssh3−1, the left shifts perform the cyclic left shifts of the state matrix rows effectively.

The inverse SubByte and inverse ShiftRow transformations can be performed for all possible values
of the block size nb as follows.

150

Algorithm 3. Inverse SubByte and inverse ShiftRow transformations for the method RJ.

INPUT: The words sj storing the state matrix such that

sj = {s0,nb−1−j , s1,nb−1−j , s2,nb−1−j , s3,nb−1−j}.

OUTPUT: The words s0, . . . , snb−1 storing the transformed state matrix.

REDUNDANT: The words snb, snb+1, . . . , snb+sh3−1.

1. for j = 0 to sh3− 1

2. sj+nb = sj

3. for j = 0 to nb− 1

4. b0 = byte0(sj), b1 = byte1(sj+1), b2 = byte2(sj+sh2), b3 = byte3(sj+sh3)

5. sj = {isbox[b0], isbox[b1], isbox[b2], isbox[b3]}

Here, sj for j < nb contains the (nb− 1− j)th column of the state matrix. That is the state matrix
columns are stored in reverse order. Thus, the bytes of the columns are left shifted as in Algorithm 2
and the both algorithms are exactly the same except the lookup tables used.

The MixColumn and the inverse MixColumn transformations are applied the columns of the state
matrix individually as seen from (3) and (4). Thus, the words s0, . . . , snb−1 containing these columns are
processed independently. The MixColumn layer involves multiplications by small GF(28) elements and
thus can be performed efficiently by using the xtime operation described in (1). The implementation
examples of the MixColumn layer can be found in [1, 3, 6].

4.2 RJ+ and RJ++

The methods RJ+ and RJ++ perform the last round, which omits the MixColumn layer, in the same
way as the method RJ. However, these three methods differ in the other rounds.

In encryption and decryption, the method RJ++ uses eight additional lookup tables transforming a
byte into a 32 bit word besides the lookup tables used in the method RJ.

For an arbitrary input byte b, the additional tables used in the encryption give the 32 bit words

T0[b] = {02 sbox[b], 01 sbox[b], 01 sbox[b], 03 sbox[b]}

T1[b] = {03 sbox[b], 02 sbox[b], 01 sbox[b], 01 sbox[b]}

T2[b] = {01 sbox[b], 03 sbox[b], 02 sbox[b], 01 sbox[b]}

T3[b] = {01 sbox[b], 01 sbox[b], 03 sbox[b], 02 sbox[b]}

while the additional tables used in the decryption give the 32 bit words

invT0[b] = {0E sbox[b], 09 sbox[b], 0D sbox[b], 0B sbox[b]}

invT1[b] = {0B sbox[b], 0E sbox[b], 09 sbox[b], 0D sbox[b]}

invT2[b] = {0D sbox[b], 0B sbox[b], 0E sbox[b], 09 sbox[b]}

invT3[b] = {09 sbox[b], 0D sbox[b], 0B sbox[b], 0E sbox[b]}

By the help of these tables, we can perform not only the substitutions in the substitution layer but also
GF(28) multiplications in the MixColumn layer. This can be seen from the equations (3) and (4). As a
result, we can combine the substitution and the MixColumn layers.

The following algorithms implement the method RJ++ for all possible values of the block size nb.

Algorithm 4. SubByte, ShiftRow and MixColumn transformations for the method RJ++.

INPUT: The words s0, . . . , snb−1 storing the state matrix such that sj = {s0,j , s1,j , s2,j , s3,j}

OUTPUT: The words s0, . . . , snb−1 storing the transformed state matrix.

REDUNDANT: The words snb, snb+1, . . . , snb+sh3−1.

1. for(j = 0 to sh3− 1)

2. sj+nb = sj

3. for(j = 0 to nb− 1)

151

4. b0 = byte0(sj), b1 = byte1(sj+1), b2 = byte2(sj+sh2), b3 = byte3(sj+sh3)

5. sj = T0[b0] XOR T1[b1] XOR T2[b2] XOR T3[b3]

Algorithm 5. Inverse SubByte, inverse ShiftRow and inverse MixColumn transformations
for the method RJ++.

INPUT: The words sj storing the state matrix such that

sj = {s0,nb−1−j , s1,nb−1−j , s2,nb−1−j , s3,nb−1−j}.

OUTPUT: The words s0, . . . , snb−1 storing the transformed state matrix.

REDUNDANT: The words snb, snb+1, . . . , snb+sh3−1.

1. for j = 0 to sh3− 1

2. sj+nb = sj

3. for j = 0 to nb− 1

4. b0 = byte0(sj), b1 = byte1(sj+1), b2 = byte2(sj+sh2), b3 = byte3(sj+sh3)

5. sj = invT0[b0] XOR invT1[b1] XOR invT2[b2] XOR invT3[b3]}

The AddRoundKey is performed after Algorithm 3 in the encryption and Algorithm 5 in the decryp-
tion to complete the round. However, this causes a problem since the AddRoundKey must come before
the inverse MixColumn in the decryption. As a result, the subkey used in the round misses the inverse
MixColumn transformation in the decryption. To fix this problem, inverse MixColumn transformation
must be applied to the words of the expanded key before the bulk data decryption [3].

The RJ+ is the same as the RJ++ but uses only one pair of additional lookup tables. Let it use the
pair T0 and invT0. It obtains the results of the other tables from T0 and invT0 by rotations as shown
below.

T1[b] = ROR24(T0[b]) invT1[b] = ROR24(invT0[b])
T2[b] = ROR16(T0[b]) invT2[b] = ROR16(invT0[b])
T3[b] = ROR8(T0[b]) invT3[b] = ROR8(invT0[b])

5 Performance Evaluation

In this section, we present the timing measurements for our implementations and the corresponding
implementations in the Bouncy Castle library. Our experiments with Java phones like Sony Ericsson
T610, T630, K700 and Nokia 6600 show that the performance of the java phones varies widely. For
example, the encryption throughput of the proposed implementations in K700 is above 1 Mbit/s, while
it is just 5 Kbit/s in T610 phones. This is a very amazing result if we think that these phones generally
use 32 bit ARM processors running at clock frequencies from a few 10 Mhz to a few 100 Mhz. These
wide performance differences may be explained with the significant efficiency gaps in the Java Virtual
Machine implementations on the phones.

Here, we present the results of the tests carried out in Sony Ericsson K700. The java applications
testing our implementations and the Bouncy Castle implementations are developed with the J2ME
wireless toolkit 2.2.0 (Sun Microsystems, 2005).

We also evaluate the performance of the hash functions based on the Rijndael and compare them
with the timings of the popular hash algorithms available in the Bouncy Castle library.

5.1 Encryption, Decryption and Key Scheduling Timings

The Bouncy Castle library implements the Rijndael Encryption/Decryption methods RJ, RJ+ and RJ++
mentioned previously. However, these implementations work only for the block and key sizes specified by
the AES. That is the Rijndael implementations in the Bouncy Castle encrypt the data in 128 bit blocks
with a 128, 192 or 256 bit key (nb = 4 and nk = 4, 6, 8).

Table 2 gives the performance comparison between the Bouncy Castle AES implementations and our
Rijndael implementations. For this comparison, the block size is set to 128 bits (nb = 4) as mandated
by the AES. Also, the key size is set to 128 bits (nk = 4) too. We also test the efficient method given
in [1] for the resource limited devices. This method does not use any additional lookup table like the

152

method RJ. We call this method RJrow since it stores the rows of the state matrix in 32 bit words. This
method is easy to implement only for 128 bit encryption.

128 bit key Encryption Decryption 128 bit key Encryption Decryption
128 bit blocks (msec) (msec) 128 bit blocks (msec) (msec)
Bouncy RJ 0.48 0.58 RJ 0.46 0.62
Castle RJ+ 0.37 0.35 General RJ+ 0.30 0.33
AES RJ++ 0.086 0.070 Rijndael RJ++ 0.092 0.089

RJrow 0.25 0.36

Table 2: The Performances of the Bouncy Castle code and our code for 128 bit encryption.

Except the method RJ+, the encryption and the decryption timings of the Bouncy Castle implemen-
tations are a little bit faster. This is because our implementation is general and support all possible block
sizes and key sizes. The method RJ++ shows the best performance thanks to its 8 Kbyte additional
lookup tables. Even though RJrow uses no additional lookup tables its performance is as good as RJ+,
which uses 2 Kbyte additional lookup tables. The poorest performance belongs to RJ, which use no
additional lookup table like RJrow.

Table 3 gives the performance comparison between the Bouncy Castle AES key schedule and our key
schedule algorithm. For this comparison, the block size is set to 128 bits (nb = 4). As seen, our key
expansion algorithm is three times faster.

128 bit key Key Schedule 128 bit key Key Schedule
blocks size (msec) blocks size (msec)
Bouncy 128 bit 0.35 General 128 bit 0.125
Castle 192 bit 0.40 Rijndael 192 bit 0.130
AES 256 bit 0.50 256 bit 0.160

Table 3: Key schedule timings for different key sizes.

Table 4 shows the throughput of our RJ++ implementation where the block size and the key size are
equal to each other. Note that because the round number is given by (nr = max(nb, nk)), as the block
and key sizes get larger, the throughput gets lower.

RJ++
nk = nb = 4 nk = nb = 5 nk = nb = 6 nk = nb = 7 nk = nb = 8

(128 bit) (160 bit) (192 bit) (224 bit) (256 bit)
Encryption

1.39 1.26 1.11 1.06 1.02(Mbit/sec)
Decryption

1.44 1.13 1.11 1.06 1.02(Mbit/sec)

Table 4: The throughput of our RJ++ implementation for different block and key sizes.

5.2 Hash Function Performance

Let E(k,d) denote the encryption of the data d with a block cipher using the key k and Mi denote the
data blocks. We can construct the following four secure hash functions [12, 11].

• Hi = E(Hi−1, Mi)⊕Mi

• Hi = E(Hi−1, (Hi−1 ⊕Mi))⊕ (Hi−1 ⊕Mi)

• Hi = E(Hi−1, Mi)⊕ (Hi−1 ⊕Mi)

• Hi = E(Hi−1, (Hi−1 ⊕Mi))⊕Mi

153

where Hi is the hash after the message block Mi, H0 is a predetermined initial value and ⊕ denote the
XOR operation.

Note that a key expansion and an encryption is required to hash each message block in the above
hash functions. Table 5 gives the total time of these computations for different block and key sizes.

RJ++
nk = nb = 5 nk = nb = 6 nk = nb = 7 nk = nb = 8

(160 bit) (192 bit) (224 bit) (256 bit)
Encryption (msec) 0.127 0.174 0.212 0.250
Key Schedule (msec) 0.160 0.185 0.255 0.300
Total (msec) 0.287 0.359 0.467 0.550

Table 5: The total time elapsed for encryption and key scheduling with the method RJ++.

The four hash functions constructed from a block cipher process the bits as many as the block size in
the time elapsed for the key expansion and the encryption. Thus, the throughput can be computed as

block size / (key expansion + encryption time)

If we use the RJ++ method, which is the fastest method, in the encryption, we can generate more
efficient hash functions. Then, the main memory cost of the Rijndael based hash will be the large 8 Kbyte
lookup tables used by the RJ++ method. Compared to these large lookup tables, the key scheduling
requires an insignificant amount of memory. Thus, the memory requirements and cache usage of the
Rijndael based hash will be similar to those of the encryption with the RJ++ method.

Table 6 gives the throughput of the hash functions based on our Rijndael implementations together
with the timings of the hash algorithms implemented in the Bouncy Castle Library. Note that the size
of the hash value equals to the size of the block and key sizes. However, we can obtain the 512 bit hash
value using the 256 bit Rijndael encryption with 256 bit key using the MDC2 scheme [12]. The MDC2
scheme applies two key expansions and two encryptions for each 256 bit data. Thus, a 512 bit hash
function based on the Rijndael has half the rate of the 256 bit one.

Table 6 shows that the Rijndael based hash functions producing more than two hundered bit hash
value is faster than the dedicated hash functions.

Hash value
Throughput(Mbit/sec)

in bits
Rijndael Dedicated

based hash hash algorithms

160 bit 0.56
0.44 RIPEMD160
0.72 SHA1

192 bit 0.54 1.01 Tiger
224 bit 0.48 0.28 SHA224
256 bit 0.47 0.28 SHA256
512 bit 0.23 0.12 Whirlpool

Table 6: The performance comparison of the Rijndael based and the dedicated hash algorithms.

6 Conclusion and Discussion

Many Java enabled mobile devices have become quite capable and run various applications. The Rijndael
block cipher is an important cryptographic algorithm and can be used to encrypt the data and to produce
hash values in these devices. The encryption and decryption can be performed efficiently using a few
Kbytes additional lookup tables. These additional lookup tables are easily affordable since even a simple
java phone has tens of Mbytes of program memory.

The Rijndael can be used to construct fast hash functions with a fast key schedule. To support
various hash sizes, we need a general Rijndael implementation supporting different block and key sizes.
In this work, we present such a Rijndael implementation. Instead of using several hash functions to
produce the hash values in the various sizes, using only a general implementation of the Rijndael for
encryption and hashing is an attractive solution.

154

However, the hash functions based on the block ciphers may show weaknesses which are not relevant
to the encryption. Thus, the security of the hash functions based on the Rijndael may need to be
investigated.

References

[1] G. Bertoni, L. Breveglieri, P. Fragneto, M. Macchetti,and S. Marchesin “Efficient Software Imple-
mentation of AES on 32-Bit Platforms”, Cryptographic Hardware and Embedded Systems- CHES
2002, pp. 159-171, B.S. Kaliski Jr., Ç. K. Koç, C. Paar.

[2] The Bouncy Castle Lightweight API Release 1.5, http://www.bouncycastle.org/download/

[3] J. Daemen, V. Rijmen “AES Proposal: Rijndael” 1999.

[4] J. Daemen, V. Rijmen. “The design of Rijndael”, Springer-Verlag, 2002.

[5] J. Daemen, V. Rijmen, P.S.L.M. Baretto “Rijndael: Beyond the AES” 3rd Czech and Slovak Cryp-
tography Workshop, Dec 2002 Prague, Czech Republic.

[6] B. Gladman. Implementations of AES (Rijndael) in C/C++ and Assembler.
http://fp.gladman.plus.com.cryptography technology.rijndael

[7] B. Gladman “A Specification for Rijndael, the AES Algorithm”, Sep 12 2003.
http://fp.gladman.plus.com.cryptography technology. rijndael.aes.spec.311.pdf

[8] IAIK JCE and iSaSiLk APIs, http://jce.iaik.tugraz.at/download

[9] “J2ME application-layer end-to-end security for m-commerce”, Journal of Network and Computer
Applications 27, pp. 13-32, 2004.

[10] NIST FIPS 197, “Advanced encryption standard (AES)”, Nov. 26, 2001.

[11] B. Preneel, “Analysis and Design of Cryptographic Hash Functions”, Ph.D. dissertation, Katholieke
Universiteit Leuven, Jan. 1993.

[12] B. Schneier, “Applied Cryptography”, John Wiley & Sons, 1996

[13] X. Wang, Y. L. Yin, and H. Yu, “Finding Collisions in the Full SHA-1”, In proc. 25th Annual
International Cryptology Conference (Crypto’05), August, 14-18 2005.

155

Forensic Geolocation of Internet Addresses using

Network Measurements

Espen A. Fossen1,∗ André Årnes2,∗

1Department of Telematics,

Norwegian University of Science and Technology,

O.S. Bragstads plass 2B, N-7491 Trondheim, Norway, espenaf@junta.no.

2Centre for Quantifiable Quality of Service in Communication Systems†,

Norwegian University of Science and Technology,

O.S. Bragstads plass 2E, N-7491 Trondheim, Norway, andrearn@q2s.ntnu.no.

Abstract

This paper presents a method for estimating the geographical location of Internet hosts, providing
Internet investigators with important evidence. A prototype application called GeoLocate has been
developed for use in digital forensics investigations. GeoLocate provides real life results using a net-
work delay measurement method called Constraint-Based Geolocation (CBG), using public network
Looking Glass (LG) services as landmarks.It is shown that GeoLocate, using a small number of land-
marks, can estimate the location of an Internet address within the timeframe of 1–2 minutes. The
results depend on the “quality” of the landmarks used, making it possible to acquire better results
if the correct landmarks are used.

Keywords: Computer Crime, Delay Measurements, Geolocation, Digital Forensic Science.

1 Introduction

In computer crime investigations, one often needs to find the topological or geographical location of
Internet addresses. However, it is often difficult to accurately determine the geographical location of an
IP or DNS address, and there are many uncertainties. A method for determining geographical location
information for Internet addresses would be an important asset to law enforcement, advertisers, and
other fields. This paper presents as prototype application called GeoLocate for acquiring geographical
location of Internet addresses. The paper is based on work conducted in [1] and [2].

In contrast to the Public Switched Telephone Network (PSTN) system, the Internet is connectionless.
Connectionless data transfer means that data is sent as packets and may be routed differently each time,
making it a dynamic transport system that will work even if some of the routes are unavailable.

For example, only one link is needed between the machines and two routers to be able to transfer
packets from host X to Y in figure 1. If only the links A1, C2 and B3 was working, a packet in a
connectionless network would get through. PSTN systems on the other hand use the same route each
time, making it more vulnerable to uavailable routes.

The strong hierarchical design of the PSTN systems is usually linked to geographical locations, making
it easier to find the geographical location and owner of a telephone address. The Internet on the other
hand was not designed with the same geographical topology in mind.

∗This research has been performed in cooperation with the High Tech Crime Division of the Norwegian National Criminal
Investigation Service. Both authors are associated with the High Tech Crime Division.

†The “Centre for Quantifiable Quality of Service in Communication Systems, Centre of Excellence” is appointed by The
Research Council of Norway, and funded by the Research Council, NTNU and UNINETT.

156

Figure 1: Possible topology of a connectionless network.

1.1 Tracing Internet Addresses

Digital forensic investigators often need to trace Internet addresses. There are two main forms of address
tracing on the Internet, either active or passive tracing. Active tracing means probing or connecting to
a given address and check for response time, network path or querying for services. This might mean
using simple network auditing tools such as ping and traceroute, but also more complex tools such
as nmap1 and amap2. Active tools have in common that they usually create socket connections with the
target address, meaning that it may be detected by the owner of the host.

The tools traceroute and ping can be used to acquire location information. They both send out
Internet Control Message Protocol (ICMP) packets with it’s mandatory ECHO REQUEST datagram to
elicit an ICMP ECHO RESPONSE. Traceroute, however gives us more helpful information, namely the
path of a packet from the sender to the target host. Table 1 shows a traceroute from zulu01.item.ntnu.no
to uk.ny1.ny.geant.net. Each intermediary hosts Round Trip Time (RTT) to and from the sender host
is recorded and presented as a path with increasing RTT.

Hop Host address IP address RTT [ms] ∆ [ms]
1 el-gsw.ntnu.no (129.241.208.1) 0.211 0.211
2 ntnu-gsw.ntnu.no (129.241.76.29) 0.242 0.031
3 trd-gw.uninett.no (158.38.0.221) 0.243 0.001
4 oslo-gw1.uninett.no (128.39.46.1) 7.988 7.745
5 no-gw.nordu.net (193.10.68.101) 8.074 0.086
6 se-kth.nordu.net (193.10.68.29) 15.470 7.396
7 nordunet.se1.se.geant.net (62.40.103.117) 15.685 0.215
8 se.uk1.uk.geant.net (62.40.96.126) 50.570 34.885
9 uk.ny1.ny.geant.net (62.40.96.169) 119.277 68.707

Table 1: Traceroute from zulu01.item.ntnu.no to uk.ny1.ny.geant.net.

The packet going to uk.ny1.ny.geant.net first takes the path through several hosts in the ntnu.no
domain, before it is routed to a gateway router in Trondheim, Norway. Hop 3 shows that the packet
is routed through trd-gw.uninett.no, and then directly to oslo-gw1.uninett.no. While the RTT to the
routers located in the ntnu.no domain and the gateway in Trondheim is very small (below 0.3 ms), the
RTT to the gateway router in Oslo, Norway is close to 8 ms.

This network delay between the two hosts can be used to measure geographical distances. The link
between the two gateway hosts in Trondheim and Oslo is probably connected via an optical fibre running
alongside a road or railway track3. It should then be possible to calculate the cable length using the
relation in equation 2, given the velocity of the signal v and the transmission time t.

The signalling speed in an optical fibre is v = 1.962 × 108m/s [18]. The time t from Trondheim to
Oslo is half the RTT to oslo-gw1.uninett.no and subtracting the one way delay to trd-gw.uninett.no. The
transmission delay given by equation 1 used in relation 2 then gives us a distance of d = 755.0 km.

1http://www.insecure.org/nmap/
2http://www.thc.org/thc-amap/
3According to UNINETT, the Norwegian National Research and Education Network (NREN), the link is rented from

Bane Tele. Bane Tele’s fibre optics cables follow the railway track owned by The Norwegian State Railway (NSB).

157

t =
RTT hop 4− RTT hop 3

2
(1)

d = v × t (2)

In comparison, the railway track4 running from Trondheim to Oslo is 553.00 km. This makes for a
1.365 ratio between the real cable distance and the estimated distance. Finding the exact cable distance
will often be very difficult for an investigator, as detailed information about the infrastructure of the optic
fibre network is needed. In many cases it may be difficult enough to find any information about the links
the packets use, as DNS names not always describe their geographical location. Research networks tend
to provide more geographical information in DNS names than commercial networks, but investigators
will have to work with both types of networks.

It is easier to estimate the cable distance using geographical coordinates, because finding two points
on a map is alot simpler than finding the correct road or railway track distance between them. The
geographical coordinates for Trondheim are latitude = 63.4200◦ N, longitude = 10.3900◦ E, and for Oslo
latitude = 59.9100◦ N and longitude = 10.7900◦ E. Taking into account that the earth is not a perfect
sphere, but rather an ellipsoidal the Haversine formula [17] is used to calculate the distance between the
two points, giving us a distance of dto = 391.6 km.

The estimated cable distance compared to the railway track distance is off by a ratio of 1.365, and
the estimated cable to flight distance is off by 1.928. Both these results are poor compared to the actual
distances, but measuring the distance over an ocean may provide better results. At hop 9 in table 1 the
packet goes from the Cambridge in UK, to New York, USA. The one way delay comes to 34.41 ms, and
by subtracting 0.200 ms for fibre optical signals boosters, the estimated delay comes to t = 34.21 ms.
The results is then calculated to dcn = 5919 km. This gives us a flight-cable distance ratio of 1.121, and
the offset is most likly a result of the ocean floor not being completely flat, making the cable distance
somewhat longer than a straight line. The cable length will probably not be the only source of error; it
is highly likely that a large part of the error comes from processing time and packet queuing.

Even with this margin the results are much better then the one calculated for a land based connection
between Trondheim and Oslo. It seems much more accurate to calculate the distance of cables running
across the ocean floor than across land. Still there is the problem of knowing where the routers are
physically located, resulting in time consuming detective work.

Another aspect of measurement based localization is direction. Suppose the destination is unknown,
and the DNS names does not give us a hint in where it may be located. In which direction is the packet
going, North? West? South? If the calculation had revealed that the packet had travelled the 391.6 km
corresponding to the distance from Trondheim to Oslo, the location could be somewhere else, figure 2
shows where the host may be located in relation to Trondheim. Without knowing the correct direction,
the packet could have ended up in Bergen, Norway, or maybe somewhere in Sweden. Without explicit
knowledge about the network topology or direction it is impossible to know.

Passive tracing on the other hand uses third party databases or other resources not directly connected
to the Internet address. The best example of passive tracing is to conduct whois [8] information searches
for Internet addresses. This can be done for almost all Internet addresses. Information sources such as
whois are open to anyone with the right software and a connection to the Internet. There are a number
of public information sources that can be utilized by investigators, such as DNS lookup information,
map services and Border Gateway Protocol (BGP) information. A type of information source that is
available to anyone are Looking Glass (LG) servers.

1.2 Looking Glass

LG is a set of tools with a web based user-interface, providing different types of network auditing tools
such as traceroute, ping and BGP routing information. LG servers makes it possible to run these
network auditing tools remotely, and catch the feedback with a web browser, as the output is sent as
HyperText Markup Language (HTML) or plain text via the HyperText Transfer Protocol (HTTP).

There are many different implementations of LG; the source code for one of them can be found
at [15]. LG servers are usually altered to fit each network operators needs, but they almost always use

4http://www.jernbaneverket.no/jernbanenettet/jernbane_nettet_i_tall/

158

Figure 2: Circle with radius of 391.6 km centered
in Trondheim, Norway.

Figure 3: Multilateration with geographic distance
constraints.

the same set of HTTP commands. Network operators and universities around the world set up web
servers with LG, making them available to the public domain. [12] and [11] contains fairly updated lists
of sites offering reverse traceroute and LG servers.

1.3 Related Work

Using DNS information to provide geographical location information was first proposed in [7]. This
approach however requires a change in the DNS records, and such changes will not come over night. If
geographical location information is added into the DNS records, it does not mean that the information
is accurate or correct, as it is provided by the registering part. Beside DNS records there are tools such
as eTracing [2], NetGeo [9] and IP2ALL [10] that can be used to acquire DNS and IP whois information.
DNS and IP whois information can be used to acquire geographical location of Internet addresses, but
this information may be unreliable and might not be accurate.

Padmanabhan and Subramanian investigated three other methods for acquiring geographical location
of hosts [5]. The first one is called GeoCluster, the second GeoTrack and the third GeoPing. GeoCluster
uses partly BGP routing information and partly information submitted by users, where the submitted
information was gathered anonymously from 3 online services. The second method (GeoTrack) looks at
traceroute information from several probes to the target host, using the DNS names of the target host
or nearby hosts to infer the geographic location. The third method (GeoPing) uses network delay or
one way delay from multiple landmarks to a target host. The location is then estimated based upon the
assumption that the delay of a probe is fixed. By measuring the fixed delay from several landmarks,
the position of target host can be approximated. The two first methods relays entirely or partly on
information submitted by users, making it somewhat unreliable, while GeoPing uses only no submitted
information. However GeoPing leads to a discrete space of answers, i.e. the number of answers is
equal to number of reference hosts. Ziviani, Rezende and Duarte have later improved GeoPing [3]. The
improvement reduces the number of landmarks needed, thus reducing number of distance vectors needed
to be found. This approach does improve the efficiency of the method, but the fundamental problem of
a discrete space of answers is still present. Gueye et al. has proposed a new method for geographical
location of Internet hosts called Constraint-Based Geolocation (CBG) [4].

In [4] CBG is only tested using data from network traffic measurement projects such as the NLANR
Active Measurement Project [13] and RIPE Test Traffic Measurements [14]. This data will only provide
an implication on how well the method performs, and can not provide any real life results. Getting real

159

life results would require a large number of landmarks, distributed both geographically and in different
types of network, like commercial backbones, university networks, research networks etc. By using public
information sources with network auditing tools such traceroute, ping or LG, it is possible to acquire a
large set of landmarks in different networks. Both the CBG method and methods for using and acquiring
network delay measurements from public information sources has been implemented in the GeoLocate
application.

2 Geolocation of Internet Addresses

The CBG methods uses distances from multiple known landmarks to estimate the position of an unknown
host. This is conceptually similar to triangulation, but triangulation strictly means using angles from
three known points to find the location of a fourth point. As CBG uses distances from multiple points
of reference, instead of angles from three points, it has been called multilateration in [4]. Following
the notation of [4], figure 3 shows how the multilateration is conducted using the geographical distance
constraints from 4 landmarks.

However, before multilaterating the location of a target τ , it is necessary to find the distance constraint
ĝiτ for each landmark Li, and this is done by measuring the distance between landmark Li to all other
landmarks Lj , where i 6= j. Each distance is found by equation 2, where delay d is found by measuring
the one way delay from Li to landmark Lj using a LG server. By using the signalling speed in fibre,
which is about 2/3 the speed of light in vacuum, or 1.962 × 108m/s, it is possible to find the distance
between each landmark.

For calculating the distance constraint it would seem logical to use the lowest measured delay t
to get the correct answer. As shown in [4] CBG is however much less dependent on the actual delay
measurement, making it less affected by packet queuing and processing delay. Using the one way delay
for calculating the distance between two hosts could possibly results in a underestimated geographical
distance constraint as shown in figure 4(c). It is therefore necessary to increase the value of the delay by
a factor of 2 to get more valid results, even if the result might be overestimated as in figure 4(a). Gueye,
Ziviani, Crovella, and Fdida do not point out this fact directly in [4], but uses the full RTT between a
landmark and the target as delay.

When the distances between all landmarks have been measured, a distance constraint is calculated.
A more detailed explanation of this can be found in [1] and [4].

The next step in finding the position of a target host is to calculate the geographical distance con-
straints ĝiτ between the target τ and each landmark Li. As shown in figure 3, the geographical distance
constraint ĝiτ = giτ + γiτ between each landmark gi and target τ is given by two factors, the real geo-
graphical distance giτ and an additive distance distortion γiτ . While the real geographical distance giτ

is fixed, the additive is affected by many factors, for example routing policies, queuing delays and cable
lengths. An overestimate of the geographical distance constraint as shown in figure 4(a) is therefore
necessary to obtain some results. It is however important to reduce the additive distance as much as
possible, and CBG is able to do this by optimizing itself as described [4].

If the geographical distance constraint ĝiτ however is underestimated as shown in 4(c), it means that
the landmark is not located where it was thought to be. Testing for underestimates will discover if the
position of a landmarks is correct, making it possible to eliminate landmarks, or try to find their correct
position. Landmarks with incorrect position can also produce mismatched results, as shown in figure
4(b). This error is harder to discover, but if the same landmark is tested on a target located in the
opposite direction the results will probably be underestimated, and then we know that is is misplaced.

2.1 Confidence Region

The grey area created by the additive distance distortion γiτ in figure 3 is known as the confidence region
R. The confidence region gives us an estimate on how good the results are, and the higher the value,
the lower the confidence in the result. This estimate is important for any location-aware application,
as the results may be too uncertain to be used in some cases. As an example, a result may cause a
location-aware application to show advertisement in the wrong language if the confidence region spans
over several countries.

160

(a) Overestimated distance
constraints

(b) Mismatch (c) Underestimated distance
constraints

Figure 4: Effects of over and underestimation of geographic distance constraints.

For forensic applications, the results will always be interesting, even if the confidence region is large, as
it may provide valuable forensic information about network topology and the target host. The confidence
region may actually work better in forensic applications than in many other location-aware applications.

2.2 Landmarks

A landmark can be a wide range of devices, primarily a computer or router with known location capable of
running ping, traceroute or other network delay measurements tools. For benchmarking, it is often best
to use network measurement data from projects such as the RIPE Test Traffic Measurements or NLANR
AMP. Both these projects provide network traffic monitoring data from scientific research networks, but
geolocating a target host located in a commercial or home network will provide different results. The
estimate does not need to be worse, the quality of the result depends on a wide range of factors, such as
quality of transmission links, amount of traffic, packet queuing and routing policies. Research networks
usually route traffic on the Best-effort policy, but commercial networks may implement other kind of
routing policies.

A real world application such as GeoLocate benefits from having landmarks in many different net-
works, since a target host may be located both in commercial and research networks. Research networks
typically have very high capacity links, but they may not always own their own cables. A large set
of landmarks distributed geographically and placed in different networks may provide a better real life
result, but getting access to this kind of landmarks may be difficult. This may be solved by using public
information sources like web servers providing public LG servers or scripts that provide remote access to
either ping or traceroute applications. The best source of such remote access is LG servers, and the
thing is that almost all research or commercial networks have such applications publicly available. Our
problem with this solution is to get the correct geographical position of the landmark. There are several
approaches to achieve this. For example, the network operator’s website might give some clues, IP whois
information, DNS names and DNS lookup information can be used. Users registering a domain might
provide the DNS registry with falsified information, but it will be highly unlikely that a major network
operator or backbone provider will provide false information on their web site or in the IP whois or DNS
registry.

3 GeoLocate

GeoLocate is a prototype application for assessing the accuracy of the CBG method with the use of
public information sources. Using LG servers as landmarks solves a lot of problems with deploying such
an application, but it also poses some new questions. GeoLocate has so far only been used as a prototype
application, a conceptual model of GeoLocate is shown in figure 6.

A set of 50 landmarks was selected from various LG lists for use in the testing. These landmarks
were scattered across Europe in both research and commercial networks. During testing, several of the

161

Figure 5: Geographical location of landmarks
used by GeoLocate.

Figure 6: Conceptual model of GeoLocate ap-
plication for location of Internet addresses.

Host Lat. Long. Est. Lat. Est. Long. ∆[km] R[km2]
tt01.ripe.net 52.3558◦ N 4.9510◦ E 52.4101◦ N 4.6481◦ E 21.5 13993.0
tt102.ripe.net 53.5508◦ N 10.0473◦ E 54.3444◦ N 8.9467◦ E 114.2 23010.0
tt109.ripe.net 63.8246◦ N 20.2673◦ E 59.0487◦ N 16.8649◦ E 562.4 1120300.0
tt126.ripe.net 47.4401◦ N 9.7563◦ E 48.9161◦ N 8.7529◦ E 180.4 211440.0

Table 2: GeoLocate results compared to actual location.

initial landmarks had to been removed. The biggest problem was not being able to find the correct
geographical location of the landmarks. Figure 5 shows the location of the remaining 27 landmarks that
was used for obtaining the experimental results.

3.1 Experimental Results

Four tests were conducted. Table 2 shows the hostname, actual position, estimated position and con-
fidence region for each test. Each host is part of the RIPE TTM [14], and are located in different
geographical areas. Each host has a Global Positioning System (GPS) card and a high speed connection
to the Internet.

3.1.1 Location 1: tt01.ripe.net

The first test was run against the host “tt01.ripe.net”, this test server is located in Amsterdam, Nether-
lands. Figure 7(a) shows a map of Europe with all the closed circles generated by the geographical
distance constraints from each landmark to the target. The grey area or confidence region R looks small
compared to a map of Europe, but it actually covers 13993.0 km2. The smaller the region R is, the
greater the confidence of the results.

Figure 7(b) takes a closer look at the actual region R. The centroid of the region R is the estimated
position of the address, and compared to the actual location of the address the difference is 21.5 km.
While the position is somewhat off track, it is still within the estimated region R.

162

Since the estimated position is 21.5 km from the target and the confidence region has an area of
13993.0 km2 the results may be considered good compared to other location methods. The confidence
region is within the same country, and the estimated point is very close to Amsterdam. Advertisement
applications would look upon this result as reasonable, and provide the user with an advertisement from
Netherlands or the Amsterdam area, but that all depends on the advertisement service itself. For a
forensic application the results may confirm or disconfirm whois information acquired about the address.
E.g. the whois information may claim that the address is registered to a company or individual located
in South America. If whois information confirms the location of the target, further investigation on the
location may not be needed. Should the geolocation find the address in another part of the world, it
might be necessary to investigate further. For example, further investigations may discover that the
address has been hijacked or that it is being rerouted to another source.

(a) Overview (b) Closer view

Figure 7: Geolocating “tt01.ripe.net” with known location in Amsterdam, Netherlands.

3.1.2 Location 2: tt102.ripe.net

The second test was run against the host “tt102.ripe.net”. This test server is located in Hamburg,
Germany. This results is less accurate, as the estimated position is 114.2 km from the actual position,
but the confidence region is only 23010.0 km2. Compared to the deviation between estimated and true
positions in test 1, this position estimate is less accurate. This shows that the actual position does not
need to be very accurate, but it will be located within the region R. Indicating the importance of a
reasonable sized uncertainty region, both for a forensics application and an advertisement application.

This time the regionR also spans over two countries. This might make it difficult for an advertisement
application to get usefull results, but for a forensic application where the user is provided with the visual
projection it should not pose a major problem.

3.1.3 Location 3: tt109.ripe.net

The third test was run against the host “tt109.ripe.net”. This test server is located in Ume̊a, Sweden.
Figure 9 shows a visualization of the multilateration. Compared to previous results this geolocation is

163

(a) Overview (b) Closer view

Figure 8: Geolocating “tt01.ripe.net” with known location in Hamburg, Germany.

Figure 9: Geolocating RIPE TTM host “tt109.ripe.net”, with known location in Ume̊a, Sweden.

164

not very good. With a confidence region of R = 1120300.0 km2 this result is inaccurate, and as shown
in the figure 9 the estimated position is nowhere near the actual position of the target. Figure 5 may
provide some answers to the bad target estimate. None of the landmarks used are geographically located
north for the target being located, resulting in some very bad estimation of the location. The good thing
is that many of the landmarks located to the south of the actual position have circle edges located very
close. Providing one or two landmarks to the north of the text box server would drastically decrease the
confidence region and improve the position estimate.

GeoLocate will have problems with geolocating at the edge of a geographical region. Targets located
close to coasts or geographical regions may be harder to geolocate, making it necessary to use landmarks
from several geographical regions.

3.1.4 Location 4: tt126.ripe.net

The fourth test was run against the host “tt126.ripe.net”. This test server is located in Schwarzach,
Austria. Figure 10(a) shows that the region R for this geolocation is much larger than for the first
two tests. The confidence region R = 211440.0 km2 and the estimated location is 180.4 km from the
actual position. This result could be considered not to good, and by looking at figure 10(b) it shows
that the region R actually spans over six countries: France, Germany, Switzerland, Austria, Belgium
and Luxembourg. For an advertisement application this confidence region is very large, and the results
will probably be of little practical use. For a forensic application this result might still provide some
valuable information.

The large confidence region of this geolocation may have several causes. None of the landmarks are
located very close to the target. This will directly affect the results, but it will probably not be the only
reason. Almost all landmarks are routed through the GÉANT research network and onto Austrias own
research network called ACOnet. Most traffic coming into Austria is routed through Vienna5, introducing
a very large detour for some of the landmarks with best connectivity. As shown in figure 10(b) Vienna
is located far away, actually it is located about 500 km from Schwarzach.

4 Discussion

As indicated by the results obtained, there are usually 3–5 landmarks that actually provide the regions
where the targets are located. All other landmarks do not help with the geolocating directly, they only
help to improve the distance constraint for the landmarks that actually find the region. To reduce the
number of landmarks used, it is therefore necessary to find the landmarks most suited to be used, but
this can not easily be done without conducting a measurement from all landmarks to the target.

Dr Ren Wei [6] proposed a framework called distributed agent-based network forensic system. This
proposal uses a server and client based system, where all the agents collect different types of information,
which is transported into a centralized forensic server and database. Such an architecture could also be
used in GeoLocate, but it would introduce the same problems with acquiring landmarks as has previously
been experienced using public information sources. The agents would need to be installed by users,
preferably investigators or other personnel interested in using the application. The results would have to
be available for everyone wanting to deploy agents. This will introduce a hierarchical trust relationship
between the people deploying the agents and the ones keeping the server. Server operators having all
access, and the agents only partial access.

Another solution would be to use a Peer-to-peer (P2P) based agent architecture instead. This removes
the client/server scheme and introduces a “web of trust” hierarchy, as used by Pretty Good Privacy
(PGP) [16]. Such a P2P based agent may solve problems with deploying the application in a wide scale,
as all agents will have the same access. The performance of GeoLocate depends heavily on the number
of Landmarks used and how the network delay measurement between the landmarks and target is done.
If all landmarks perform measurements at the same time, GeoLocate will usually take 1–2 minutes to
run, as some LG sites use a long time to respond. To reduce the amount of network traffic to the
target simultaneously, GeoLocate landmarks can be configured to probe sequentially. This dicreases the
performance, but reduces the chance of detection. The tradeoff between speed and stealth will have to
be assessed by an investigator.

5ACOnet topology: http://www.aco.net/aconetus.htm

165

(a) Overview (b) Closer view

Figure 10: Geolocating “tt01.ripe.net” with known location in Schwarzach, Austria.

5 Conclusions

The GeoLocate application shows that it is possible to use location-aware and content delivery based
measurement methods for forensic investigations. GeoLocate also shows that public information sources
can be used as landmarks to acquire real life results for network measurement methods. The results
acquired by GeoLocate depends heavily on the number and “quality” of the landmarks used. It is
therefore possible to achieve better results with GeoLocate than what has been presented here. However
it is clear that further development is needed, and acquiring landmarks is one of the biggest challenges
of such tools. We therefore propose to use an agent based P2P application, making it easier to acquire
better landmarks and to provide better location estimates.

6 Acknowledgements

The authors would like to extend their gratitude to Professor Svein J. Knapskog at the Department of
Telematics for his helpful feedback during this research. The authors would also like to thank the High
Tech Crime Divistion at the Norwegian National Criminal Investigation Service for their involvement in
the project.

References

[1] Espen A. Fossen. Principles of Internet Investigations: Basic Reconnaissance, Geopositioning and
Public Information Sources, MSc-thesis, Department of Telematics Trondheim, Norway. June 2005.
http://www.junta.no/forensics/

[2] Espen A. Fossen. Automatic tracing of Internet addresses. Minor thesis, Department of Telematics,
Trondheim, Norway. November 2004. http://www.junta.no/forensics/

166

[3] Artur Ziviani, Serge Fdida, José Ferreira de Rezende, and Otto Carlos Muniz Bandeira Duarte.
Toward a measurement-based geographic location service. In Proc. of the Passive and Active Mea-
surement Workshop - PAM’2004, Lecture Notes in Computer Science (LNCS) 3015, pages 43–52,
Antibes Juan-les-Pins, France, April 2004.

[4] Bamba Gueye, Artur Ziviani, Mark Crovella, and Serge Fdida. Constraint-based geolocation of
internet hosts. In Proc. of ACM/SIGCOMM Internet Measurement Conference - IMC 2004, pages
288–293, Taormina, Sicily, Italy, October 2004.

[5] Venkata N. Padmanabhan and Lakshminarayanan Subramanian. An investigation of geographic
mapping techniques for Internet hosts. Proceedings of SIGCOMM’2001, page 13, 2001.

[6] Dr Ren Wei. A framework of distributed agent-based network forensics system. Proceedings of
DFRWS’2004, August 2004.

[7] C. Davis, P. Vixie, T. Goowin, and I. Dickinson. A means for expressing location information in
the domain name system. Internet Engineering Task Force: RFC 1876, January 1996.

[8] L. Daigle. Whois protocol specification. Internet Engineering Task Force: RFC 3912, September
2004.

[9] D. Moore, R. Periakaruppan, J. Donohoe, and K. Claffy. Where in the world is netgeo.caida.org?
In Proc. of the INET’2000, Yokohama, Japan, July 2000.

[10] University of Illinois at Urbana-Champaign. IP Address to Latitude/Longitude. http://cello.

cs.uiuc.edu/cgi-bin/slamm/ip2ll/

[11] CAIDA. Reverse traceroute and looking glass servers in the world. http://www.caida.org/

analysis/routing/reversetrace.

[12] http://www.tracereoute.org. Traceroute.org. Traceroute and looking glass resources.

[13] NLANR Active Measurement Project. http://amp.nlanr.net/active/.

[14] RIPE Test Traffic Measurements. http://www.ripe.net/ttm/.

[15] Cistron. Looking glass source code. ftp://ftp.cistron.nl/pub/people/miquels/net/.

[16] P. Zimmerman. Pretty Good Privacy User’s Guide, Volume I and II, 14 june 1993 revised edition.
Distributed with the PGP software.

[17] R. W. Sinnott. Virtues of the haversine. Sky and Telescope, 68(2):159, 1984.

[18] John E. Midwinter Optical Fibres for Transmission John Wiley & Sons, NY, 1979.

167

