
NORDSEC 2002

Proceedings of the 7th Nordic Workshop on

Secure IT Systems

“Towards Secure and Privacy-Enhanced Systems”

7- 8 November 2002, Karlstad, Sweden

Edited by

Simone Fischer-Hübner
Department of Computer Science

Karlstad University

Sweden

Erland Jonsson
Department of Computer Engineering

Chalmers University of Technology

Sweden

 iv

 v

Table of Contents

FOREWORD ix

INVITED TALK: David Sands, Chalmers University of Technology and

Göteborg University, Sweden,

Mobile Code Security: Some Challenges and Possibilities

1

John Marchesini, Sean Smith, Department of Computer Science, Dartmouth

College, USA,

Virtual Hierarchies - An Architecture for Building and Maintaining Efficient and

Resilient Trust Chains

2

Sanna Kunnari, Tiina Seppänen, Ericsson Research, Finland,

Local Networks and PKI

20

René Rydhof Hansen, DTU, Denmark,

A prototype tool for Java Card Firewall Analysis

35

Cheol-Won Lee, Eul Gyu Im, National Security Research Institute Republic of

Korea, Dong-Kyu Kim, Ajou University, Suwon, Republic of Korea,

Design and Implementation of a Firewall and a Packet Manipulator for Network

Simulation using SSFNet

54

John Wilander, Mariam Kamkar, Linköping University, Sweden,

A Comparison of Publicly Available Tools for Static Intrusion Prevention

68

Peeter Laud, Tartu University, Estonia,

Encryption Cycles and Two Views of Cryptography

85

Federico Crazzolara, Giuseppe Milicia, BRICS, University of Aarhus, Denmark,

Developing security protocols in Chi-spaces

101

Amon Ott, Compuniverse, Germany,

The Role Compatibility Security Model

117

Almuth Herzog, Nahid Shahmehri, Linköping University, Sweden,

Using the Java Sandbox for Resource Control

135

 vi

Josep Pegueroles, Francisco Rico-Novella, Polytechnic University of Catalonia,

Spain,

Performance evaluation of cryptographic algorithms for multicast secrecy

protection

148

Wael Adi, Etisalat College of Engineering, United Arab Emirates, Ali Mabrouk,

Lufthansa Systems AS GmbH, Germany (short presentation abstract),

Computational Power Borrowing Model for Mobile Security Computations

162

Albin Zuccato, Karlstad University, Sweden,

A Holistic Information Security Management Framework- applied for electronic

and mobile commerce

164

Sungbaek Cho, Zbigniew Ciechanowicz, Royal Holloway, University of London,

UK,

Security Countermeasure Selection Method: A Fuzzy Approach to Uncertain

Environments

178

Siv Hilde Houmb, Trond Stølen Gustavsen, Telenor R&D, Ketil Stølen, Sintef

Telecom & Informatics, Bjørn Axel Gran, Institute for Energy Technology,

Norway (short presentation abstract),

Model-based Risk Analysis of Security Critical Systems

193

INVITED TALK: Kai Rannenberg, Goethe University Frankfurt, Germany,

Mobile Applications and Multilateral Security

194

George Danezis, Computer Laboratory, University of Cambridge, UK,

Forward Secure Mixes

195

Filip van Laenen, Computas AS, Norway,

Continuous Opinion Polls on the Internet

208

Alberto Escudero-Pascual, Royal Institute of Technology, Thijs Holleboom,

Simone Fischer-Huebner, Karlstad University, Sweden,

Privacy of Location Data in Mobile Networks

220

Christian Bratsberg Hauknes, Oslo University, Norway (short presentation

abstract),

Attitudes towards Privacy in conjunction with Location Based Services

233

Lars Westerdahl, Arne Vidström, Jonas Hallberg, Amund Hunstad, Niklas

Hallberg, FOI (Swedish Defence Research Agency), Sweden,

Tracing the underlying reasons for security breaches - A method based on

cognitive interviews

234

 vii

Martin Karresand, FOI (Swedish Defence Research Agency), Sweden,

A proposed taxonomy for IT weapons

244

Amund Hunstad, Jonas Hallberg Anna Stjerneby, FOI (Swedish Defence

Research Agency), Sweden (short presentation bstract),

A Step towards Quantification of IT Security

261

Kjell Näckros, DSV, Stockholm University/Royal Institute of Technology,

Sweden (short presentation abstract),

Using Computer Games in IT Security Education -Analyses and Continuation

262

 viii

 ix

Foreword

Welcome to the 7th Nordic Workshop on Secure IT Systems (NordSec 2002) -

“Towards Secure and Privacy-Enhanced IT Systems” in Karlstad!

The NordSec workshops were started in 1996 with the aim of bringing together

researchers and practitioners within computer security in the Nordic countries. The

theme of the workshops has been applied security, i.e., all kinds of security issues that

could encourage interchange and cooperation between the research community and

the industrial/consumer community. The annual NordSec workshops have been held

in Gothenburg, Helsinki, Trondheim, Stockholm, Reykjavik and Copenhagen.

Since 1996, the area of IT security has even gained more importance for academia,

industry and government. Computer malware, distributed denial of service attacks and

threats of cyber crime and cyber terrorism have recently again demonstrated the

vulnerability of our Network Society and the need of secure IT systems. Also the

user’s privacy is increasingly at risk, especially in the mobile Internet, where the

user’s location, preferences, behavior could be monitored and recorded in detailed

user profiles. Hence, research on and development of secure and privacy-enhanced

systems will be of key importance for the success of future information and

communication infrastructures.

NordSec 2002 with the theme “Towards Secure and Privacy-Enhanced IT

Systems” is organised by the Department of Computer Science at Karlstad University

in Sweden in cooperation with SIG Security, IEEE Sweden - Computer/Software

Engineering Chapter, the Swedish Centre for Internet Technology (SCINT) and

Ericsson AB. It is addressing IT security research topics on networks, public-key

infrastructures (PKI), cryptography, formal methods, access controls models, human

and educational aspects and security management. Also, within the main theme of

NordSec 2002 a special track is devoted to privacy enhancing technologies.

We were fortunate to have the choice of a large number of international

contributions. Out of 45 submitted full papers, 17 full papers have been selected by

the programme committee. Each of them was reviewed by at least three referees.

Besides, 5 short “work in progress” presentations were selected for the workshop

programme. Workshop speakers come from eleven different countries from Europe,

Asia and the United States. Our invited speakers address security and privacy aspects

of mobility: Prof. David Sands (Chalmers University of Technology, Gothenburg /

Sweden) talks on “Mobile Code Security: Some Challenges and Possibilities” and

Prof. Kai Rannenberg (Goethe University Frankfurt / Germany) presents “Mobile

Applications and Mulitlateral Security”.

 x

It is our pleasure to thank the members of the programme committee, the additional

reviewers and the members of the organising committee. Without their work and

dedication, NordSec 2002 would not have been possible. Besides, we owe special

thanks to Karlstad University, SIG Security, IEEE Sweden Section

Computer/Software Engineering Section, the Swedish Centre for Internet Technology

(SCINT) and Ericsson AB for financial and organization support. Finally, we also

want to thank Niklas Nikitin and Anna Brunström for providing the picture for the

cover of the proceedings.

Simone Fischer-Hübner Erland Jonsson

 xi

Programme Committee:

Simone Fischer-Hübner (Karlstad University, Sweden, Co-Chair)

Erland Jonsson (Chalmers University of Technology, Sweden, Co-Chair)

Tønnes Brekne (Telenor R&D Agder, Norway)

Anna Brunström (Karlstad University, Sweden)

Mads Dam (SICS & Royal Institute of Technology, Sweden)

Úlfar Erlingsson (Green Border Technologies, USA)

Alberto Escudero Pascual (Royal Institute of Technology, Sweden)

Viiveke Fåk (Linköping University, Sweden)

Christian Gehrmann (Ericsson Mobile Platforms AB, Sweden)

Dieter Gollmann (Microsoft Research, UK)

Ulf Gustafson (Chalmers University of Technology, Sweden)

Marit Hansen (Independent Centre for Privacy Protection / Kiel, Germany)

Audun Jøsang (Distributed Systems Technology Centre, Australia)

Svein J. Knapskog (Norwegian University of Science and Technology, Norway)

Ulf Lindqvist (SRI International, USA)

Stefan Lindskog (Chalmers University of Technology &Karlstad University, Sweden)

Hanne Riis Nielson (Technical University of Denmark, Denmark)

Kaisa Nyberg (Nokia Research Center, Finland)

Kai Rannenberg (Microsoft Research, UK)

Nahid Shahmehri (Linköping University, Sweden)

Teemupekka Virtanen (Helsinki University of Technology, Finland)

Michael Waidner (IBM Research Zurich, Switzerland)

Louise Yngström (Stockholm University/RIT, Sweden)

Additional Reviewers:

Ronja Addams-Moring, Fredrik Björck, Daniel Bradley, Christian Damsgaard Jensen,

Tyrone Grandison, Hans Hedbom, René Rydhof Hansen, Morton Swimmer, Douglas

Wikström, Albin Zuccato

Organising Committee:

Stefan Lindskog (Chair)

Anna Brunström

Simone Fischer-Hübner

Albin Zuccato

 xii

Mobile Code Security: Some Challenges and
Possibilities

David Sands

Department of Computing Science,
Chalmers University of Technology and Göteborg University, Sweden.

www.cs.chalmers.se

Abstract. The extensible functionality of modern systems invites secu-
rity problems. How can we protect ourselves against malicious or faulty
mobile code without loosing the evolving functionality that mobile code
provides? The language-based security approach attempts to enforce se-
curity policies at application level by analysing and transforming the
semantic behaviours of programs. In this talk I will review some of the
promising approaches in the area of language-based security, and outline
our work on enforcing confidentiality via covert channel elimination.

Virtual Hierarchies - An Architecture for Building and
Maintaining Efficient and Resilient Trust Chains

John Marchesini and Sean Smith ?

{carlo,sws}@cs.dartmouth.edu

Department of Computer Science - Dartmouth College, Hanover, NH USA
www.cs.dartmouth.edu/˜pkilab

Abstract. In Public Key Infrastructure (PKI), the simple, monopolistic organi-
zational model of a single certificate issuing entity works fine until we consider
real-world issues. Then, issues such as scalability and mutually suspicious orga-
nizations create the need for a multiplicity of certificate issuing entities, which
introduces the problem of how to organize them to balance resilience to com-
promise against efficiency of path discovery. Many solutions involve organizing
the infrastructure to follow a natural organizational hierarchy, but in many cases,
such a natural organizational hierarchy may not exist. In this paper, we use tools
such as secure coprocessing, threshold cryptography, and peer-to-peer network-
ing to address the former problem by overlaying a virtual hierarchy on a mesh
architecture of peer certificate issuing entities, and achieving both resilience and
efficiency.

1 Introduction

1.1 The Problem

Background By separating the privilege to decrypt or sign a message from the privilege
to encrypt or verify, public-key cryptography enables forms of trusted communication
between parties who do not share secrets a priori. Eliminating the need for shared se-
crets has multiple advantages. On a global level, it potentially enables extending trusted
communication across organizational boundaries, between parties who have never met.
But it can also reduce overhead in managing communication between parties even on
a local level, within one organization: the number of needed keys goes from Ω(n2) to
O(n), where n is the number of entities.

PKI has many definitions; the most commonly accepted definition refers to how one
participating party learns what the public key is for another party. Typically, approaches
to PKI begin by condensing trust: rather than a priori knowing the public key of each
party in the population, the relying party instead knows the public key of a designated
special party, who in turn issues signed statements (e.g., certificates and CRLs) about
members of the population.

? This work was supported in part by Internet2/AT&T, by IBM Research, by the Mellon Founda-
tion, and by the U.S. Department of Justice, contract 2000-DT-CX-K001. However, the views
and conclusions do not necessarily represent those of the sponsors. A preliminary version ap-
pears as TR2002-416.

This designated party is typically called the certificate authority (CA). Some ap-
proaches separate the process of issuing certificates from the process of identifying and
authorizing keyholders to receive the certificates; in these approaches, the latter tasks
become the responsibility of the registration authority (RA). Since the CA must hold
and wield a private key of considerable value, implementations apply various protec-
tions to that private key, such as housing it in a hardened cryptographic module that
is kept offline. Some ambiguity thus results regarding what the term “CA” refers to:
the entity (typically online) that issues and manages certificates; or this entity’s specific
machine that houses the private key. In this paper, we use the first implication.

There are numerous models which describe how a CA and RA should be related,
and who should operate them. One notion is to have an independent third party operate
the CA, and let the organization with actual end-users only operate the RA. Another
popular model is to have the CA and RA run by the same organization and have this
enterprise PKI blessed by some higher level third party organization (e.g. Verisign).

We make the latter assumption that the CA and RA are managed by the same do-
main (i.e. as an enterprise PKI). This arrangement is discussed in RFC 2459 and in
the current literature (e.g. [1–5]). Real-world deployers of this methodology include:
the U.S. Treasury and State Departments, the Federal Deposit Insurance Corporation,
Verisign, and many colleges and universities, including Dartmouth College.

More than One This simple PKI model of one CA servicing a user population suffers
from some inherent limitations. A certificate is the CA’s assertion that a keyholder pos-
sesses certain properties, such as a particular identity. In order to accept a certificate, a
relying party needs to trust the CA to do two tasks: (1) to ensure that its currently valid
certificates only assert bindings the CA judges to be true; and (2) to judge a binding is
true only when the keyholder really has those properties. If the relying party does not
know the CA—or if the CA is not in a position to verify the identity of the keyholders
according to some uniform policy—then the relying party cannot reasonably accept the
certificate.

These tasks can lead to conflicting constraints. Task (2) requires a relationship be-
tween the CA and the keyholders—which can lead to the enterprise PKI model 1 of
multiple CA/keyholder sets. However, task (1) requires a relationship between the CA
and the relying party, which creates the need to organize these PKIs so that public key
operations can take place across these sets.

PKIs within an organization are becoming a common occurrence. Such systems
have been well studied, and are often built from commercially available components.
Within an organization which has a PKI, the certificates generated by the organization’s
CA are meaningful. Outside of such an organization, however, those same certificates
are meaningless unless some agreement between a number of organizations is in place.

The question thus arises of how to organize multiple CAs. The basic literature (e.g.
[2]) gives a serious examination of this question. Readers unfamiliar with this literature
may be tempted to assert that the only natural solution here is to use a name-constraint

1 Some older approaches to PKI attempt to address this conflict by isolating the CA—task (1)—
but delegating registration to local RAs—task (2). However, this creates its own trust compli-
cations [5].

hierarchy: group CAs into sets that have some natural relationship; for each group, es-
tablish a new CA that certifies the CAs in that group; and continue this process upward,
so that the we result in a tree with a single trust root. For example, one might follow
the DNS hierarchy, and assume that a global root certifies a edu CA, which certifies a
dartmouth.edu CA, which certifies a cs.dartmouth.edu CA, which certifies
each member of our department.

Although apparently natural, this hierarchical approach has many drawbacks.

– Hierarchies are not always scalable, in that they cannot permit the participating
fraction of the population to grow gradually. Suppose the natural social hierarchy
has four levels, and two unrelated leaves want to establish a trust relationship. They
can only do this if all the interior CAs—from the first leaf, up to the root, then down
to the second leaf—are already participating in the PKI.

– Hierarchies are not always usable. The globally unique names determined by the
natural hierarchy may not necessarily be usable by the humans who need to use
them to make trust judgments. A colleague reports that his foo.com domain has
100K machines whose names are of the form bar.foo.com. Not only is this
namespace crowded—a typo will likely give the user the wrong machine instead of
an error—but it also changes dynamically: a sysadmin the user never meets changes
machine names without notification. Thus, using the natural hierarchy as a basis for
trust (via a hierarchical PKI) is problematic.

– Hierarchies do not always exist. The relationship between users and their immedi-
ate CAs is usually (but not always) natural. However, the upper regions get murky.
With mobile devices [6, 7] or collections of universities or government departments,
one typically encounters federations of peers with no clear natural organization.2

Indeed, except for DNS and perhaps the Roman Catholic church, it is hard to find
a natural hierarchy whose upper regions are well-defined. Which U.S. military ser-
vice3 should be the root? Which DOE laboratory?4 Why should CREN or USPS or
NIH be the root over academia or U.S. citizens at large?

PKI as a system Consequently, we are going to take the unorthodox view of looking at
“PKI” as a system that has various properties, instead of an automatic mirror of a social
arrangement that may not necessarily be appropriate, even if it exists.

We might start by thinking of conventional CAs (from the simple model above)
as nodes, and trying to decide how to link them together—perhaps by creating new
CAs—in a directed graph, where edges go from a CA to each entity that it certifies.

Two desirable properties of any PKI are resilience and efficiency.

– By resilience, we mean the ability of the system to tolerate the discovery that any
given key pair has been compromised. What trust judgments become impossible?
How many key pairs must be revoked and reissued?

2 The fact that “everyone gets to be King” has been cited as motivation for some U.S. govern-
ment bridge projects.

3 The first author would assert that it’s the branch to which he belonged.
4 The second author would assert that it’s the DOE laboratory for which he used to work.

.

PSfrag replacements

Weak Spot
Root CA

Dart CA Wisc CA

Alex Cam Will Zoe

Fig. 1. In a hierarchy, when Zoe receives a certificate from Alex, she verifies that the Dartmouth
CA certificate is signed by the Root CA. She then verifies that Alex’s certificate is signed by the
Dartmouth CA. As the number of CAs grows, it takes O(logV) time to verify the path from the
Root CA to the user which needs to be verified. If the Root CA is compromised in a hierarchy,
the system goes down until all certificates are revoked and new certificates are issued.

– To verify a certificate, a relying party needs to find a path from a trust root (a node
it a priori trusts) to the certificate in question. By efficiency, we mean the running
time of the algorithm to discover this path.

Resilience and efficiency are typically competing goals.

Structured Centralization. Many current architectures impose a rigid structure on the
organization of CAs, which means that path construction and validation can be deter-
ministic and efficient. Although this structure permits path algorithms to traverse the
topology within some efficient time constraints, it also results in a large amount of au-
thority residing in a single place (e.g. the root CA). This centralization of authority
directly decreases resilience: if the root CA is compromised, the entire PKI is unusable
until it can recover.

Hierarchies are the canonical example of this structured approach. Traditionally,
hierarchies achieve O(logV) (where V is the number of CAs) verification time, because
paths in a tree are well-defined and easy to find (Figure 1). We noted many drawbacks
above; another drawback is that hierarchies place increasing amounts of value on the
private keys of interior nodes. If an adversary were to compromise an upper-level CA
or even the root CA, the entire PKI must suspend operation until a recovery can occur
(i.e. all certificates issued by that CA are revoked, and new ones are reissued with the
CA’s new private key) (Figure 1).

Thus, hierarchies obtain efficiency at the cost of resilience.

Unstructured Decentralization. An opposing view involves organizing CAs in a more
decentralized way in an effort to increase resilience by not placing so much authority
in one centralized place. However, decentralization implies that path validation algo-
rithms must now do more work and must often use non-determinism to decide if a

PSfrag replacements

Dart CA Wisc CA

Ucsd CA

Alex

Mary

Zoe

Fig. 2. Meshes offer increased resilience. If the Wisconsin CA’s private key is disclosed, the other
CAs can continue to operate. Only Wisconsin is affected. When Wisconsin gets back online,
it may rejoin the CA network. Meshes also offer decreased efficiency. When Zoe receives a
certificate from Alex, she verifies that that a trust path exists from Alex’s CA to a point which she
trusts by examining certificates stored in the CA directories. In this example, the Dartmouth CA
and Wisconsin CA are cross-certified, so she believes Alex’s certificate is good. As the number
of CAs grows, it takes O(V) time to verify a certificate chain.

received trust chain is valid. These properties translate into a decrease in efficiency and
an increase in complexity on the part of the verifier.

Meshes are the canonical example of the unstructured approaches. Mesh PKI ar-
chitectures have been developed in part to avoid this single point of failure (Figure 2).
However, the non-deterministic nature of peer-to-peer organization increases the com-
plexity of the path verification algorithm significantly (Figure 2). Due to the fact that not
all possible choices lead to a trusted CA, coupled with trial-and-error construction of
the trust path (a path to a trusted CA), verification time in these schemes is usually high.
Further, mesh architectures make no guarantee to avoid cycles, leading to the existence
of choices in the path construction algorithm which may never terminate.

Thus, meshes obtain resilience at the cost of efficiency.

Other Approaches Finding algorithms which increase the efficiency of path construc-
tion in decentralized organizations is an emerging area of research. Algorithms which
use certificate extensions (such as name constraints and policy extensions), as well as
loop elimination techniques have been developed to enhance efficiency [1]. Yet another
possibility could be to use machine addressing and routing techniques, as the problems
appear to be potentially isomorphic. Our concern however, is the underlying organiza-
tion of CAs, and how they may be arranged to achieve efficiency and resilience.

Other common architecture schemes are more hybrid.
Extended Trust Lists are used to give users the ability to maintain lists of CAs which

they choose to trust. Each entry in this list may represent a single CA or an entire PKI,
which itself could be a Hierarchy or a Mesh. This scheme poses new challenges for
validation algorithms, as the starting point for these algorithms could be any node in
the list. The implication is that a path may have be to be constructed using every entry
in the list as a starting point.

Bridge CAs provide another alternative to the common approach of cross-certifying
enterprise PKIs through peer-to-peer relationships. Cross-certification without a Bridge

CA results in (n2 − n)/2 relationships for n enterprises (in graph theory, this graph is
known as a complete graph on n vertices, and is named Kn [8]).

The Bridge allows each of the enterprise PKIs to cross-certify to it, resulting in a star
topology between enterprises and reducing the number of relationships to n. Bridges are
also used for translating between different policy and legal domains. In these situations,
the PKIs themselves are usually complex.

While this is an attractive solution if all of the enterprises are Hierarchies, the Bridge
architecture does not solve path validation issues in general, as each of the enterprises
themselves may be Meshes [2, 3].

The Bottom Up With Name Constraints model [4] is one which shares our goal of
allowing organizations to construct their own PKI and then connect it to other organiza-
tions’ PKIs. The model assumes a hierarchical namespace and that CAs are certified in
both directions, down (from parent to child) and up (from child to parent). The model
also allows for CAs to cross certify directly.

Path validation in this model is quite efficient due to the presence of certification in
both directions. The validation algorithm begins by starting at a trust anchor and looking
first for a cross-certified CA which is either an ancestor of the target or the target itself.
If this fails, the algorithm proceeds up to the parent CA and searches through its cross-
certified CAs. This terminates when a cross certificate is found or when a common
ancestor is found.

This model also has impressive resilience properties. If a key is compromised, the
compromised CA can issue new certificates to all of the CAs which are certified (up,
down, and cross). The communities belonging to each certified CA will automatically
be bound to the new key, without having to make any changes.

The major difference between this model and ours is that we relax the assumption
of a hierarchical namespace. As mentioned earlier, hierarchies are not always usable,
scalable, or present.

1.2 Our Solution

We believe that both properties—efficiency and resilience—are important to most PKI
systems. We thus propose an architecture and are developing a prototype which aims to
bridge the gap between these seemingly competing goals. We feel this is novel as most
current architectures fail to provide both goals.

Our objective is to devise an architecture which allows for CAs to organize them-
selves in such a way as to maintain the following two invariants:

1. Efficiency. Trust chains produced by any of the entities may be verified in an effi-
cient manner; trust chains are loop-free. This is common in hierarchy schemes.

2. Resilience. The secrets (private keys) do not exist in any one place; for upper-level
CAs, private-key computations require collaboration. The parties are fairly ran-
domly distributed throughout the topology.

This architecture is useful when the relative authority of the CAs in the real world
is not easily represented by a strict hierarchy and when certificates need to be used
frequently outside of the issuing namespace.

A B

Fig. 3. A single collective. All of the nodes are CAs. The nodes inside of the oval (A and B)
are maintaining a portion of the private key privilege (e.g. via threshold cryptography), which is
acting as the Root CA key. The other nodes are directly connected to one of the nodes which
collaborate in cryptographic computations for the collective and may “use” the key (i.e. make a
broadcast to have a message signed by the nodes in the oval). It should be noted that it is possible
to put all of the nodes inside the oval, meaning that each member of the collective would maintain
a portion of the private key privilege.

Overview The mechanism we propose to accomplish this task is a virtual hierarchy—
a logical hierarchy formed in a peer-to-peer network. As with a standard hierarchy,
we can model a virtual hierarchy as a tree with nodes and directed edges. Leaves can
represent bottom-level users; their parents represent their natural CA.

However, the remaining nodes are virtual CAs. Although each such node is a logical
entity in the virtual hierarchy, it represents the collective action of a set of conventional
CAs. Consequently, we use the term collective for this set. (See Figure 3.) In the virtual
hierarchy, such collectives of conventional CAs comprise all the upper-level CAs.

We obtain this collective action via cryptography. There are a number of crypto-
graphic schemes which require collaboration in order to perform cryptographic com-
putations. The broad category for such methods is known as threshold cryptography.
Some examples include multi-party signature schemes [9] and Multi-Party RSA [10],
which we will discuss in Section 3.4. Even secret sharing [11] might qualify as a prim-
itive threshold scheme.

To simplify exposition, we frame our prototype in terms of secret splitting, where
the parties in a subset of a collective each hold a fragment of the collective’s private
key. To wield this key, the parties reconstitute it—leading to the significant drawback
that a single party might retain the key. More advanced threshold schemes do not share
this weakness; Section 3.2 discusses these issues further.

We have developed (and are prototyping) algorithms that allow natural CAs to form
collectives in an ad hoc manner. They then organize collectives into a hierarchy (where
a virtual node can itself become certified by another collective) in order to maintain a
good tree structure. (See Figure 4.)

This approach thus obtains the goals we desired:

1. Efficiency. By maintaining the structure of a hierarchy, we retain an expected O(logV)
trust chain verification cost, with no loops.

2. Resilience. By distributing the higher-level CA private key privileges among mul-
tiple parties, we retain the resilience of decentralized approaches.

A B

C D

Fig. 4. A hierarchy is emerging. Here there are two collectives, linked by the CA denoted as
“C”. C is a member of the original collective shown in Figure 3, and is a member collaborating
in cryptographic computations (along with D) of the second level collective. The ovals contain
nodes which share private key privileges.

TCP/IP Protocol Stack

Trusted Peer Access Layer (TPA)

Application Layer

Virtual Hierarchy Layer (VHL) Logical hierarchy layer.

CAs reside here.

Peer-to-peer layer.

The TPA uses TCP.

Fig. 5. The protocol stack.

Physical Layer The physical layer is a peer-to-peer network of secure coprocessors [12]
(we use the IBM 4758 5). The secure coprocessor is not strictly necessary to make
the virtual hierarchy layer work. However, since nodes in this layer are CAs, they
must all have a cryptographic module; however, tamper-resistance and remote attes-
tation/outbound authentication adds security against insider attack at any one node.
Practically speaking, part of our decision to use secure coprocessors came from the
fact that we already had some devices, we had some familiarity with the programming
environment, and the modules we had are validated to FIPS 140-1 Level 4.

2 Overall Structure

We approached the problem in two stages, the first was to implement a peer access
layer which allows secure coprocessor to communicate securely, and the second was to
implement the virtual hierarchy algorithms on top of that layer. The resulting protocol
stack is depicted in Figure 5.

5 Recently, security vulnerabilities [13, 14] have been demonstrated in an application (IBM’s
CCA) which runs on the 4758. It should be noted that these vulnerabilities belong to the
application, and not the 4758 platform. At the time of writing, the 4758 has no known vulner-
abilities.

Our prototype implements the Virtual Hierarchy Layer (VHL) and the Trusted Peer
Access Layer (TPA). The prototype version of the VHL contains a command line inter-
face so that we do not need to integrate with a CA at this stage in development. The peer
access layer running inside of the IBM 4758 is depicted as the TPA layer, and the algo-
rithms which construct and maintain the logical hierarchy are shown as the VHL. The
two layers are implemented as separate processes, with the output of the VHL being
piped into the TPA using standard UNIX pipes.

Before we discuss the layers in detail, a simple example will be useful in under-
standing the high level operation and what we are trying to achieve. In the example
shown in Figures 6 through 10, two machines A and B will connect, negotiate a private
key, and store half of the private key privilege. This operation forms the root collec-
tive. Four more machines will join the collective, and are able to “use” the private key,
whose privilege is maintained by A and B. The result is similar to Figure 3. Then a
new collective will be formed by C and D, and a new node will be placed in tree (i.e.
the virtual hierarchy, shown in the “VHL” column of the diagrams). This is a simple
example, building a virtual hierarchy with only two nodes, but will serve to familiarize
the reader with the basic concept. As more CAs make connection requests in the TPA,
the tree in the VHL will continue to grow downward.

A B

TPA VHL

Fig. 6. Step 1: The two machines are not connected, and neither of them share the private key
privilege for a virtual CA.

N1A B

N1

TPA VHL

Fig. 7. Step 2: A connects to B and they establish a virtual CA, resulting in the two parties now
sharing a portion of the private key privilege (as denoted by the oval). A collective is formed and
a node N1 is established in the virtual hierarchy.

3 Virtual Hierarchy Layer

From the highest level, the virtual hierarchy (i.e. the logical hierarchy in the peer-to-
peer network) is constructed by an algorithm that allows peer CAs to establish a secure

N1BA

N1

VHLTPA

Fig. 8. Step 3: More nodes join the collective by connecting to one of the machines already in the
collective (A or B). None of the new nodes are required to negotiate keys, as the maximum size
of a collective for this example is six. Since the four new CAs are allowed to sign statements with
the key held whose privilege is shared by A and B (as in Figure 3), the virtual hierarchy remains
unchanged.

N1

N2

C D

A B

N2

N1

TPA VHL

Fig. 9. Step 4: Machine D makes a connection to machine C. Because D is at a distance greater
than one from one of machines acting as a virtual CA (machines A and B in this example), C

and D must establish a new virtual CA and share a portion of the private key privilege (as in step
2 above). This operation forms a new collective and a new node N2 in the virtual hierarchy. Note
that CA C is now in both collectives.

N1

N2

C D

BA

N2

N1

TPA VHL

Fig. 10. Step 5: Two CAs make connections to members of the new collective (C or D), and join
the new collective. Since a private key has already been established for that collective (whose
privilege is shared by C and D), and the maximum size is six, the new members do not need to
negotiate a key (as in Step 3). The virtual hierarchy remains unchanged.

connection and negotiate a secret which each of their communities may use as an end-
point in their trust chain. Pieces of the trust root’s privilege are then stored among the
peers who negotiate it.

This leads us to make the following two claims:

Increased Resilience The result of this negotiation produces a root “entity” whose privi-
lege is distributed among the n parties who are at a distance one (i.e. directly connected)
to one of the actors in the negotiation. This group of n parties is a collective and all act
as though the “entity” is their root CA. The result of requiring collaboration to perform
cryptographic computation among a group of peers alleviates the single point of failure
problem. While the number of targets increases, the payoff for successfully compromis-
ing a target decreases. Minimally, an attacker must successfully compromise at least as
many targets as are sharing the private key privilege to get the private key. As with
pro-active security [15], this makes the scheme more resilient to compromise.

Increased Efficiency The result of this negotiation produces a root “entity” whose role
is to act as a trust point for the n parties who are at a distance one to one of the actors
in the negotiation. We argue that this maintains a hierarchical trust structure similar to
one which would be found in a physical hierarchy of CAs. Maintaining this hierarchy
allows trust calculations to be performed at an average of O(logV) time (again where
V is the number of CAs participating in the network).

It is important to realize that our solution, like other current schemes, would require
each community to perform some amount of work to reflect the new topology. Time
and space complexity analysis of this task is an area for future work.

3.1 Registration

In order for a CA to join a collective, it must offer a statement of its policy and practices
to the collective for review. If and only if the collective reaches a consensus to allow the
CA to join, will the CA be admitted. The same process holds for collectives which join
other collectives.

There are a number of good questions that arise here. How is this policy expressed?
How is it evaluated? How does a collective reach a consensus? While these questions
are all important, they are all orthogonal to the idea we are presenting. We have provided
a framework in which to explore a range of possible solutions. In our prototype, we rely
on the presence of a 4758 running our software. As noted earlier, the 4758’s outbound
authentication facilities [16], or the remote attestation features of Trusted Computing
Platform Alliance (TCPA) or Palladium could provide more assurance, in that they
could verify things such as code load and CA software.

3.2 Simplifying Invariants

Our algorithm follows several rules that constrain and simplify the problem.
In order to maintain the property that verification may be done in O(logV), we

have designed our algorithm to maintain the invariant that there are no cycles in the
connection graph produced by the connection network of CAs. These connections are
accomplished using the protocol TPA Layer.

We maintain this invariant because if we were to allow cycles at this layer, we would
break the hierarchical structure by transforming it from a tree into a less-structured
graph. Breaking the hierarchical structure would have the following two implications:

First, to perform an efficient path verification algorithm in this graph, the algorithm
would need to locate the shortest correct (i.e. matching the certificate chain) path. This
would take longer than O(logV) in the average case.

Second, any such algorithm would require state to be maintained so that the shortest
correct path may be calculated without having to account for the time it takes to discover
the topology in real time. This could be accomplished by implementing a “smarter”
routing algorithm in the TPA Layer (e.g. reverse path forwarding [17]). Because we
maintain our no-cycle invariant, we can instead use simple broadcasting. Alternative
schemes that relax this invariant are an area for future work.

In addition, our algorithm maintains simplifying restrictions on the communication
that occurs between two collectives.

First, at least one collective must be a root collective (the root node in some virtual
hierarchy). Without this restriction, intra-collective connections would break the tree
topology by introducing cycles. This can be seen by envisioning two unconnected trees.
If a leaf node in one tree makes a connection to a leaf node in another tree, no cycle
is introduced. But if their parents also connect, a cycle is formed. By forcing at least
one node in the connection to be the root node, we alleviate the formation of cycles. If
neither collective is a root collective, the protocol will not allow the connection.

In addition to breaking the topology, violating this restriction is a potential attack,
whereby an attacker tries to join a number of collectives in an attempt to gather pieces
of the private key privilege. As noted, one possible defense is to utilize the IBM 4758’s

outbound authentication scheme as a basis for authentication. Other secure hardware
solutions, such as the TCPA, may have similar solutions, but are perhaps more easily
compromised than a FIPS 140-1 Level 4 validated device, such as the IBM 4758.

Second, nodes which collaborate in cryptographic computations for one collective
may not collaborate for another. Allowing nodes to collaborate for two collectives si-
multaneously forces that node to hold two separate trust chains and breaks the hierar-
chical constraints.

We considered having the algorithm maintain a “balance invariant” on the hierarchy
(e.g., each operation would maintain some balance property in the tree). However, this
approach could result in large changes in the topology when a single node joins the
network. We do make an assumption, however, that the nodes join and leave the network
in a random fashion, resulting in a randomly built tree. It can be shown that randomly
built trees have a height of O(logV), and a worse case height of V . The possibilities of
enforcing a balance invariant is an area for future work.

Cryptography In order to meet our claim of increased resilience, it is necessary for our
scheme to require collaboration in order to perform cryptographic computations.

We take the approach that pieces of the private key privilege are scattered throughout
the collective, as noted earlier. Many cryptographic techniques can enable this behav-
ior, such as secret sharing and cooperative signature schemes [18]. These schemes are
secure, but complex to implement. We discuss implications of some of these techniques
in Section 3.4, and discuss Multi-Party RSA, as we plan to eventually implement it.

For simplicity, we considered the naive method of secret splitting [19]. When a
request is made to sign something, the key is discovered by the host which received the
request by broadcasting to the collective and ordering the pieces of the key. This is a
transient operation in that the key is not stored at the host. Once the operation has been
performed, the host forgets the key. It should be stated that this operation is dangerous,
as it exposes the assembled key. In reality, assembling the key inside secure hardware—
that could be trusted to protect it from malicious insiders—could provide some level of
protection, as could using a better threshold scheme which does not require the key to
be assembled at all.

3.3 The Algorithms

Our prototype maintains the invariants put forth in Section 1.2. The client and server
actions guarantee the first invariant by eliminating cycles in the topology. We argue
that the elimination of cycles is key to allow for efficient validation. The algorithms
maintain the second invariant by enforcing that parties which negotiate a secret only
store a fraction of the privilege. This implies that the secrets are distributed among
members of the collective.

The server action is responsible for accepting connection requests, authenticating
them, and deciding whether the two parties need to negotiate a secret. This decision
is based on whether one of the parties has a portion of the private key privilege. The
presence of such an entity in either party implies that at least one of the parties belongs
to a collective and the other one is joining. The absence of this portion of the privilege

implies that a new secret must be negotiated, which in turn, means that a new collective
is being formed.

The client action is called from an outside entity (i.e. user code), and is essentially
making the same decision as above. The added burdens of avoiding cycles and enforcing
assumptions about communication between collectives belongs to this action.

The validation procedure’s sole responsibility is to determine whether some trust
chain it receives is valid. This is done by traversing the list from the front (trust point)
to the rear, and validating each node. The validation for any node is done by the Verify
call. If Verify is successful for every node in the chain, then the validation procedure
will return true.

Pseudocode for the algorithms can be found in the appendix of our preliminary
report [20].

3.4 Analysis

In order to meet our claims of increased resilience and efficiency, we need to establish
the following:

Structural Correctness The client and server actions maintain the negotiated secrets in
a hierarchical, acyclic fashion. This is necessary to get O(logV) average running times
for the Validate procedure.

Privilege Distribution The functions maintain the property that the private key privilege
and collaborating parties for each collective are distributed throughout the collective.

Structural Correctness The notion of structural correctness is used to show that the
client and server actions maintain the private key privileges in a hierarchical, acyclic
topology.

The hierarchy is maintained in two ways. First, the original two parties to connect
form the root collective. As additional nodes join one of these two nodes, they are inte-
grated into the collective as they are at a distance of one from one of parties maintaining
the private key privilege for the collective.

As nodes make connections with collective members which are not maintaining the
private key privilege, new collectives are formed. It is worth mentioning that a node
which does not belong to a collective is the root of a virtual hierarchy which contains
only itself.

Second, if there is a connection established between collectives, at least one of the
collectives must be a root collective. If this were not the case, it would be possible
for two leaf or internal collectives to join, resulting in every node in both trees to be
reachable from two different trust roots, forming a cycle. This is exactly what we are
trying to avoid, as this is the type of situation which leads to validation algorithms
having to try multiple paths from an end point to a trust point.

The algorithms maintain a topology which avoids cycles. Each node in every col-
lective maintains a my root variable which is set to the root collective. This variable is

managed to always contain the node’s root collective. As nodes attempt to make con-
nections, they check this so as ensure that they do not attempt to make connections with
nodes which already belong to the same tree.

Secret Distribution Secret distribution is the principle means by which we meet our
claim of increased resilience. As noted earlier, threshold cryptography provides many
tools. We discuss two.

Secret Splitting The scheme we implemented in our initial prototype is perhaps the
simplest, and the weakest. The client and server actions distribute the keys across the
collective in such a way that they can be correctly reassembled, and used to sign state-
ments from the collective.

Splitting the private key into x pieces and re-assembling them when the collective
needs to sign a statement does not invalidate the key. This technique is referred to as
Secret Splitting [19], and for our prototype, we let x = 2.

One problem with this scheme is that we do not mandate redundancy of the key
fragments. If Alice and Bob each hold a fragment and Alice has a power outage, the
collective can no longer sign statements, at least until a new key can be established
(which invalidates all the outstanding signed statements), or Alice powers up again.

The second problem with this scheme is that the key must be reassembled to be
used. The only justification for this (albeit a weak one) is the fact that we have secure
hardware. Without such machinery, this would totally expose the private key for a short
time.

Secret sharing [11] would eliminate the first problem but not the second. Multi-Party
RSA would eliminate both, which is why we plan to implement it in our next prototype.

Multi-Party RSA In opposition to a transient reassembling of the key and letting the
result sign some statement, we envision a scheme which sends the statement around
to each node holding a key fragment, and a portion of the signature being applied at
that node. We plan to eventually use some instance of Multi-Party RSA to employ this
technique in our system [18, 10].

Due to the algebraic properties of RSA, the algorithm lends itself to collaborative
signature schemes quite naturally (an idea first proposed by Boyd [9]). Since then, the
cryptographic community has generated a number of methods and protocols which uti-
lize these properties. Samples of some such protocols and proofs of their security are
discussed by Bellare and Sandhu [10] and Tsudik et. al. [21]. (This is by no means a
complete list.)

Practically, using Multi-Party RSA in our system would allow a subset of members
in the collective to possess key fragments, but would relax the assumption that they
key is reassembled. The message is instead broadcast to the collective and comes back
signed by the keyholders.

4 The Trusted Peer Access Layer

The TPA implements a protocol for trusted peers which allows them to communicate in
a secure fashion. By secure, we mean that all parties mutually authenticate one another,

and that all traffic is encrypted by the secure coprocessor in such a way that an adversary
could not discover the plain-text of the message — not even if the adversary is the host
(i.e., the computer which houses the coprocessor). The protocol need only provide a
decentralized means to locate items stored among those participating in the network
(e.g. Gnutella) [22].

Loosely, the TPA Layer is a peer access layer running in secure hardware (the IBM
4758 Secure Coprocessor). The protocol is implemented across two communicating
programs, one running on the host and the other residing in the card.

The host code is responsible for 1) implementing a command line interface which
allows users (or other programs) to issue commands, 2) connection management be-
tween nodes over standard sockets, and 3) handing the TCP payloads to the card for
processing and putting response packets from the card onto a socket.

The card code is where the protocol’s packet processing logic resides, as well as
the routing tables and secrets. The idea is that the card manufactures outgoing packets,
encrypts them using secrets negotiated by it and another coprocessor in the network,
and sends a chunk of ciphertext along with a socket number to the host so that it may
place the ciphertext into a TCP payload and fire it to the intended recipient. When a
packet arrives, the host program pulls the ciphertext out of the TCP packet and sends it
to the card for processing.

The following is a brief discussion of the three major phases of development that
drove our prototype implementation.

Peer-to-Peer. Our first task was to evaluate existing true peer-to-peer protocols that al-
lowed for distributed location without the aid of a central server (like Napster). Gnutella
was immediately appealing due to its simplicity, community, and availability of docu-
mentation and open source implementations.

It is important to understand what exactly Gnutella is and what it is not. Gnutella is a
protocol and nothing more. In v0.4 (the base specification), Gnutella defines five packet
types (called descriptors), a format for headers, and six rules for routing. Gnutella is
only used to locate files across a network, transfers are done out of band (usually over
HTTP).

However, Gnutella is not an implementation of this protocol. There are several im-
plementations in existence, some of which add to the basic protocol, but they implement
at least the core functionality described above [23].

We chose to use the core protocol as well as it seemed to fit our needs (actually, the
“Push” descriptor type exceeds our needs, so we eliminated it), and could help reduce
our time to prototype.

Secure Hardware. The next task was to find a fairly mature code base that implemented
an open source Gnutella servent (SERVer + cliENT). Our constraints was that it should
run on Linux, and be command line driven in order that we may pipe commands to it
(something GUI based schemes lack).

We chose Gnut v0.4.25 because it met our requirements, was well documented, and
professionally coded [24].

We then undertook the task of finding which pieces of Gnut stayed on the host and
which went to the 4758. As stated above, the socket management code remained on the

host, and the packet logic and routing tables were ported to CP/Q++ (the native OS of
the 4758).

At the end of this phase, we were able to observe 4758-enabled machines store
strings and using the command line interface, were able to let other nodes locate them.

Adding Armor. In order to meet our definition of resilience, we had to implement a
protocol for authentication and encryption, using the native cryptographic services pro-
vided by the 4758.

First, we consider authentication. The first element of our definition of resilience
is that nodes must have a way to mutually authenticate one another. Bird et al. [25]
explain that nonce based protocols are most secure, and since the 4758 provides a ran-
dom number generator, we decided to go this way. We ended up implementing FIPS
196, which is essentially the core of most authentication schemes used in practice (e.g.
Secure Sockets Layer) [26].

Second, we consider encryption. Once nodes have authenticated, the initiator sends
four 3DES keys generated by its 4758 to be used for further encryption of all traffic
between the two parties. Two of the keys are for encrypting messages and the other two
are used for constructing a keyed Message Authentication Code for each message. We
chose DES/3DES because it is fast.

5 Summary and Future Work

We are currently in the process of implementing the prototype, and once complete, we
intend to make it available for public download. The TPA is lacking encryption support
for all traffic. However, we do currently support authentication and are able to locate
strings (which would represent cryptographic keys) across machines in the lab. The
VHL is currently being implemented.

As it turns out, the result of this work has led to many more questions. In its current
state, we plan to show proof of concept. As future work on this project progresses,
we plan to address some of the questions that have been raised in order to evolve the
system past being just a proof of concept. We are considering many ways to enhance
the architecture.

One direction is to examine data structures other than trees. Balanced trees (e.g.
AVL or Red-Black trees), and directed acyclic graphs could possibly lead to better
solutions.

Another direction is to examine different routing protocols in the TPA. Specifically,
reverse path forwarding or some other protocol which is a little smarter than just broad-
casting could be interesting.

Our current architecture uses secret splitting, but as mentioned, we plan to extend
the prototype to use Multi-Party RSA, allowing the message to travel around the col-
lective to be operated on instead of the key being reassembled at one machine.

We plan to make much use of the virtual hierarchy technique in our current NSF-
funded Marianas project [22], which explores using peer-to-peer techniques and secure
hardware to build survivable trusted third parties.

References

1. Elley, Y., Anderson, A., Hanna, S., Mullan, S., Perlman, R., Proctor, S.: Building certification
paths: Forward vs. reverse. In: Network and Distributed System Symposium Conference
Proceedings. (2001)

2. Housley, R., Polk, T.: Planning for PKI. Wiley (2001)
3. Polk, T., Hastings, N.: Bridge certification authorities: Connecting b2b public key infrastruc-

tures. In: PKI Forum Meeting Proceedings. (2000)
4. Kaufman, C., Perlman, R., Speciner, M.: Chapter 15. In: Network Security - Private Com-

munication in a Public World. 2nd edn. Prentice Hall (2002)
5. Ellison, C.: Improvements on conventional pki wisdom. In: 1st Annual PKI Research Work-

shop. (2002) 165–175
6. Hubaux, J., Buttyan, L., Capkun, S.: The quest for security in mobile ad hoc networks. In:

Proceedings of the 2nd ACM Symposium on Mobile Ad Hoc Networking and Computing.
(2001)

7. Zhou, L., Haas, Z.: Securing ad hoc networks. IEEE Network (1999) 24–30
8. Wilson, R.: Introduction to Graph Theory. Addison Wesley (1997)
9. Boyd, C.: Digital multisignatures. In: Cryptography and Coding. Oxford University Press

(1989) 241–246
10. Bellare, M., Sandhu, R.: The security of a family of two-party rsa signature schemes.

citeseer.nj.nec.com/bellare01security.html (2001)
11. Shamir, A.: How to share a secret. Communications of the ACM 22 (1979)
12. Smith, S., Weingart, S.: Building a high-performance, programmable secure coprocessor.

Computer Networks 31 (1999) 831–860 Special Issue on Computer Network Security.
13. Anderson, R., Bond, M.: Api-level attacks on embedded systems. Computer (2001)
14. Clulow: (2002) Personal Communication.
15. Rabin, T.: A simplified approach to threshold and proactive rsa. In: CRYPTO. (1998)
16. Smith, S.: Outbound authentication for programmable secure coprocessors. In: 7th European

Symposium on Research in Computer Science. (2002)
17. Tanenbaum, A.: Computer Networks. Third edn. Prentice Hall (1996)
18. Simmons, G.: An introduction to shared secret and/or shared control schemes and their

application. Contemporary Cryptology: The Science of Information Integrity (1992) 615–
630

19. Feistel, H.: Cryptographic coding for data-bank privacy. Technical Report RC 2827, IBM
Research (1970)

20. Marchesini, J., Smith, S.: Virtual hierarchies - an architecture for building and maintaining
efficient and resilient trust chains. Technical report, Dartmouth College (2002) Available at
www.cs.dartmouth.edu/tr/ncstrl.dartmouthcs/TR2002-416/.

21. Boneh, D., Ding, X., Tsudik, G., Wong, C.: A method for fast revocation of public key cer-
tificates and security capabilities. In: 10th USENIX Security Symposium, USENIX (2001)
297–308

22. Nicol, D., Smith, S., Hawblitzel, C., Feustel, E., Marchesini, J., Yee, B.: Survivable trust for
critical infrastructure. In: Internet2 Collaborative Computing in Higher Education: Peer-to-
Peer and Beyond. (2002)

23. Clip2: The gnutella protocol specification v0.4. (www.clip2.com)
24. Pieper, J., Munafo, R.: Gnut documentation. (www.gnutelliums.com)
25. Bird, R., Gopal, I., Herzberg, A., Janson, P., Kutten, S., Molva, R., Yung, M.: Systematic

design of a family of attack-resistant authentication protocols (1992)
26. U.S. Dept. of Commerce / National Institute of Standards and Technology: Entity Authenti-

cation Using Public Key Cryptography. (1997) FIPS PUB 196.

Local Networks and PKI

Sanna Kunnari1, Tiina Seppänen2

1 Ericsson Research
Sanna.Kunnari@ericsson.fi

2 Ericsson R&D
Tiina.Seppanen@ericsson.fi

Abstract. Experience has shown that creating a global PKI for almost any
purpose is a very demanding task. Therefore, there have been some proposals to
postpone the extensive implementation of global PKIs. Instead, so called local
PKI support could and perhaps should be provided first. One proposed method
is to bootstrap a local PKI from the cellular infrastructure, leading to a solution
where the current authentication and charging framework could be utilized
locally.
 Local PKI solutions have many advantages over a global one, the main
benefit being ease of deployment. On the other hand, it suffers from a number
of open issues, including problems in localization of service.
 In this paper we describe our experiences with our local PKI prototype,
which we have built on Linux platform. During the course of implementation
we have noticed a number of practical problems, and eventually made us to
question the concept of locality altogether.

1 Introduction

New business models need new security solutions to support them. Public Key
Infrastructure (PKI) is suggested to provide a potential cohesive framework, within
which business applications can be conducted with the trust they require [8].
However, as we discuss in this paper, the role and extend that PKI should take is far
from clear.

A PKI is defined as "the set of hardware, software, people, policies and procedures
needed to create, manage, store, distribute, and revoke public key certificates based
on public-key cryptography" [12]. The current network security protocols rely on
public-key cryptography to provide services such as confidentiality, data integrity,
data origin authentication, and non-repudiation. From this point of view, the purpose
of a PKI is to provide a framework for trusted and efficient key and certificate
management, thereby enabling the use of authentication, non-repudiation, and
confidentiality services [12].
 The main technical function offered by PKI systems is distribution of public keys
and establishing trust in the public keys. The user’s public keys are typically stored in
a database with associated subject identity and other information, each record is
represented as a signed certificate. Certificates however, do not by themselves
enhance the trust in the system, as a CA is still required to create the certificates and

thereby provide the necessary trust. A PKI enables certification and supports
distribution of certificates.
 During its lifetime, a certificate may be compromised either through carelessness
by its owner, through system compromise, or via mandatory retirement of the
certificate. Therefore, certificate revocation or other means of validity checking must
be included in all PKI systems.
 Revocation or other validity information must be publicly available, exactly as the
certificates themselves are available. This information is typically represented as a
Certificate Revocation List (CRL) [2], signed by the CA. In the list, each entry details
a revoked certificate. Typical information contained in each list entry includes a
certificate serial number, the revoker’s identity, time and date of revocation, and a
reason for revocation. As new revocations occur, entries are added to the list, and a
new version of the list is published.
 Other means for validity checking include online validation [8] and short-lived
certificates [17]. However, we limit the discussion within this paper to CRL based
revocation.

1.1 Market for Authorization and Charging

With current systems, it is technically feasible to offer mobile users many types of
new services. In typical wide scale IP-based systems, RADIUS or DIAMETER based
Authentication, Authorization and Accounting (AAA) servers and protocols typically
take care of entity authentication and authorization [13]. However, there is a lack of a
large-scale infrastructure to authorize and charge users for these new services. By
combining PKI and charging systems it might be possible to create such an
infrastructure.
 Some market analyses indicate that the global PKI technology has failed to take
off [1]. On the other hand, the business needs of the customers drive for a functional
PKI based infrastructure [11]. In practice, companies do use public key technologies
in web-based businesses to ensure that vital customer and corporate information is
kept integral and confidential. Therefore, well-functioning PKI products are business
opportunities for competent manufacturers. Additionally, current situation seems to be
that customers have desires for small specific solutions [18].
 PKI in a global scale has been a phenomenon that has not yet really appeared [1,
18], although, many applications and protocols expect the services of it. Experience
has shown that creation of a global PKI for almost any purpose is a very demanding
task. The only widely used example of such a PKI is the one used to secure TLS
based Web transactions [8], and that is of relatively low security level. The main
reason for the security weaknesses can be found in the client end, where both the
multitude of default CA certificates and the arcane user interface impose security
threats. As a consequence, there have been some proposals to postpone the extensive
implementation of global PKIs.
 Instead, so called local PKI support could and perhaps should be provided first. A
global PKI may be unreachable as the first approach. One proposed solution is to
bootstrap a local PKI from the cellular infrastructure, leading to a solution where the
current cellular based authentication and charging framework could be utilized [10].

1.2 Paper Organization

In this paper we aim to generalize the originally cellular centralized local PKI ideas
into a more generic framework. The original thoughts were developed within 3GPP
[10], but we see that the concept is applicable for other networks as well. We have
identified several open issues with the concept and these issues are being addressed in
this paper. Additionally, we have identified and examined some (key management)
scenarios from the concept identified and examined some certificate delivery
scenarios.

 The rest of this paper is organized as follows. Next, in Section 2, we introduce the
concept of local PKI. Section 3 describes some related research. In Section 4 we
illustrate the functions of a typical local PKI, and in Section 5 we describe our
prototype. In Section 6 we describe our experiences with the prototype, identifying a
number of future research topics. Finally, Section 7 contains our conclusions from
this research.

2 Local networks and PKI

2.1 Background

As global PKIs have been found to be inapplicable in the (near) future, the research
community is going towards local aspects. People are focusing on small, specific
cases and network areas, environments that can be easily defined. The concept of
local PKI includes the need to define what a local network is. A definition of network
boundaries is needed. In the cellular network case the answer can be derived from the
operator network boundaries. In the Internet case a local PKI could refer to Intranets,
personal area networks (PAN), or application domains. However, the purpose is not to
imply a local PKI where a CA is controlled by the same organization as those
supplying the majority of PKI users. In principle, the local CA is any available (local)
trusted third party that the user and/or his organization trust.
 Certificate retrieval is an important issue in PKI systems, as verification of
certificates requires public key decryption, which can be a potentially high-cost
operation. It is therefore desirable to optimize the certificate retrieval process to
reduce waiting times and overheads. Retrieval of a certificate from within the local
domain is a straightforward operation, which makes local domains and networks very
appealing.

2.2 Local Networks and Domains

Public-key infrastructures have been an important development for addressing the
security concerns of network applications. PKIs provide a facility to partition the
world into localized security domains [5]. Domains are typically localized within
organization boundaries, encompassing the trust region of that organization only.

Domains may contain from one to many hosts and many clients, though the purpose
of domains is to localize a manageable number of clients and machines within the
scope of a security administrator. The simplest PKI system is comprised of only a
single domain within which all entities exist.
 Splitting the world into domains alleviates some problems, but creates others. First
problem is how does one domain establish trust with other domains. Other problem
involves the practical communication problems between the domains, e.g., ones
caused by intermittent connectivity. It is difficult ensure that certificates are always
passed around between domains as needed.
 These problems can be resolved by addressing the trust routing problem; a domain
needs to be able to establish trust, via cross-certification, with other domains. Each
domain may opt to use its own ad hoc routing method or a global hierarchy can be
established within which every domain resides, cross-certified with at least one other
domain [5].
 Cross-certification performs two essential functions within the PKI domain
hierarchy [5]. Firstly, it propagates trust between domains; thereby enabling inter-
domain communications secured using PKI services. Secondly, it enables shortcuts
through the domain hierarchy, speeding up certificate retrieval between any two
domains by reducing hop-distance between the two domains through the hierarchy to
a single hop. Cross-certification occurs in much the same manner as client
certification, except that there must be higher assurance of authenticity of each party.
 The case of inter-domain certificate and CRL retrieval is more complicated and
depends heavily on the domain interconnection strategy adopted within the PKI. To
retrieve a certificate from a remote domain requires that the CAs of the local and
remote domains are cross-certified or there is a path of cross-certified domains linking
the local and the CA of the remote domain.
 Retrieving a certificate from a remote domain yields a chain of certificates
corresponding to the path of cross-certification of CAs and/or domains through the
hierarchy and the desired certificate. Validating the certificate chain requires that each
certificate's digital signature is verified with the public key of the issuing CA. It is
obvious that certificate chains need to be kept as short as possible to ensure timely
retrieval.

2.3 Defining Local PKI

The CA is the trusted third party within the system by which all trust is propagated. It
is a highly trusted and secured piece of software and must reside within the trusted
computing base of the installation to maintain the trust in the local PKI domain and
overall PKI hierarchy
 The basic idea of local PKI is that it is defined in a specific, rather bordered
network. There is a local CA that can assign and delete certificates for local members
or visitors. The local CA is a trusted by local service providers and users (and/or the
organization behind the user). However, the local CA is not tied to or controlled by
the user’s organization. There may not be vital needs for external trusted third parties
or other communications. Advantages of the concept are discussed later in Section 4.

 The basic concept is presented in Figure 1. Each local network has one or more
CAs. There may or may not be some service providers, depending on the network
service level. A user may be at his/her home network or then alternatively visiting
another network.

User

Local CA

Service
Provider

Local
network

1..n

0..n

member or
visitor

Fig. 1. Local PKI in general view

 There can be three kinds of certificates: authorization certificates that can be used
for many purposes, e.g. to denote performed purchases of services, attribute
certificates, and identity certificates [10]. In most current systems identity certificates
are eventually used for access control, even though authorization certificates often
provide a better solution.
 The lifetime of authorization certificates is expected to match the validity period
of the authorization, e.g., to follow the subscription period purchased. The concept
could advantage short-life certificates because they will not usually need to be
revoked and will not need to be include on the certification revocation lists (CRL).

3 Research on the Area

3.1 Related Techniques and Utilization

There are already activities in the utilization of local network services, such as
utilizing local CA services. It appears to be that China is actively utilizing the concept
of local PKI, as they distribute the services to local fixed telecommunication networks
[4].

 The Federal Public Key Infrastructure Technical Working Group (FPKITWG) has
developed the Bridge Certification Authority (BCA) concept to provide certificate
chains to link enterprise Public Key Infrastructures within the Federal government,
and to provide trust chains between the Federal Public Key Infrastructure and those of
external organizations [3]. However, the existence of certificate chains among
infrastructures does not, by itself, provide the ability for subscribers of different PKIs
to communicate securely. In particular, the BCA concept as defined to date does not
provide a mechanism for making certificates or revocation information generated in
any given public key infrastructure domain available to relying parties in other public
key infrastructure domains. The research is trying to overcome these problems with
concepts like the Border Directory System Agents (BDSAs).
 There is also analysis on short-lived certificates. It suggests that using certificates
with shorter validity can simplify the security framework [17]. To free a client from
key ownership responsibility, there should be no possible association between the
client and the PKC key pairs. For example, any short-lived certificate issued to the
client should not be taken from a small pool of key pairs. Short-lived certificates
demand minimal key management and protection, since they expire soon after their
expected usage. The authors claim that they can develop an infrastructure that can
deliver certificates both efficiently and securely. Their idea is based two separate
tasks: entity registration and certification.
 The credentials used in a PKI typically consist of a public and private key pair, a
corresponding certificate or certificate chain and some trust or root CA information
[20]. They are usually stored on a desktop or laptop system as part of an application
specific store. Currently, users need to get too involved with the mechanics of
creating and maintaining their PKI credentials. Application specific stores mean that
users can not easily use the same credential in multiple applications or on multiple
devices. In effect, today, credentials are not portable. Ideally, users would be able to
use a common set of credentials with their Internet-ready devices.
 A distributed terminal consists of several components within physical proximity to
each other and the user or users. They are interconnected with local communication
links like short-range wireless connections, e.g. Bluetooth. This type of personal local
network used to be called a Personal Area Network (PAN). There are publications on
the area that has a goal to provide security architecture applicable to the PAN
reference model [22, 23]. Naturally, authentication and key exchange using a
certificate demand the certificate to be signed by a common trusted third party. In a
personal environment this can be achieved by letting the owner issue certificates to all
his components using a particular CA device. The authors call such a device a
personal CA device. A personal CA device might be a mobile phone, PDA or laptop
that fulfils the security requirements for issuing and signing certificates. The personal
CA concept requires a personal PKI that must satisfy several security requirements.
An ordinary user for home or small office deployment uses the personal CA. [22, 23]

3.2 Related Protocol Suggestions

The related work within the local PKI area includes protocol proposals like AKA [6],
AAA credentials [19, 21], SPKI [14], EAP AKA [6] and EAP SIM Authentication

[7]. These are mainly tools that can be used when building local PKI solutions but
these might be considered as competing approaches as well. There have also been
ideas about combining small networks together using (extended) cross-certification
[5, 18]. Hybrid PKI model has also some interesting thought [9].
 Authentication and Key Agreement (AKA) protocol is a secure protocol
developed for authentication and key management in 3G-network [6]. It is a challenge
response protocol, which uses Authentication Center from the home network to derive
the challenge. In 3G cases, the local PKI uses AKA to gain an authenticated channel
for certificate negotiation [16].
 In Authentication, Authorization, and Accounting (AAA) protocol authentication
involves validating the identity of a user prior to permitting him network access. This
process keys on the notion that the end-user possesses a unique piece of information
that serves as unambiguous identification credentials. Such information could be a
username and password combination, a secret key, or perhaps biometric data. The
AAA server compares the user-supplied authentication data with the user-associated
data stored in its database, and if the credentials match, the user is granted network
access. [21]
 Extensible Authentication Protocol (EAP) mechanism has been applied also for
authentication and session key generation using the GSM Subscriber Identity Module
(SIM) [7]. This approach is called EAP SIM Authentication. Basically, it re-uses the
GSM authentication and provides optional support for protecting the privacy of
subscriber identity.
 Simple Public Key Infrastructure (SPKI) has been developed as a more flexible
alternative to X.509 [14]. There can be both identity certificates and authorization
certificates. The name certificates bind names to the rights transmitted by the
certificates. The authorization certificates bind the cryptographic keys to the
transmitted authorities. Basic idea is that anyone with access to a resource can
authorize others to use the resource by issuing him or her an authorization certificate.
SPKI certificates can be used to implement systems that support anonymity,
delegation and dynamic distributed policy management. [15]
 Hybrid PKI model can be used for specifying and enforcing permissions in
distributed computing environment [9]. The research deals with approaches to specify
and to enforce permissions of clients on remote servers, which are based on public
key cryptography. In various forms, trust has to be assigned to public keys and to
appropriate attributes that are claimed to be true for a public key or the holder of the
corresponding key. Management of trust is organized within a PKI. Secure mediation
is taken as an example for applications that require security policies for
confidentiality and integrity.

3.3 Example: Solution for 3GPP

The 3GPP AKA results in an integrity key between the user and the serving network
[6]. This authenticated channel could be used submit the users public signature
verification key and obtain a temporary certificate issued by the serving network. To
ensure that the correct private key is being certified, the public key submission or
certificate request should be signed by the users private signing key. The user can use

the signing key to sign the service requests during access via the local network. A
service provider who knows the signature verification key of the local serving
network can verify the users certificate and signature, and use it as an authorization
for services. The certificate covers single or many purchases during the validity
period. For IMSI-based access control, there can be three kinds of certificates: for
purchases, attribute certificates and identification certificates. The certificate for
purchases is a specialization of an authorization certificate, not a new certificate type.
[10]

User

Local CA

Service
Provider

(1)

(2)

(3)

visited
network

(2)

home
network

Home CA

(1)

(4)

HomeVisited

Fig. 2. Solution for local PKI in 3G networks

 Figure 2 presents high-level view of the communication lines between the network
nodes. Line (1) presents the authentication and charging at home network using 3GPP
framework. The result is the integrity key and authenticated channel. Within line (2)
user generates a Certificate request (new message) with a new public key to visited
network. There the user generates a temporary public/private key pair and sends a
certificate request. The visited network forwards the request to its local CA. Then the
local CA generates and signs a temporary certificate for the user. Next the user
receives the certificate in a Certificate response (new message).
 As illustrated by line (3), the user can now use its temporary private key to sign a
service request to a local service provider. Additionally, the service provider can
verify the signature, because the local CA signs the new public key of the user. It is
assumed that the local service provider possesses visited networks public key (e.g. via
local CA). Optionally in the line (4), a hash of user’s long-term public key is sent
from home to visited network.

4 Local PKI Illustrated

4.1 Certificate Creation and Revocation Processes

The following two scenarios of key management can be used in the definition of a
local PKI: user sends keys (pull) or CA generates keys (push). These two scenarios
present different requirements for the certificate creation process.
 In the first case, user generates keys and delivers the public key within a certificate
request. >From the user’s side of view, it is a pull operation since he is the active
participant in the certification process. It is essential that the keys be delivered
confidentially to the CA. There are risks of fraud and error during the transfer, so the
public key should be at least integrity protected. It is not obligatory to encrypt the key
since it is public information. Proper solution for the integrity protection might consist
of user signing the public key with the responsive CA’s public key. In a successful
case, the CA reply contains a granted certificate, which should also be integrity
protected. Now the CA may use its private key for the creation of digital signature.
 The second case uses CA to generate keys. User may first send a certificate
request for the CA, but depending on the local security policies, the request might be
optional. The key generation operations and responsibilities are on the CA and the
certificate delivery can be seen as a push style for the user. This case might be
suitable for mobile networks or for less computationally efficient use devices. The
problem is how to deliver securely these keys for the user. In some network cases, the
user could approach the CA and receive the keys manually. If the case is a visited
network, the authentication mechanism needs to be solved first. In mobile networks, it
is possible to take advantage of the shared secret between a user and an operator by
encrypting the user’s keys by this shared secret. Because the shared secret is only
known between these two parties, the solution is not applicable to roaming situations
without advanced trust relationships between operators.
 Certificate revocation may occur by a user request, by a CA or by an expired
lifetime of a certificate. If a CA decides to revoke a certificate, it can be considered as
a push operation from the CA. If a user requests for certificate revocation, he pulls a
revocation operation from the CA. If a user is requesting revocation of its own
certificate, he must digitally sign the request.
 A simple and suitable solution for certificate revocation within local PKI would be
to use short-lived certificates. They may diminish both the verification and revocation
burden since the certificates are not valid for very long. Short-lived certificates might
be applicable for one-time use and for short sessions.

4.2 Advantages of the Solution

There are many advantages in the local PKI approach and some of these advantages
are discussed here yet comprehensive analysis is left for future work.
 Local PKI supports re-use of network authentication mechanisms. It is an asset
that current mechanisms can be utilized and there is no need to develop own

solutions. That means shorter time-to-market times for local PKI solutions. If local
PKI is the only thing that is needed for service request authentication, the solution is
also very efficient.
 Local PKI does not require any per-user configuration in customer databases
before a user is requesting to access new services. This is essential for mobile
networks, since the subscriber database operations may be rather complex.
 One of the main ideas of the concept is that local PKI does not require or mandate
trusting external entities. That makes deployment easier and lessens the trust
establishment burden between the networks.
 In addition, the concept does not prohibit global relationships and possible future
expansions. There are methods for chaining local network and PKI areas together and
establishing connections between them. Local PKIs can exist and operate in a closed
manner but still maintain their external connections. For example, this enables the
possibility to utilize long-term public keys from CA that is located in home network,
if required.

4.3 Open Issues

There appear to be many open issues with the proposals and they need to be solved in
order to get local PKI applicable one day. Many of these issues involve practical
problems and we try to give them some solution proposals.
 Users who visit other network face interesting challenges. As their first task, users
have to acquire information about the local security policy. In order to require a local
certificate, user needs to locate the correct CA. Roaming situations are typical
examples of these networking visits.
 As user enters a new network, he has to perform authentication with it. In mobile
network cases, operators have established roaming agreements with each other, which
enables users to trust the visited operator. In the same context, authentication material
is most likely retrieved from the user’s home network. In general, if user requires
mutual authentication with visited networks; he has to have some pre-shared
authentication material for the network and vice versa.
 Local PKI concept may be tied to a certain local CA but there might be more than
one CA within the network. However, this requires establishing CA hierarchies and
may lead to inefficient solutions. Therefore, it might be convenient to limit the
number of CAs within a local PKI target area. Another open issue is if operators can
share a local CA within some geographical area. If a network has outsourced its CA,
it may be difficult to control the configuration of it.
 Service providers are considered here as local, but it is possible that they would
serve multiple network areas. There are probably not enough business possibilities for
service providers if they limit their supply on one network area. This raises a question
if a service provider is truly tied to a specific local CA.
 In end-to-end communications, it would be practical to know if the other party is
in the same local network. Localization services should be applied to such situations.
 Interoperability and migration to global PKI are issues that need further analysis.
Local PKI might be considered as a first aid to the lack of global PKI but eventually
they should incorporate. There are techniques that can be used to chain separate local

PKI networks together, which is one possible way to develop. However, it also is
possible to keep local PKI as it is, as a convenient and efficient solution for small
network areas.

5 Prototype

We have implemented a prototype of local PKI on Linux platform. The prototype is a
combination of our own code and additional software components. It is not trying to
fulfill all the aspects of local PKI. Rather, it is trying to evaluate how difficult it is to
implement such solutions.
 The network concept is derived from the general case with some interactions to the
3GPP case. Our scenario assumes that a user is entering a visited network and home
network is not available. The visited network is of Intranet type and all data traffic
goes through firewalls. In the prototype, user generates key material for itself, which
is a more practical solution for the communications.

Figure 3 presents the network picture for the prototype. The first connection
performs authentication, the second requests services from a service provider. In the
third connection, user negotiates a certificate from the local CA. In the fourth
connection, the service provider checks the certificate that the user has provided.

User

Local CA

Service
Provider

SIP Server

Service
Portal(1)

(2)

(3)

(4)

visited
network

(4)

Fig. 3. Prototype view of a local PKI

 Figure 4 goes to the next level of details. It presents a sequence diagram of a
scenario, where a user connects to a visited network and requests for services.
Additionally, it presents architecture blocks of the prototype, because it assorts the
main functional elements.

User SIP
server

Local
CA

Service
Provider

Service
Portal

Authenticate()

Launch service portal()

Service portal()

Service request(service provider)

Request certificate(Local CA)

Create cert_request()

Certificate request()

Certificate response()

Service request(certificate)

Check
certificate()

Check CRL()

Begin services()

If the
certificate
is valid.
Otherwise
an error
message.

If a
certificate
already
exists,
user
proceeds
to service
request.

Digital signature()

Check
signature()

Fig. 4. User is requesting services

 As user arrives to a local PKI network, he performs authentication to a local SIP
(Session Initiation Protocol) [24] server. We are using SIP here, although AKA
(Authentication and Key Agreement) would have been a better choice. Unfortunately,
we did not have the AKA implementation available in time. The SIP server is the first
contact point to this (visited) network. If the authentication is successful, the SIP
server delivers the address of the service portal to the user. This message is virtual
and only presented to keep the model coherent. The service portal is also a rather
virtual node in the network but essential for our prototype. User selects a service from
the portal, which results in an initialization message for the service provider. Next, the
service provider asks the user for a (local) valid certificate. If the user does not have
one, he contacts the local CA. The contact information was in the service provider’s

message. Then user may continue by creating a certificate request and sending it to
the local CA.
 As soon as the certificate is available, user sends it to the service provider in a
service request. For identification purposes, the user generates also a digital signature
of the service request and sends it as another message.
 The service provider must check the digital signature and the certificate before it
allows the user to access its services. Because the digital signature was created by
user’s private key, it can be verified by the user’s public key. Basic information, as
CA information and validity intervals, are verifiable by the service provider itself but
it uses also CRLs.

6 Experiences from the Prototype

Implementation has raised many practical problems and questioned the concept of
locality. The problems have focused on roaming, interoperability, authentication and
service discovery.
 The prototype was not built into mobile network, which made it impossible to test
some features. However, for the prototype implementation, it does not matter, if the
user is mobile or not. Because the prototype is running on an Intranet network, the
prototype reflects better to common network scenarios.
 Original idea was to use AKA to create an authenticated channel for other
communications. However, we could not test AKA authentication in the prototype.
Instead, we used SIP digest authentication [24], which provided us some new
challenges. Digest authentication requires some pre-shared secret in order to
accomplish authentication procedures between server and user. In the prototype, it
was easy to insert another parameter, but this might be a problem for real-life
situation.
 The CA product in use requires also a pre-shared secret between a user and a CA,
which might be a challenge for the concept. These pre-shared secrets might require
appropriate specification in the local PKI concept. In that case, a decision is needed
about what information should be used as such information. It might be possible to
use some user information at home networks.
 One problem with the implementation was how the user discovers the local CA
and service providers. If the user is a visitor, it can not be assumed that he would
know the local infrastructure in advance. Therefore, we presented the service portal,
which includes links to the pages of the local service providers and that way the user
can easily choose the services he wants to utilize. The CA contact information is
delivered to the user within the first contact message from the service provider.
Otherwise, the user might not know where to get his certificate.
 The implementation experiences have shown that the concept of local does not
differ that significantly from global with PKI networks. It is difficult to implement
closed environments, which would not have any communication to outside world. The
experiences with SIP and CA illustrated that connection to home network might be
needed. Therefore, despite of original purpose, in some cases the local PKI concept
evidently extends to global by cross-certification, certificate chains etc.

7 Conclusions

The PKI in a global scale is a phenomenon that has not yet really appeared [1, 18],
and many applications and protocols are still waiting for the services of it.
Experiences have shown that PKI deployment in general is a very demanding task.
However, one widely used example is the one used to secure TLS based Web
transactions [8].
 It seems that local solution and especially local PKI is needed in the markets,
indeed. However, it is questionable how the concept of local is actually defined and
fulfilled. We have continued the definition of the local PKI to make it correspond to a
more generic network situation.
 There are many advantages in the local PKI proposal and we have gathered some
of them here. The advantages include: Reuse of network authentication mechanism, it
requires only local PKI for service request authentication, efficiency, it does not
require any per-user configuration in subscriber databases before a user is allowed to
access new services, and it does not require trusting external entities and can enable
non-repudiation. In addition, it makes possible the utilization of long-term public
keys, if required.
 We discovered also some of the open issues with the solution and tried to give
them solution alternatives. The open issues include: Roaming situations, localization
services, the binding of a certain CA to a local PKI, the binding of a CA to service
providers, the possibility to share a CA within a network or geographical area, local
CA discovery, CA configuration and management, and interoperability and migration
to global PKI.
 The prototype was implemented in order to demonstrate how difficult it is to
create and use the local PKI concept. The prototype has gained us many experiences
that are discussed here as well. The implementation problems have focused mainly on
roaming, interoperability, authentication and service discovery.
 Our implementation experiences have shown that the concept of local may not
differ very significantly from global within PKI networks. Any network
implementation tends to require communication to outside world. In network visits,
the experiences with authentication illustrated that connection to home network might
be needed. Therefore, sometimes the concept of local PKI eventually extends to
global by cross-certification, certificate chains etc.

Acknowledgments

We would like to thank Pekka Nikander, who encouraged us to work on this paper
and who helped us to shape up the paper to its present form.

References

1. Global PKI Markets 2001-2003,
http://www.datamonitor.com/~121f97570fd84a3697a928c1d13bac11~/technolog
y/reports/product_summary.asp?pid=DMTC0617

2. Menezes A.J., van Oorschot P.C., Vanstone S.A.: Handbook of Applied
Cryptography, CRC Press LLC, 1997

3. Fillingham D.: Federal Bridge Certification Authority (BCA) Border Directory
System Proposal, http://csrc.nist.gov/pki/twg/papers/twg-99-03.pdf

4. Update1 on Regulatory and Policy Developments,
www.apectel25.org.vn/documents/plen03.doc

5. Design Issues in a Public Key Infrastructure (PKI), http://www.csu.edu.au/
special/auugwww96/proceedings/barmoroco/barmoroco.html

6. Arkko J., Haverinen H.: EAP AKA authentication, IETF,
http://search.ietf.org/internet-drafts/draft-arkko-pppext-eap-aka-03.txt

7. Haverinen H.: EAP SIM Authentication, IETF, http://www.ietf.org/internet-
drafts/draft-haverinen-pppext-eap-sim-03.txt

8. PKI Forum, http://www.pkiforum.org/resources.html
9. Joachim Biskup, Yücel Karabulut: A Hybrid PKI Model with an Application for

Secure Mediation, 2002, http://ls6-www.informatik.uni-dortmund.de/~karabulu/
researchinterests.html

10. 3GPP TSG SA WG3 Security – S3#19, S3-010353
11. PKI Market Summary, http://www.nss.co.uk/Articles/PKI%20Market%20Surv

ey.htm
12. Arsenault A., Turner S.: Internet X.509 Public Key Infrastructure: Roadmap,

IETF, http://www.ietf.org/internet-drafts/draft-ietf-pkix-roadmap-07.txt
13. Gehrmann C., Horn G., Jefferies N., Mitchell C.: Securing Access to Mobile

Networks beyond 3G, http://www.mobilesummit2001.org/mcs2001/papers/
MOBCS4VYJM6.pdf

14. Yki Kortesniemi: Validity management in SPKI, 1st Annual PKI Research
Workshop, 2002, http://www.cs.dartmouth.edu/~pki02/

15. Koponen J. P. T., Nikander P., Paajarvi J., Rasanen J.: Internet Access through
WLAN with XML encoded SPKI certificates, Nordsec’2000, Reykjavik, Iceland,
pp. 239-247

16. 3GPP TSG SA WG3 Security: Draft Report of SA WG3 Meeting #19
17. Y.K. Hsu, S. P. Seymour: An Intranet Security Framework Based on Short-Lived

Certificates, IEEE INTERNET COMPUTING, IEEE, Vol. 2, No. 2; MARCH-
APRIL 1998, pp. 73-79

18. Stephen Kent: Rethinking PKI: What's Trust Got to do with It?, Eurocrypt 2002,
http://www.ec2002.tue.nl/

19. IETF AAA Working Group, http://www.ietf.org/html.charters/aaa-charter.html
20. IETF Securely Available Credentials (sacred) Working Group,

http://www.ietf.org/html.charters/sacred-charter.html
21. Christopher Metz: AAA protocols, IC Online,

http://www.computer.org/internet/v3n6/w6onwire.htm
22. Christian Gehrmann, Thomas Kuhn, Kaisa Nyberg, Peter Windirsch: Trust

model, communication and configuration security for Personal Area Networks,
IST Mobile Summit, June 2002

23. Christian Gehrmann, Kaisa Nyberg, Chris J. Mitchell: The personal CA – PKI for
a Personal Area Network, IST Mobile Summit, June 2002

24. Session Initiation Protocol Working Group (IETF),
http://www.ietf.org/html.charters/sip-charter.html

A Prototype Tool for JavaCard Firewall Analysis

René Rydhof Hansen?

Informatics and Mathematical Modelling, Technical University of Denmark,
DK-2800 Kongens Lyngby, Denmark

E-mail: rrh@imm.dtu.dk

Abstract. JavaCard is a variant of the Java programming language
specifically designed for use on Smart Cards. In order to support the se-
cure execution of several different applets on a Smart Card, the JavaCard
Virtual Machine implements a firewall that isolates applets from each
other by preventing unwanted information sharing and communication
between applets.

In this paper we report on a prototype tool that can statically verify
that a JavaCard applet does not (try to) violate the firewall rules. Such
a tool is useful for increasing confidence in the security of an applet.
Furthermore, a developer can use the tool for guaranteeing in advance, ie.
before the applet is deployed, that it will not throw a security exception
at an inopportune moment, thus leading to more robust and user-friendly
applets.

Keywords: JavaCard, firewall, static analysis, prototype tool.

1 Introduction

The JavaCard platform is a multi-applet platform, meaning that a given Java-
Card may contain and execute several different applets from several different,
possibly competing, vendors. In order for an applet to protect sensitive data
from other, malicious, applets the JavaCard platform implements a firewall to
separate applets from each other.

The firewall mediates all method invocations and field accesses between ap-
plets and determines whether or not to allow it. If a given method invocation
or field access is not allowed a security exception is thrown. Note that security
exceptions can not be caught by the program itself, but is rather communicated
all the way back to the card access terminal, ie. the user.

In this paper we discuss the formal development of a prototype tool, based
on well-known static analysis techniques, for verifying that a JavaCard program
does not (try to) violate the JavaCard firewall. Such a tool is useful for increasing
confidence in a programs behaviour (by ensuring that a program does not try to
violate the security policy) and also for enhancing the robustness of a program
(by guaranteeing that no security exceptions are thrown).

? This work was partially funded by the SecSafe project (EU IST-1999-29075).

Furthermore the developments in this paper are intended to show that the
Flow Logic framework and methodology used for specifying and extending the
analysis is well suited for adding functionality in a structured fashion in step
with increasing demand for guarantees that a program has (or lacks) certain
properties, thereby reducing the workload when designing analyses for such val-
idation.

The rest of the paper is structured as follows. Section 2 discusses the lan-
guage used, Section 3 gives a brief overview of the JavaCard firewall, following
that Section 4 specifies a so-called ownership analysis that will conservatively
approximate the set of possible owner contexts an object can have. The result
of this analysis will form the basis for verifying programs as shown in Section 5.
Section 6 then shows how the analysis and validation can be implemented by
constraint generation and solving. The paper concludes with an example in Sec-
tion 7 and conclusions and future work in Section 8.

2 Introducing Carmel

The JavaCard language contains more than 100 instructions, a significant num-
ber of which are very specialised, eg. the instruction push0 pushes the integer
constant 0 on top of the stack. Such highly specialised instructions are mainly
used for optimisation purposes and are not, as such, essential features of the
language.

The large number of instructions makes JavaCard rather unwieldy and work-
intensive for formal treatment. Therefore we have decided to base our work
upon a JavaCard derivative, called Carmel, developed as part of the SecSafe EU
project, cf. [13].

Carmel is directly derived from JavaCard, mainly by removing non-essential
instructions and adding more generality to the remaining instructions ending up
with a language consisting of only 30 instructions while retaining all the power,
flexibility and expressibility of JavaCard but in a more manageable form. Thus
Carmel can be seen as a “rational reconstruction” of JavaCard. In this paper we
do not consider the instructions for subroutines.

In this section we briefly, and informally, review the Carmel language. For
a formal definition of the Carmel language, including an operational semantics,
see [14, 15].

2.1 The Carmel Language

In the following, square brackets are used to denote [optional] arguments to a
given instruction. Many instructions are explicitly annotated with the type of
their argument and/or result. For the purpose of this paper, such annotations
are ignored.

The instructions for basic stack manipulation in Carmel are as follows:

push t c push constant c

pop n pop the top n values
dup n d duplicate the n top values at depth d

swap m n swap the top m values with the following n values

All arithmetic and boolean operators are combined into one instruction parame-
terised on the particular operation to perform. Operators pop their argument(s)
from the stack and push the result:

numop t op [t′] use operator op

For control flow Carmel has the following instructions

goto L unconditional jump
if t cmpOp [nullCmp] goto L conditional
lookupswitch t (ki=>Li)

n
1 , default=>L0 branch on key

tableswitch t l=>(Li)
n
1 , default=>L0 branch on index

The conditional usually compares the two top elements on the stack (using
cmpOp); optionally it compares the top element to null. The lookupswitch

and tableswitch instructions are convenient for case constructs.
Methods in the Carmel language can access and modify local variables:

load t x retrieve the value of x

store t x store a new value in x

inc t x c add c to the value in x

The instructions for manipulating objects are as follows:

new σ create a new instance of class σ

getstatic f get the value of the static field f

putstatic f store a value in the static field f

getfield [this] f get the value of field f

putfield [this] f store a value in field f

The instructions getfield and putfield look for a reference to the object
whose field is being accessed, on top of the stack. The optional “this”-modifier
indicates that rather than looking for such a reference on top of the stack, the
current object (the one in which the getfield or putfield instruction is exe-
cuted) should be used.

Two instructions are provided for dynamically checking that an object is of
a certain type:

checkcast σ check if an object is a subclass of σ

instanceof σ check if an object is a subclass of σ

The above two instructions differ only in their return value: checkcast throws an
exception if the object is not of the specified type, whereas instanceof simply
returns 0 in that case.

The instructions below cover the various forms of method invocation:

invokevirtual m invoke a virtual method
invokestatic m invoke a static (class) method
invokespecial m invoke class initialisation method
invokeinterface m invoke an interface
return return from a method invocation

Static methods are class methods and can be invoked directly from a class as
opposed to virtual methods that require a class instance (an object).

Certain static information not directly available in the Carmel syntax is
accessed through special auxiliary functions, eg. to obtain the return type of a
method m we can use the function returnType(m) which, following tradition,
we write as m.returnType.

JavaCard, and thus Carmel, programs rely heavily on the use of arrays, both
for storage and communication. The instructions supporting arrays follow

new (array t) create new array
arraylength return length of array
arrayload t load a value from an array
arraystore t store a value in an array

Finally exceptions can be thrown using the throw instruction:

throw throw an exception

Handlers for exceptions are resolved at a higher level and thus have no direct
representation in Carmel (or JavaCard).

In addition to the instructions outlined above, a typical Carmel program will
use a number of higher-level library functions, eg. for copying the contents of an
array or creating cryptographic keys, and standard APIs, eg. for communicating
with a terminal. In the present paper we do not model the libraries and APIs.

3 The JavaCard Firewall

Smart Cards are often used to store sensitive information, such as cryptographic
keys and personal information, and for this reason it is important that applets are
protected against malicious access to its sensitive data. The JavaCard platform
implements a firewall to separate applets from each other and to make sure that
no unwanted access to an applets data is allowed.

The firewall policy is based on the notion of contexts : applets belonging to
different contexts are not allowed to access each others data, neither fields nor
methods, with a few exceptions discussed below.

JavaCards package structure forms the basis for contexts: two applets that
are instances of classes from the same package are assigned the same context.
Additionally a “system” context is defined by the JavaCard Runtime Environ-
ment (JCRE), and applets belonging to the JCRE context may access applets
in all other contexts without the firewall intervening.

During execution of an applet, objects that are created are assigned an owner

context based on the context of the applet that created it. A method executes in
the context of its owner, with the exception of static methods that are executed
in the context of the invoker.

Certain specialised applets may wish to share some data with another applet
in a different context, eg. a wallet applet may wish to share some data with a so-
called loyalty applet in order to award “bonus-points” for purchases made with
the wallet. For such situations JavaCard defines two ways in which the firewall
can be circumvented in a controlled manner: JCRE entry points and sharable
objects. The JCRE entry points are objects owned by the JCRE specifically
designed to be accessed from all other contexts. The primary example of such an
entry point being the APDU, through which all communication outside the card
is handled. Sharable objects can be used to grant limited access to an objects
methods (not the fields) across contexts.

It should be noted that the above mechanisms merely allow for data to cross
firewall boundaries, it is still the responsibility of the applet wishing to share data
that it properly authenticates the applet with which to share data. In support of
this, the JavaCard system library implements a limited form of stack inspection,
in the form of a method called getPreviousContextAID that allows an applet
to find out the owner context of the method executing immediately prior to the
last context switch. For the sake of clarity and brevity, we do not consider the
facilities sharing and stack inspection in this paper. The analyses and techniques
discussed in a later section are easily extended to handle these concepts and this
is briefly indicated where relevant in the following sections.

In this paper we shall not go further into the formal details of the firewall
semantics, merely refer to [14, 15]. For a thorough introduction to the JavaCard
firewall and sharable objects and their use, see [2].

4 Analysing Carmel Programs

In this section we specify a so-called ownership analysis, which is a static analysis
that conservatively approximates the set of owner contexts assigned to an object.
This will form the basis for verifying that no security exceptions could possibly
be raised by executing the program.

In order for the ownership analysis to be semantically sound, it needs to
consider all possible program executions; rather than start from scratch and
designing an ownership analysis that directly considers all program executions,
we designed the ownership analysis as an extension to a previously developed
control flow analysis (CFA) for Carmel. This CFA is described in detail in [5],
including a formal statement and proof of semantic correctness.

The CFA, and hence the ownership analysis, is specified in the Flow Logic

framework of Nielson and Nielson, cf. [8, 12, 7]. In the following subsections we
first introduce the abstract domains for the static analysis, following that is a
brief overview of the Flow Logic specification framework and finally we discuss
a few specification clauses for the ownership and control flow analysis in detail.

4.1 Abstract Domains

The abstract domains are based on a simplified version of the concrete domains
used in the semantics, cf. [14]. The simplified domains ignore semantic informa-
tion that is not pertinent to the analysis. This minimises unnecessary notation
and increases legibility of both analysis and theoretical results.

Objects are abstracted into their class, thus object references are modeled as
classes (similar to the class object graphs of [16]) whereas arrays are abstracted
into their elementtype:

ObjRef = Class ArRef = Type

In order to enhance readability we write (Ref σ), rather than merely σ, for object
references and (Ref (array τ)) rather than τ for array references.

References are either object references or array references:

Ref = ObjRef + ArRef

Values are taken to be either numerical values (since we are only interested in
control flow and ownership, numerical values are abstracted to a single constant)
or reference values and abstract values to be sets of such values:

Val = Num + Ref V̂al = P(Val) Num = {INT}

In [4] the control flow analysis is extended with a data flow component.
For the ownership analysis we model owners simply as a set of concrete

owners and also associate an abstract owner, ie. a set of possible owners, to each
method in the program, called an “owner cache”:

Ôwner = P(Owner) ̂OwnerCache = Method→ Ôwner

In order to support stack inspection the above should be extended to record not
only the set of possible owners but also the set of possible context switches.

Abstract objects comprise a mapping from the field ID’s of the object to the
set of abstract values possibly contained in that field and also a set of possible
owners for that object:

Ôbject = (fieldValue : FieldID→ V̂al)× (owner : Ôwner)

Information about a given objects status as a JCRE entry point or its shareability
can trivially be added here and then checked when verifying a program, cf.
Section 5.

Arrays are modeled in the simplest possible way, namely as an abstract value.
This means that the structure (and length) of the array is abstracted away:

Ârray = V̂al

Adresses consist of a method and a program counter, making adresses unique in
a program. In order to correctly handle return values from method invocations

a special “placeholder” address is defined for every method. This placeholder
address is encoded using a special END-token instead of the regular program
counter

Addr = Method× (N] {END})

The first instruction in a method is assumed to be at program counter 1 and we
write (m, ENDm) for the placeholder address belonging to the method m.

We let |m| denote the arity of method m, meaning the number of arguments
the method expects on the operand stack.

The local heap is modeled as a (curried) map from adresses to (local) variables
to abstract values. Thus in our model there is a local heap associated with every

instruction in a method. This is similar to Freund and Mitchells approach, cf. [3].

̂LocHeap = Addr → Var → V̂al

For L̂ ∈ ̂LocHeap we shall write L̂(m1, pc1) v L̂(m2, pc2) to mean

∀x ∈ dom(L̂(m1, pc1)) : L̂(m1, pc1)(x) v L̂(m2, pc2)(x)

and L̂(m1, pc1) v{x} L̂(m2, pc2) to mean

∀y ∈ dom(L̂(m1, pc1)) \ {x} : L̂(m1, pc1)(y) v L̂(m2, pc2)(y)

Note that local variables are denoted by natural numbers and zero, ie. Var = N0.
We now turn to the operand stack. Since the model has to be able to cope

with potentially infinite operand stacks, we use the following domain as the basis
for the stack model:

V̂al∞ = V̂alω ∪ V̂al∗

However, in anticipation of later developments and applications of the analy-
sis, rather than using the above domain directly, we use it to induce a more
convenient domain via a Galois connection (cf. [8]):

V̂al∞ −−−→←−−−α

γ
(V̂al∗)>

where the abstraction function, α, simply acts as the identity on finite stacks
and maps infinite stacks to top.

With the basic domain for abstract stacks in place, we now associate an
abstract operand stack with every instruction in a method in order to track
operations on the stack in that method:

Ŝtack = Addr → (V̂al∗)>

Elements of (V̂al∗)> are written much in the same style as SML lists, thus (A1 ::

A2 :: · · · :: X) ∈ (V̂al∗)> represents a stack with A1 ∈ V̂al as its top element

and X ∈ V̂alω as the “bottom” of the stack. The empty stack is denoted by ε.

We introduce the following ordering on abstract stacks, A1 :: · · · :: An and

B1 :: · · · :: Bm, from (V̂al∗)>:

(A1 :: · · · :: An) v (B1 :: · · · :: Bm) ⇐⇒

m ≥ n ∧ ∀i ∈ {1, . . . , n} : Ai ⊆ Bi

In the interest of succinctness we shall abuse the above notation slightly by
writing (A0 :: · · · :: An) v L̂(m0, pc0)[0..n] as a shorthand for

∀i ∈ {0, . . . , n} : Ai ⊆ L̂(m0, pc0)(i)

The abstract global heap comprises two components: an object component,
keeping track of instance fields of individual objects, and a static component,
that tracks the values of static fields for each class:

̂StaHeap = FieldID→ V̂al Ĥeap = (ObjRef → Ôbject) + (ArRef → Ârray)

4.2 The Flow Logic Framework

The Flow Logic framework can be seen as a “specification approach” to static
analysis, rather than an “implementation approach”. In the framework, instead
of detailing how a particular static analysis is to be carried out, it is specified
what it means for an analysis result (or rather a proposed analysis result) to
be acceptable (correct) with respect to a program. Flow Logic specifications are
usually classified as either verbose or succinct according to the style of specifica-
tion: succinct resembling the style of type-systems in only reporting “top-level”
information and verbose more like traditional data flow and constraint based
analyses in recording all internal flows. The specification in this paper is a ver-
bose specification. We shall not go into further detail with the framework here,
merely refer to [8, 12, 7] for further information.

The judgements of the Flow Logic specification for the analysis of Carmel
will be on the form

(K̂, Ĥ, Ô, L̂, Ŝ) |= addr : instr

where Ŝ ∈ Ŝtack, L̂ ∈ ̂LocHeap, Ĥ ∈ Ĥeap, K̂ ∈ ̂StaHeap, Ô ∈ ̂OwnerCache,
addr ∈ Addr and instr is the instruction at addr. Intuitively the above states
that (K̂, Ĥ, Ô, L̂, Ŝ) is an acceptable analysis for the instruction instr at address
addr. A detailed discussion of the clauses and judgements for Carmel are given
in the following sections.

4.3 Example Clauses

The putfield Instruction First the specification for the putfield instruction:

(K̂, Ĥ, Ô, L̂, Ŝ) |= (m0, pc0) : putfield f

The putfield instruction transfers the value of the top element of the stack to
the field named as argument to the instruction in the object referenced in the
second element of the stack. Thus the stack must contain at least two elements:

A :: B :: X / Ŝ(m0, pc0) :

The specific object to be accessed is resolved at runtime, and a reference to that
object is stored in the second (from the top) element of the stack. The value of
the top element is then stored in the field of the object so referenced:

∀(Ref σ′) ∈ B : A v Ĥ(Ref σ′).fieldValue(f)

Here we use the abstract global heap to hold information about the fields of
abstract objects. As noted in Section 4.1 objects are abstracted into their class.
Thus field information for all objects of the same class is merged and stored in
the abstract global heap.

The bottom of the stack is then transferred to the next instruction:

X v Ŝ(m0, pc0 + 1)

and since no local variables were modified, the abstract local heap is transferred
unchanged to the next instruction

L̂(m0, pc0) v L̂(m0, pc0 + 1)

We then arrive at the following clause for putfield instructions:

(K̂, Ĥ, Ô, L̂, Ŝ) |= (m0, pc0) : putfield f

iff A :: B :: X / Ŝ(m0, pc0) :
∀(Ref σ′) ∈ B :

A v Ĥ(Ref σ′).fieldValue(f)

X v Ŝ(m0, pc0 + 1)

L̂(m0, pc0) v L̂(m0, pc0 + 1)

Note that while the putfield instruction is mediated by the firewall, there is no
switch in owner context and therefore no constraints specific to the ownership
analysis in the above specification (contrary to the case for invokevirtual).

The invokevirtual Instruction Finally we discuss the specification for the
invokevirtual instruction:

(K̂, Ĥ, Ô, L̂, Ŝ) |= (m0, pc0) : invokevirtual m

In order to call an instance method, the invokevirtual instruction is used.
Arguments to the method is found at the top of the stack, and as was the case
for the putfield instruction, a reference to the specific object containing the
invoked method is found on the stack, immediately following the arguments to
the method:

A1 :: · · · :: A|m| :: B :: X / Ŝ(m0, pc0) :

Next a method lookup is needed in order to find the actual method that is
executed:

mv = methodLookup(m, σ′)

The arguments are transferred to the called method as local variables of the
called method. Furthermore a reference to object containing the called method
is passed as the first local variable (in effect a this pointer):

{(Ref σ′)} :: A1 :: · · · :: A|m| v L̂(mv , 1)[0..|mv|]

Furthermore when a method is invoked in an object, the method will execute in
the same owner context as the object from which it was invoked. This is modeled
in the ownership analysis in the following way:

Ĥ(Ref σ′).owner v Ô(mv)

Had we chosen to model not only the set of possible owners but also the set
of possible context switches (to support stack inspection, as mentioned in Sec-
tion 4.1) a further constraint, updating the set of context switches, would be
needed here.

When a method invocation returns, there are two possibilities: either it does
not return a value, ie. it has return type void, or it does return a value. In the
first case, m.returnType = void, we simply copy the rest of the stack on to the
next instruction:

m.returnType = void ⇒

X v Ŝ(m0, pc0 + 1)

In the latter case, m.returnType 6= void, the return value is the top element of
the stack of the invoked method. In order to handle multiple returns from the
invoked method correctly a special address is used, indicated by the END-token
discussed in Section 4.1; it is the responsibility of the clause for the return in-
struction to ensure, that all the possible stacks at all possible return instructions
are transferred to the stack at the special address.

In order for the invoking method to access the return value, it must be
transferred from the top of the stack of the invoked method to the top of the
stack of the invoking method (less the arguments and the object reference):

m.returnType 6= void ⇒

T :: Y / Ŝ(mv, ENDmv
) : T :: X v Ŝ(m0, pc0 + 1)

Finally, none of the local variables (of the invoking method) have been altered
and are therefore passed on to the next instruction:

L̂(m0, pc0) v L̂(m0, pc0 + 1)

Joining the above equations we obtain the following clause for invokevirtual

instructions:

(K̂, Ĥ, Ô, L̂, Ŝ) |= (m0, pc0) : invokevirtual m

iff A1 :: · · · :: A|m| :: B :: X / Ŝ(m0, pc0) :
∀(Ref σ′) ∈ B :

mv = methodLookup(m, σ′)

{(Ref σ′)} :: A1 :: · · · :: A|m| v L̂(mv, 1)[0..|mv|]

Ĥ(Ref σ′).owner v Ô(mv)
m.returnType 6= void ⇒

T :: Y / Ŝ(mv , ENDmv
) : T :: X v Ŝ(m0, pc0 + 1)

m.returnType = void ⇒

X v Ŝ(m0, pc0 + 1)

L̂(m0, pc0) v L̂(m0, pc0 + 1)

5 Verifying Carmel Programs

In this section we show how an acceptable analysis result, as specified in Sec-
tion 4, can be used to guarantee that Carmel programs do not (try to) breach
the firewall.

The putfield instruction is checked by the firewall and may potentially
throw a security exception. The instruction is allowed to proceed only if either
the method executing the putfield instruction is in the JCRE system-context, or
if it has the same owner context as the object whose field is being accessed. This
can be formalised as a formula to be checked against the analysis of a program:
for every putfield instruction the following predicate must hold:

Ô(m0) = {JCRE}∨

(|Ô(m0)| = |Ĥ(Ref σ′).owner| = 1) ∧ (Ô(m0) = Ĥ(Ref σ′).owner)

where m0 and (Ref σ′) are quantified as in the analysis (cf. Section 4.3). If it does
hold for every putfield instruction then none of those instructions will violate
the firewall rules. The same rationale applies to the invokevirtual instruction
and gives rise to exactly the same predicate that should be checked.

Note that due to the conservative nature of the ownership analysis, guar-
antees can only be made when we are sure of the owner, ie. when |Ô(m0)| =
|Ĥ(Ref σ′).owner| = 1.

Had we chosen to support sharable objects, entry points and stack inspection
the observation predicates would of course be more involved, but still easily
definable.

6 Implementation

Following the tradition of the Flow Logic framework, analyses are implemented
by first converting the high-level Flow Logic specification into a corresponding
constraint generator over a suitable constraint language.

In this section we briefly outline how the flow logic specification given in
Section 4 systematically can be transformed into a specification for generating
constraints in the Alternation-free Least Fixed-Point logic (ALFP). Constraints
over this logic can be solved efficiently using the techniques described in [10, 11].

6.1 Alternation-free Least Fixed-Point logic

Formulae in ALFP consists of clauses of the following form:

pre ::= R(x1, . . . , xk) | pre1 ∧ pre2 | pre1 ∨ pre2 | ∃x : pre

clause ::= R(x1, . . . , xk) | 1 | clause1 ∧ clause2

| pre ⇒ clause | ∀x : clause

where R is a k-ary relation symbol for k ≥ 1 and x1, . . . denote variables while
1 is the always true clause.

We shall not go in to any detail here, but it is straightforward to define the
satisfaction relation, (ρ, σ) |=ALFP t, for ALFP over a universe of atomic values
and interpretations ρ and σ of relation symbols and free variables respectively.
For a given interpretation, σ, of constants we call an interpretation, ρ, of relation
symbols a solution to a clause clause if indeed (ρ, σ) |=ALFP clause.

Using the techniques of [10] it is possible to efficiently find solutions to given
clauses. An implementation, called Succinct Solver, using these and other ad-
vanced techniques has been made by Nielson and Seidl and is described in [11].

6.2 Representing the Abstract Domains

In order to use ALFP as the basis for an implementation of the analysis, we
must first find a way to represent the abstract domains of the analysis in ALFP.

Here we only show how to represent the abstract stack and ownership in-
formation and refer to [6] for a more detailed discussion on how to generate
ALFP constraints from Flow Logic specifications and also how to optimise the
generated constraints for speed and memory.

Stacks. In order to model the abstract stack we use a quarternary relation, S,
relating adresses and stack positions to values, thus the clause

S(m0, pc0, [3], INT)

is intended to mean that the abstract stack at address (m0, pc0) contains an
integer value at stack position three.

Since we must be able to manipulate and calculate stack positions directly
within the clauses, stack positions must be represented explicitly:

[0] = zero

[n + 1] = suc([n])

since only stack positions, and not eg. local variable indices, are manipulated or
calculated directly within the clauses, only these need to be represented using
the above.

We can now model an abstract stack, Ŝ(m0, pc0) = A1 :: · · · :: An, at address
(m0, pc0) where Ai = {a1

i , . . . , a
ji

i } as follows:

S(m0, pc0, [0], a1
1)∧ . . . ∧S(m0, pc0, [0], aj1

1
)∧

...
S(m0, pc0, [n− 1], a1

n)∧ . . . ∧S(m0, pc0, [n− 1], ajn

n)

Thus, the top of the stack is at position zero, [0], with the the rest of the stack
in the following positions.

Ownership. The owner cache is simply modeled as a binary relation, O(m, o), re-
lating a method m to an owner o thus representing o ∈ Ô(m). Similarly the owner
field of an abstract object is modeled by another binary relation, H OWNER(r, o),
relating an object reference (in effect an object) to an owner, o which represents
o ∈ Ĥ(r).owner.

The other components of the Flow Logic specification are modeled in a similar
manner.

6.3 Generating Constraints

As for the flow logic specification of the analysis, we only show a few represen-
tative cases for the constraint generation.

The constraint generation is specified as a relation, , between an instruction
(at a given address) and a clause in ALFP.

The putfield Instruction Storing values in instance fields is accomplished
by the putfield-instruction. Based on the analysis of the instruction (cf. Sec-
tion 4.3) we see that the value on top of the stack is copied into the field pointed
to by the reference found in the second position of the stack. Converting this to
constraints we get

∀r : ∀a : S(m0, pc0, [1], r) ∧ S(m0, pc0, [0], a) ⇒ H(r, f, a)

Now the remainder of the stack, the original stack less the top two elements,
should be copied onwards to the next instruction:

∀y : ∀a : ∀i : y = [i + 2] ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, i, a)

None of the local variables were modified and should simply be copied onwards:

∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

Combining the above constraints we can formulate the clause for putfield:

(m0, pc0) : putfield f

∀r : ∀a : S(m0, pc0, [1], r) ∧ S(m0, pc0, [0], a) ⇒ H(r, f, a)
∀y : ∀a : ∀i : y = [i + 2] ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, i, a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

Finally, having generated the above constraints for the control flow and own-
ership analyses, we now generate an observation predicate which is a formalisa-
tion of the analysis checks described in Section 5 as an ALFP formula. Thus we
obtain an implementation where the verification of the analysis result is actually
carried out while computing the analysis result and thereby leveraging the effi-
ciency of the Succinct Solver technology; alternatively we could have computed
the result first and then carried out the verification at the possible cost of adding
further overhead.

The observation predicate below will check if the instruction in question can
possibly violate the firewall rules and if so it records the addrss of the potential
violation in an auxiliary relation called ALERT:

∀r : S(m0, pc0, [1], r) ⇒
(∃x∃y : O(m0, x) ∧ x 6= JCRE∧ x 6= y ∧ H OWNER(r, y)) ⇒

ALERT(m0, pc0)

Once the solver has found a solution all that remains is to extract the list of
addresses of potential violations and present them to the user. Of course more
information than merely the address can be recorded, eg. exactly which owner
contexts gave rise to a potential violation; what additional information will prove
to be most useful can only be discovered by experimentation.

The invokevirtual Instruction First the reference to the object where the
invoked method resides is copied (as a self reference) to local variable 0 of the
invoked method:

∀r∀mv : S(m0, pc0, [|m|], r) ∧ML(m.id, r, mv) ⇒ L(mv, 1, var 0, r)

Next the parameters are transferred from the stack of the current method to the
local variables of the invoked method:

∀r∀mv∀a : S(m0, pc0, [|m|], r) ∧ML(m.id, r, mv)∧
S(m0, pc0, [0], a) ⇒ L(mv, 1, var 1, a)

...
∀r∀mv∀a : S(m0, pc0, [|m|], r) ∧ML(m.id, r, mv)∧

S(m0, pc0, [|m| − 1], a) ⇒ L(mv, 1, var |m|, a)

And then the ownership information is copied forward:

∀r∀mv∀o : S(m0, pc0, [|m|], r) ∧ML(m.id, r, mv)∧
H OWNER(r, o) ⇒ O(mv, o)

In case the method returns a value, that value should be put on top of the
stack for the next instruction, and the rest of the current stack, less the argu-
ments to the invoked method, is also copied forward. Thus if m.returnType 6=
void then the following constraints are generated:

∀y : ∀z : ∀a : ∀i :
y = [i + |m|+ 1] ∧ z = [i + 1] ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, z, a)

∀r∀mv∀endmv∀a : S(m0, pc0, [|m|], r) ∧ML(m.id, r, mv)∧
END(mv, endmv) ∧ S(mv, endmv, [0], a) ⇒ S(m0, pc0 + 1, [0], a)

If on the other hand the invoked method does not return a value, then only the
current stack, less the arguments to the invoked method, is copied forward. Thus
if m.returnType = void then the following constraints are generated:

∀y : ∀a : ∀i : y = [i + |m|+ 1] ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, [i], a)

Finally, since the local variables of the invoking method are not modified, they
are simply copied along as well:

∀x∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

As for putfield we construct an observation predicate for invokevirtual

along the same lines:

∀r : S(m0, pc0, [|m|], r) ⇒
(∃x∃y : O(m0, x) ∧ x 6= JCRE∧ x 6= y ∧ H OWNER(r, y)) ⇒

ALERT(m0, pc0)

6.4 Solving the Constraints

Once the constraints are generated for all the instructions, all that remains is to
solve them. As mentioned earlier an efficient solver, called Succint Solver, has
been implemented by Seidl and Nielson. We shall not go into more detail here,
merely refer to [10, 11] for more information.

6.5 The Prototype

A prototype tool for parsing Carmel programs, generating constraints as dis-
cussed in this section and interfacing with the Succinct Solver has been im-
plemented. At the moment the tool simply presents the analysis result in its
entirety, however, work on a better presentation based on the program source
and using syntax colouring and hyperlinks is under way.

7 An Example

In Figure 1 a small Carmel example program is shown. The program defines
two classes: Account and Bad. The Account class is intended as a (very) simpli-
fied version of an electronic purse with only two methods: credit that checks

class Account {

void credit (int) {

/* Do some checking... */

load 0

load 1

invokevirtual Account.add

return

}

void add (int) {

load 1

getfield this Account.balance

numop add

putfield this Account.balance

return

}

}

class Bad {

void steal (void) {

getstatic Account.leak

dup 1 0

getfield Account.balance

push 5000

numop add

invokevirtual Account.add

return

}

}

Fig. 1. Example Carmel Program

and validates crediting an account and add that does the actual update of the
balance.

The Bad class is intended as a (very) simplified attacker that credits an ac-
count with 5000 units, bypassing the sanity checks. We assume that an object
reference to the account is leaked through a static field in the Account class,
called leak. The firewall cannot detect and stop access through static fields
since they have no owners. However, when the Bad class tries to access the ac-
count and get the balance, this is in violation with the firewall policy. Likewise
the invocation of the add method is also in violation with the firewall policy.
Figure 2 shows the constraints generated for the invokevirtual Account.add

instruction in the steal method of class Bad and Figure 3 the generated obser-
vation predicate for that instruction.

(A r. S(cl_Bad,steal,pc_6,suc(zero),r) =>

L(r,add,pc_1,var_0,r)) &

(A r. A a. S(cl_Bad,steal,pc_6,suc(zero),r) &

S(cl_Bad,steal,pc_6,zero,a) => L(r,add,pc_1,var_1,a)) &

(A x. A i. A a. x = suc(suc(i)) & S(cl_Bad,steal,pc_6,x,a) =>

S(cl_Bad,steal,pc_7,i,a)) &

(A x. A a. L(cl_Bad,steal,pc_6,x,a) => L(cl_Bad,steal,pc_7,x,a))&

(A r. A o. S(cl_Bad,steal,pc_6,suc(zero),r) & OWNER(r,o) =>

O(r,add,o))

Fig. 2. Constraints generated for invokevirtual Account.add in method steal

(A r. ((S(cl_Bad,steal,pc_6,suc(zero),r)) =>

((E x. (E y.

((O(cl_Bad,steal,x) & (x != cl_JCRE) &

(x != y) & (OWNER(r,y)))))) => (ALERT(cl_Bad,steal,pc_6)))))

Fig. 3. Observation predicate generated for invokevirtual Account.add in method
steal

Since we are not modelling the JCRE we must explicitly set up the initiali-
sation otherwise done by the JCRE:

OWNER(cl_Account,OWN_bank) &

OWNER(cl_Bad,OWN_hacker) &

O(cl_Account,credit,OWN_bank) &

O(cl_Account,add,OWN_bank) &

O(cl_Bad,steal,OWN_hacker)

The above contraints correspond to installing an application owned by bank and
having only one class, namely Account, with two methods: credit and add,
and then installing another application owned by hacker consisting of the class
Bad with only one method steal. These initialisation constraints could easily
be computed automatically, but they are only necessary when the JCRE is not
modelled explicitly. The constraints given here assume that all methods in all
classes can be invoked from “the outside” and so is a safe approximation of the
actual call-patterns.

Finally, in Figure 4 the result of solving the constraints is shown, namely
the ALERT relation. The analysis finds two possible breaches of the firewall rules,

Relation ALERT/3:

(cl_Bad, steal, pc_6), (cl_Bad, steal, pc_3),

Fig. 4. Solution for invokevirtual Account.add in method steal

both in method steal of class Bad, in program line three and six respectively,
corresponding to the getfield and invokevirtual instruction.

Even though the analysis decsribed in this paper is rather imprecise, we
belive it is sufficient for JavaCard programs that follow the current practices.
In particular, most JavaCards do not (yet) have a garbage collector and thus
all memory allocation is done in the initialisation phase and only rarely are
classes instantiated more than once. This justifies our abstraction of objects into
classes and also the rather simple notion of ownership. In the future this may
well change and then the analysis might not be precise enough, however, by
adding more information to the abstract object references, eg. adding ownership
information, we believe that sufficient precision can be achieved.

8 Conclusion and Future Work

In this paper we have shown how a prototype tool for validating JavaCard pro-
grams has been constructed by extending an existing control flow analysis with
ownership information. From this extended analysis a constraint generator for
the Succint Solver was systematically derived and it was discussed how verifi-
cation checks are formalised, also as constraints, and verified by the Succinct
Solver. We believe that such a tool will be very useful, in particular for de-
velopers, for ensuring the robustness of their programs and also for increasing
confidence in the security behaviour of their programs.

Work on extending and consolidating the ideas in this paper is already un-
derway mainly with respect to adding support for sharable objects (including
stack inspection) and entry points. As noted various places in the paper, there
are no conceptual difficulties in supporting sharable objects, entry points and
stack inspection and requires only a few modifications.

Another direction, where work is also underway, is to make the tool more user
friendly, in particular regarding the presentation of the analysis result. Here a
number of possibilities are being considered and tested.

Finally we would like to investigate how well the approach scales to “real-
world” JavaCard programs. While the current prototype is a rather naive im-
plementation of the analysis we believe that by employing different optimisation
strategies, discussed in [1, 6, 10, 11], we can achieve the desired scalability. Anec-
dotal evidence based on experiments with a similar constraint generator (only
for control flow analysis), seems to indicate that time complexity will be less of
an issue than space consumption, indeed constraint generation and solution for
a program of a few thousand lines only takes around 30 seconds. In [6] a number
of ideas for reducing space consumption is described. Furthermore, even real-
world JavaCard programs are of (relatively) small size which of course makes
them even more amenable to using formal methods for validation. Even so, in
anticipation of future needs work should be done on investigating various ways
of modularising and partitioning analyses so that analysis of a system might
be done in a stepwise fashion. For applets that do not communicate via shared
objects such partitioning should be fairly straightforward. For applets that do
communicate, analyses for determining communication interfaces is needed; ear-
lier work on “hardest attackers” for mobile ambients, cf. [9], may be a suitable
basis for such work.

References

1. Mikael Buchholtz, Hanne Riis Nielson, and Flemming Nielson. Experiments with
Succinct Solvers. SECSAFE-IMM-002-1.0. Also published as DTU Technical Re-
port IMM-TR-2002-4, February 2002.

2. Zhiqun Chen. Java Card Technology for Smart Cards. The Java Series. Addison
Wesley, 2000.

3. Stephen N. Freund and John C. Mitchell. A Formal Framework for the Java Byte-
code Language and Verifier. In ACM Conference on Object-Oriented Programming,

Systems, Languages, and Applications, OOPSLA’99, pages 147–166, Denver, CO,
USA, November 1999. ACM Press.

4. René Rydhof Hansen. Extending the Flow Logic for Carmel. SECSAFE-IMM-003-
1.0 (available from the author upon request), 2002.

5. René Rydhof Hansen. Flow Logic for Carmel. SECSAFE-IMM-001-1.5, 2002.
6. René Rydhof Hansen. Implementing the Flow Logic for Carmel. SECSAFE-IMM-

004-DRAFT. Forthcoming, 2002.
7. Flemming Nielson. Flow Logic. Web page: http://www.imm.dtu.dk/~nielson/

FlowLogic.html.
8. Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program

Analysis. Springer Verlag, 1999.
9. Flemming Nielson, Hanne Riis Nielson, and René Rydhof Hansen. Validating

Firewalls using Flow Logics. Theoretical Computer Science, 283(2):381–418, 2002.
10. Flemming Nielson and Helmut Seidl. Control-Flow Analysis in Cubic Time. In

Proc. ESOP’01, April 2001. Also appears as SECSAFE-DAIMI-006-1.0.
11. Flemming Nielson and Helmut Seidl. Succinct solvers. Technical Report 01-12,

University of Trier, Germany, 2001.
12. Hanne Riis Nielson and Flemming Nielson. Flow Logic: a multi-paradigmatic

approach to static analysis. Lecture Notes in Computer Science. Springer Verlag,
2002. To appear.

13. SecSafe Home Page. http://www.doc.ic.ac.uk/~siveroni/secsafe/.
14. Igor Siveroni and Chris Hankin. A Proposal for the JCVMLe Operational Seman-

tics. SECSAFE-ICSTM-001-2.2, October 2001.
15. Igor Siveroni, Thomas Jensen, and Marc Eluard. A Formal Specification of the

Java Card Firewall. In Hanne Riis Nielson, editor, Proc. of Nordic Workshop

on Secure IT-Systems, NordSec’01, pages 108–122, Lyngby, Denmark, November
2001. Proceedings published as DTU Technical Report IMM-TR-2001-14.

16. Jan Vitek, R. Nigel Horspool, and James S. Uhl. Compile-Time Analysis of Object-
Oriented Programs. In Proc. CC’92, volume 641 of Lecture Notes in Computer

Science, pages 236–250. Springer Verlag, 1992.

Design and Implementation of a Firewall and a
Packet Manipulator for Network Simulation

Using SSFNet

Cheol-Won Lee, Eul Gyu Im1, and Dong-Kyu Kim2

1 National Security Research Institute
62-1 Hwa-am-dong, Yu-seong-gu

Daejeon, 305-718, Republic of Korea
{cheolee,imeg}@etri.re.kr

2 Department of Computer Engineering
Ajou University, Suwon 442-749

Republic of Korea
dkkim@madang.ajou.ac.kr

Abstract. Cyber attacks affect many things on networks, such as net-
work latency, server loads, data integrity of files and so on. One of the
best feasible ways to research cyber attacks and their consequences is
simulations. To simulate cyber attacks, a simulation model must be able
to describe various network components as well as cyber attacks and se-
curity mechanisms. We designed and implemented modules to support
firewalls and packet manipulation in the Scalable Simulation Framework
(SSF) [1] that is a process-based discrete event simulation framework.
These modules, which were added to one of SSF components, that is
SSFNet [2, 3], allow users more comprehensive network simulations in-
cluding diverse cyber attack simulations. With the addition of these new
modules, SSFNet can simulate various network attacks and their dam-
ages, verify correctness and effects of security policies, and determine
appropriate security mechanisms against a certain attack.
Keywords: cyber attack, simulation, SSF, security

1 Introduction

Cyber attacks are increasingly taking on a grander scale. Attacks may be launched
from a wide base against a large number of targets with the intention of acquir-
ing resources as well as disrupting services. Research on cyber attacks and their
effects is fundamental to defend computer systems against cyber attacks in real
world [4, 5]. Even though lots of research was done on Internet attacks, there
still needs more work to do because the sizes of networks are very big and they
keep growing and attacks are getting very complex and diverse. There are many
ways to track down and study cyber attacks. Among them, the best way to get
data of network changes and damages against a certain attack is to apply the
attack on real environments and get results from them. But it is almost impos-
sible to get real data of all the possible attacks since many attacks are done in

very large distributed networks and experiments of attacks can disrupt services
of the servers or can even cause to shut down the whole servers on the networks.
Experiments with a small set of servers can be done to collect data, but this
method also has limitations because there should be a new network configura-
tion for each experiment and some experiments may require special equipments.
Simulations can provide data on effects of cyber attacks without interfering real
systems or services, and information about new hardwares can be easily fed into
a simulator. Therefore simulations are one of the best feasible ways to investigate
impacts of Internet attacks, and many people are working on this topic [6].

To simulate cyber attacks and changes of network environments, the simu-
lator must satisfy the following conditions. First, the simulator must be able to
model structures and environments of target networks. In addition, the simulator
must be able to simulate attacks on widely distributed networks.

Second, network subsystems, their characteristics, and their functions must
be able to be represented in the network model. For example, it must be able to
represent various packet processing steps performed in communication protocol
stacks of operating systems because most network attacks are based on processes
on network protocol stacks.

Third, results of simulated attacks must be very similar to those of real cyber
attacks. Rather than simple sequences based on statistics, the sequences of attack
packets in simulations must be close to patterns of real attacks.

Lastly, it must be able to express characteristics and mechanisms of defense
systems. Firewalls are widely used to protect networks against attacks, so a
simulator must be able to model networks with firewalls and IDSs (Intrusion
Detection Systems) [7–9].

Unfortunately, there is no such simulator that satisfies all the above require-
ments. Simulators, introduced so far, allow simulating only specific attacks in
specific areas. To establish a framework for network simulations of cyber attacks
in very large networks, in this paper we introduced firewalls and a packet manip-
ulator to Scalable Simulation Framework (SSF) [1], and these additions enable
users to simulate more comprehensive cyber attacks and detections especially
those required packet manipulations.

This paper is structured as follows. Section 2 gives a brief introduction of
Scalable Simulation Framework. Designs of a firewall and a packet manipulator
are addressed in Section 3 and Section 4. Section 5 provides experimental results
followed by conclusions in Section 6.

2 Scalable Simulation Framework(SSF)

SSF is a process-based discrete event-oriented simulation kernel, and with the
SSFNet component SSF can describe and simulate networks with more than
100,000 nodes. In SSFNet, objects of network subsystems, such as routers, links,
and network interface cards, and so on are programmed in Java, and their proper-
ties and roles also can be programmed and can be easily changed and expanded.
In addition, network protocol stacks, such as TCP, UDP, ICMP, and IP layers

are also implemented, so attacks using these protocols can be simulated using
SSFNet. Since many application programs for simulation are also programmed
in Java, SSFNet can be easily incorporated with these applications and it is
possible to do various experiments with attacks [3]. Even though SSFNet has
many advantages, to simulate attacks on network and their consequences, some
functionalities need to be implemented and added. Some attacks cannot be ex-
pressed using protocol stacks implemented in SSFNet because there are no class
libraries to capture network packets. To simulate defense mechanisms, security
system modules, like firewalls, also need to be added to SSFNet.

We designed and implemented modules to support firewalls and a packet
manipulator. This expansion of SSFNet allows users to be able to perform more
diverse simulations. In the following sections, details about the newly added
modules will be addressed.

3 Firewall

A firewall protects computers and networks by dropping harmful packets and
enforces an access control policy for accesses going in both directions. We de-
signed and added modules for firewalls to SSFNet, and details about firewall
components and their usages are addressed in this chapter. This paper mod-
els packet-filtering firewalls by expanding an IP layer rather than implementing
an independent component. To do this, Secure IP classes were added using IP
classes in SSFNet.

3.1 SecureIP Classes

Figure 1 shows packet flows in a Secure IP layer with packet filtering facilities.
Packets pass through the Secure IP layer, and the Secure IP Layer has packet
analyzers, packet checkers, and rule sets for packet checkers. Packets are divided
into three categories: in packets, out packets, and forwarded packets. Packets
that are sent to the firewall server are called ’in’ packets, and packets from the
firewall server are called ’out’ packets. Forwarded packets pass through the fire-
wall server from one server to another. A packet analyzer distinguishes forwarded
packets from in or out packets. A packet checker applies the corresponding rule
set to packets.

This Secure IP layer can model a firewall that analyzes all packets passing
through a server, and applies corresponding filtering rules to drop malicious
packets. If the result of filtering rules for a packet shows ’permit,’ then packets
are passed to the next layer normally or forwarded to other servers. Otherwise,
packets are dropped. If more than one rule is matched for an input packet, then
the first matched rule will be applied. Classes that represent this Secure IP layer
are called “SecureIP” classes.

3.2 Design of a firewall

To model firewalls using the SecureIP classes, IP classes in SSFNet must be
substituted with the SecureIP classes. But this selection is transparent to sim-
ulation application programmers because classes to be used in an IP layer are
determined by applications in a lower layer rather than by applications in a
higher layer. Therefore, if applications in a lower layer can handle these changes
of IP classes dynamically, there is nothing needed to be done in applications
for simulations. The following is the definition of a firewall in Domain Modeling
Language(DML). Specifications of DML can be found in [10].

Upper layer

Lower layer

Secure IP layer
(SubClass of IP)

Check Packet

Permit

Incoming packet

Outgoing packet

IN Rule Set OUT Rule SetFWD Rule Set

Analyze Pakcet Header

Analyze Pakcet Header

Check Packet
Permit

Incoming packet

Outgoing packet

Fig. 1. Packet flow in Secure IP classes

ProtocolSession [name ip use SSF.OS.secureIP
Firewall [

Rule [
Type %S # Rule Type
Id %I # Rule id
SrcAddr %S # Source Address
SrcPort %S # Source Port
DestAddr %S # Destination Address
DestPort %S # Destination Port

ProtocolName %S # Using Protocol Name (ex: TCP, UDP)
Direction %S # Packet direction (’Outbound’ or ’Inbound’)
Action %S # Filtering Action (’Permit’ or ’Deny’)

]
]

Other rules of the protocol go here.
]

The value of the ’Type’ field can be ’IN’, ’OUT’, or ’FWD’. If the type of
a rule is ’IN’, this rule is applied to packets that are sent from other hosts to
the server that the firewall is running on. If it is ’FWD’, this rule is applied to
forwarded packets. Since the main purpose of a firewall is to monitor network
activities, ’FWD’ rules will be most frequently used. The value of ’Id’ is a unique
identifier of a rule and it is represented in integer. The ’SrcAddr’ field and the
’DestAddr’ field are IP addresses of source hosts and destination hosts. The
’SrcPort’ field and the ’DestPort’ field are port numbers of source hosts and
destination hosts. The ’ProtocolName’ field specifies the name of a protocol to
be used. Currently, ’TCP’, ’UDP’, and ’ICMP’ can be used, and other protocols
can be easily supported, if necessary. The ’Direction’ field specifies whether a
packet comes from outside or inside of the firewall. The ’Action’ field can be
either ’Permit’ or ’Deny.’

3.3 An Example of a firewall

This section shows examples of two filtering rules of a firewall. The following
example shows a definition of a router in SSF. In this example, we assume that
the internal network has an address range from 210.1.30.1 to 210.1.30.254. The
example has a definition of a firewall that has two filtering rules.

router [id 1
interface [id 0 _extends .dictionary.10Mb]
interface [id 1 _extends .dictionary.100Mb]
graph [

Protocol Session Definition.
To use a firewall, SSF.OS.SecureIP which is responsible
for IP layers must be included.
ProtocolSession [name ip use SSF.OS.SecureIP

Firewall[
Rule[

Prevent ftp service in hosts in its own domain
Type FWD
Id 1
SrcAddr *

SrcPort *
DestAddr 210.1.30.*
DestPort 21
ProtocolName TCP
Direction *
Action Deny

]

Rule[
If the source address of an inbound packet is set to
an IP address in the same domain of the firewall,
the packet will be dropped.
Type FWD
Id 2
SrcAddr 210.1.30.*
SrcPort *
DestAddr 210.1.30.*
DestPort *
ProtocolName ICMP
Direction Inbound
Action Deny

]
] #end of Firewall

] #end of ProtocolSession ip

ProtocolSession [name icmp use SSF.OS.OSPF]

] #end of graph
] #end of router

Between two filtering rules, the first rule disallows ftp services to internal
servers, i.e. servers with ip addresses of 210.1.30.*. In other words, this rule
drops packets sent to port number 21 of hosts 210.1.30.* using a TCP proto-
col. The second rule restricts ICMP packets that are widely used for DOS at-
tacks. If attackers change source addresses of ICMP packets to internal addresses,
routers regard these packets as internal packets because domain addresses be-
tween source and destination are same. This attack tries to use a potential secu-
rity hole of firewalls that allows data transfer within internal hosts. To prevent
this kind of attacks, the second rule of the above example drops inbound packets
with internal source addresses.

4 Packet Manipulator

SSFNet provides only basic socket APIs to send or receive TCP or UDP packets,
and there is no API that allows modifying packet headers. But it is essential

for an attack simulator to modify packet headers. Therefore, we designed and
developed a packet manipulator for SSFNet.

Packet Manipulator (PM) has two main functionalities.

- Packet manipulation: This functionality is critical to develop attack pro-
grams for simulation.

- Packet capturing: to intercept packets from other hosts.

PM provides socket APIs, such as bind(), listen(), connect(), accept(), write(),
read(), and the like, that use to communicate with other hosts in TCP or UDP.
To simulate network attacks or defense mechanisms, PM provides APIs to set
or modify IP headers, like a version number, IP header length, types of service,
total length of pack, identification, flags, fragment offsets, time to live, proto-
cols, header checksums, a source IP address, and a destination IP address, etc.
Using these APIs, IP packets are easily manipulated and sent to other servers by
attack programs. PM can also generate complete TCP packets and manipulate
them. UDP packets and ICMP packets can be handled by PM, too. The manip-
ulated packets must be transferred using APIs provided by only PM. Because
attack programs need to be able to receive response packets of attacks, PM also
provides packet-capturing facility.

Figure 2 shows relationship among packet generation classes in PM. To make
new packets, the IpHeader class generates IP headers and sends them to appro-
priate classes depending on protocol types. Each protocol class generates its own
header and inserts it into the IP payload part of the packet, and a complete IP
packet is generated. This newly generated IP packet is sent to a remote host
using methods in the PM class.

The RawIpPkt class generates IP headers that can be used in real networks
and it allows programmers to be able to set parameters of TCP/IP or UDP/IP.
IP headers can be generated as follows:

RawIpPkt r_ip = new RawIpPkt();
r_ip.MakeIpPkt();

ICMP packets can be generated by the RawIcmpPkt class. Users can define
parameters for ICMP packets and the generated ICMP header is added to an
IP header. Methods to generated ICMP packets are as follows:

RawIcmpPkt r_icmp = new RawIcmpPkt();
r_icmp.MakeIcmpPkt(r_ip);

The RawTcpPkt class is used to generate TCP packets. The generated TCP
header is added to an IP header. Methods of the RawTcpPkt class are used as
follows:

RawTcpPkt r_tcp = new RawTcpPkt();
r_tcp.MakeTcpPkt(r_ip);

RawTcpPkt Class

MakeTcpPkt()

PM Class

Send()

RawIpPkt Class

MakeIpPkt()

RawIcmpPkt Class

MakeIcmpPkt()

RawUdpPkt Class

MakeUdpPkt()

IpHeader
class

TcpHeader
class

IpHeader
class

UdpHeader
class

Attached
Class

generation

parameter passing

generation generation

generation

parameter passing

Fig. 2. Classes and their relationship in Packet Manipulator

The RawUdpPkt class is similar to other classes. Its methods are used as
follows:

RawUdpPkt r_udp = new RawUdpPkt();
r_udp.MakeUdpPkt(r_ip);

Application

Link

IP PayloadCapture ON

Packet Queue

IP Class

Push()

Push()

Push()

Push()

TCP/UDP/ICMP
Classes

PM Class

NIC Class
(Network Interface

Card)
Push()

Send()

IP Packet

IP Packet

IP Packet IP Packet

Fig. 3. Packet flows of a normal mode and a packet-capturing
mode

The IP packets that are generated with the above methods are sent using
the following methods.

PM pm = new PM(this);

pm.Send(r_ip, this);

Figure 3 shows packet flows of both a normal mode and a packet-capturing
mode. Solid lines represent packet flows in a normal mode and dotted lines
show packet flows in a packet-capturing mode. Even though the packet-capturing
mode is set to ’OFF’, received packets are passed to applications through a
push() method in PM.

4.1 An Example Program using PM

The next program shows a simulation code of a smurf attack using APIs pro-
vided by PM. In the ”smurf” attack, attackers are using ICMP echo request
packets directed to IP broadcast addresses from remote locations to generate
denial-of-service attacks. There are three parties in these attacks: the attacker,
the intermediary, and the victim (note that the intermediary can also be a vic-
tim). The intermediary receives an ICMP echo request packet directed to the
IP broadcast address of their network. Many of the machines on the network
will receive this ICMP echo request packet and send an ICMP echo reply packet
back. When (potentially) all the machines on a network respond to this ICMP
echo request, the result can be severe network congestion or outages. When the
attackers create these packets, they do not use the IP address of their own ma-
chine as the source address. Instead, they create forged packets that contain the
spoofed source address of the attacker’s intended victim. The result is that when
all the machines at the intermediary’s site respond to the ICMP echo requests,
they send replies to the victim’s machine. The victim is subjected to network
congestion that could potentially make the network unusable [11].

In the next program, the address of a target host and a broadcast address of
a network are acquired from a DML file. A DML file also provides the number
of packets to be transmitted, an interval between packet transmissions, the size
of a packet, and so on. The program creates an IP header, makes up an ICMP
message, and sends the created packet to ’bcastaddr’.

/* define packet manipulatior instance */
PM pm = new PM(this);

/* get following items from DML file
target = get target host IP address to hit
bcastaddr = get network-directed broadcast address(x.x.x.255)
num = get number of packets to send (0 = flood)
pktdelay = get packet delay(wait) between each packet (in ms)
pktsize = get packet size ;

/* Using Timer class, we will send the packet periodically */
sequence = 1;
(new Timer(inGraph(),Net.seconds(pktdelay)) {
public void callback() {

try {
/* make RawIpPkt instance */
RawIpPkt r_ip = new RawIpPkt();

/* Here, you must set RawIpPkt class fields */
/* total length, src_ip, dest_ip, protocol_no,

tos, ttl */
IpHeader ip_h = r_ip.MakeIpPkt();

/* make RawIcmpPkt instance */
RawIcmpPkt r_icmp = new RawIcmpPkt;

/* Here, you must set RawIcmpPkt class fields */
r_icmp.icmpType = ICMP.ICMP_ECHO_REQUEST;
r_icmp.id = 1; r_icmp.seq = sequence++; r_icmp.datalen=pkt_size;

r_icmp.MakeIcmpPkt(ip_h);

/* send this packet to remote hosts */
pm.send(ip_h, this);
num --;
if (num > 0)

/* setting Timer again */
set();

} catch (ProtocolException pex) {
pex.printStackTrace();

}
}

}).set();

} /* end of methods */

public boolean push(ProtocolMessage msg, ProtocolSession from)
{

// you can implement this method optionally.
}

5 Experiments and Analysis

To test firewalls and Packet Manipulator proposed here, in this chapter we mod-
eled and established a virtual communication network using SSF, and on top of
this network we performed simulations of network attacks. Based on the network
model in [2], our network model has 13000 clients, 40 servers, and 270 routers.
Other network parameters are same as those in [2].

Using the above network configuration, ’smurf’ attack simulations are done
as follows. An ’smurf’ attack is a kind of distributed denial of service attacks [12,
13]. An attacker sends ICMP echo request packets with a victim’s address as a
source address, and hosts that receive ICMP echo requests send responses for
ICMP echo request packets to the victim. Since there is no mechanism to measure
loads of a specific server in SSFNet, we measured response time of the victim to
find out effects of the attack. To measure response time, a host which does not
take part in the attack sends normal ping packets to the victim. DML codes for
the ’smurf’ attack are as follows. It is assumed that the HTTP protocol is used
to access the victim.

Client10Mb_attack [
interface [id 0 bitrate 10000000 latency 0.001]
graph [

ProtocolSession [name ip use SSF.OS.IP]
ProtocolSession [name icmp use SSF.OS.ICMP]
ProtocolSession [name pingerBroad use pingClientBroad

count 500 interval 0.1 len 1024]
] # End of graph

] # End of client

Figure 4 shows average response time of the victim with different numbers of
intermediate subnetworks that participate in this attack. The size of an attack
packet is 1024 bytes, and the size of a ping packet is 48 bytes. 500 packets are
sent from each host in subnetworks in every 0.1 second, and average response
time was measured. One subnetwork has 100 hosts, and PM was used to generate
attack packets. Without any DDoS attack, the average response time for ping
packets is 0.79 second, and as shown in Figure 6, the average response time was
increased drastically when the number of input packets is over the capacity of
the victim. In this simulation, it was when the number of subnetworks was over
12, i.e. when about 1200 ICMP packets are sent.

Figure 5 shows the change of average response time of the target server as
the size of attack packets increases. The number of subnetworks was 12, and
other parameters are same as the previous simulation. If the size is greater than
a certain value, the average response time is same. This is because the number
of packets processed by a bottlenecked router is same, i.e. the router is fully
used. But as the size of attack packets increases, the period that a router is
bottlenecked becomes longer.

6 Conclusions

Cyber attacks affect many aspects of networks, such as network latency, server
loads, data integrity of files and so on. One of the best feasible ways to research
cyber attacks and their consequences is simulations. To simulate cyber attacks,
a simulation model must be able to describe various network components as well
as cyber attacks and security mechanisms.

Fig. 4. Average response time of ping packets with different
number of subnetworks

Fig. 5. Average response time of ping packets with different
sizes of attack packets

We designed and added new modules to support firewalls and packet ma-
nipulation. The newly designed modules are programmed in Java and added
to SSFNet. Since a large portion of cyber attack applications are programmed
in Java, these modules can be easily incorporated with attack applications to
simulate their effects on networks. Using the modules introduced in this paper,
more diverse simulations of attacks and security policies become possible.

To test and verify the newly added modules, the ’smurf’ attack was simu-
lated on virtual networks that we composed. The simulation results show that
the modules proposed here are quite satisfactory in large network simulations.
Besides the ’smurf’ attack, other network attacks that use packet manipulation
can be done with new modules.

As future directions, there should be more researches on how to simulate
cyber attacks and network damages using these newly added modules in SSFNet.

References

1. Cowie, J.H., Nicol, D.M., Ogielski, A.T.: Modeling the global internet. Computing
in Science and Engineering (1999) 42–50

2. Cowie, J.H., Nicol, D.M., Ogielski, A.T.: Modeling 100,000 nodes and beyond:
Self-validating design. In: DARPA/NIST Workshop on Validation of Large Scale
Network Simulation Models. (1999)

3. Cowie, J., Liu, H., Liu, J., Nicol, D., Ogielski, A.: Towards realistic million-node
internet simulations. In: Proceedings of the 1999 International Conference on Par-
allel and Distributed Processing Techniques and Applications, Las Vegas, Nevada
(1999)

4. Vigna, G., Eckmann, S., Kemmerer, R.: The STAT tool suite. In: Proceedings of
the DISCEX 2000, Hilton Head, South Carolina, IEEE Computer Society Press
(2000)

5. Vigna, G., Kemmerer, R.A.: NetSTAT: A network-based intrusion detection sys-
tem. Journal of Computer Security 7 (1999) 37–71

6. Networks, S.: Custom Attack Simulation language(CASL). (1998)
7. Brett: Building bastion routers using Cisco IOS. In: Phrack Magazine. Volume 9.

phrack.org (1999)
8. Durst, R., Champion, T., Witten, B., Miller, E., spagnuolo, L.: Testing and eval-

uating computer intrusion detection systems. Communications of the ACM 42
(1999) 53–61

9. Ilgun, K.: USTAT: A real-time intrusion detection system for UNIX. In: IEEE
Symposium on Security and Privacy, Oakland, CA (1993)

10. SSF Research Network http://www.ssfnet.org/SSFdocs/dmlReference.html: (Do-
main Modeling Language Reference Manual)

11. Center, C.C.: CERT advisories, (http://www.cert.org/advisories/)
12. Geng, X., Whinston, A.B.: Defeating distributed denial of service. In: Proceedings

of the IT Professional. Volume 2 of 4. (2000) 36–42
13. Kaufman, S., Ying, S.: DARPA information assurance program experimental

confirmation-DDoS. In: Proceedings of the DARPA Information Survivability Con-
ference & Exposition 2001. (2001) 152–154

� �������	�
 �� �
������ ��������� ����	 ���

������ �
��
	��
 �����
���

���� �����	
� ��	 �����
 ��
���

����� �� ��	�
��� �
� �
���	����
 ����
��

��
�����
��

���������

������ �� ��
�����
�

�����

������� ��	
������
���
��
����������
���
���
���������

��������� !� ��"� �
� ��	�#�$��% �� ����%&� �������� �%���	� �� �����

�
�' �
������
� �!�

	(�� �� (
�� �
� �!
� �!� �����(�#��% �� ���
���% �
#�

���(�#������ �� ��		�
 ������� ����
�� �
�! �
#
���(�#����� ��� (
)��

����*�� �
� ���	�� ����
� �������� �
 �!�� ����� �� �	�#�	�
� � ����(��

�� ++ �

����
 ��##� �
 � �� �	������##% ��	���� ,�� �
(#��#% ����#�(#�

���#� ��� ������ �
�#%��� ��	�
� �� ���� �!��� �������� !� ���
#�� �!��

���% !��! ����� �� ��#�� ��������� ��� �!� ���#� (
�#��
� �
 #�$���# �
�#%���

�
� ���% #�� ����� �� ��
� ��������� ��� �!� ���#� (
�#��
� �
 �%
�������#

�
� ��	�
����# �
�#%���� � � �

��������	 �
������ ����������� ��������� ��
�
������ ������ ��������� �
������
�
������ ���
� ��
����� ���
�� ������ ������

� �������	�
��

�� ��� �������
 ����

� ��
 ������� ����
� ��	
��
 ��
��
� ��
 �
���� ��
���� ����
��
 ���� �� ��
�
 ���� ���������
 �
������ ����
��������
� �����	���
�� ���������� ���
 !"#$!���	������� !
��
� �� !���
��
 �
���� %���
����� ��

��
�
� �� �
����
	 �
������ ����
��������
� �� �������
 ��� ����
��
	 ���� �
����
&''(�� ��� �
���)&*

+�� ��
�
 �� ���	 �
�� ��	 ��	 �
�� $�
 ���	 �
�� �� ���� ��
�
 �� ����
�� �����
����� ��� ��
�
 �� ��� ��
�
 �
������ ����
��������
� ������ ��� ��

������� ������� ��

 ���� ��	
��� �
��������� ��� ��
� ��� �
 ����	
	 $�

��	 �
�� �� ���� ���� �����
����� �����
���� 	�
� ��� �
�	 �� �
�� ����
��������
�
$�
 ��

�����
� ��

�	
 ��
� ��	 ��
� ����� ����� ��� �������
 �� ����� ��
��
 ���������� ��� ��
 ����
��� ����� ������	 ����
�������� ,���	 ����
�
� ��
���
 %���
����� �� !��������� �� -
��
�
� ���� ���� ���
� ��
����� ����
 ����	
��� ����� &'(�� ��
 ����
��������
� �
����
	 �� !"#$)..* "/����� 	���
����
�� ��

����
 �
���� ����
�������� ����� ��� �������� ������� ����� 0'''

1� ��

�		�
 �� ������� 0''0 ��
 	��������� ����� �
������������ ��� �
��2
���� ���������� ���� �� ���
�
����� ���� $�
 %3 +������� ���	

�
� �
�
��
	

���� �� �������� 	
�����
������� �������� �� ���� ����������

� ��������	�
��� ��	�

������ ����	��
�����
� 	���
� ����
��
 ����� ����
	�
������ �		���
���� ��� ��	���
� ����	��� �����
��� ���
 ���������� �����	
�
���� ���	� ��
 ������
���� �

��
��� ��� ���� � ���� ����
�� ��
����� 	�� ��
	������ �� 	���
� !�
�� ��
��� ���
���� 	�
������
�� �� 	������ ��� ��
 ����
���
��� ��
�������� "��� �
������
�� �
���
��	� �� ������� ���
���� ���������
�
�����	�
��� ��	��� ���
����� #�
�
�
�� �������
��
 ���
��
���
���� ��
��
��� ��	���
� 	���� �� ��� ��
�� ����
���� ���
��� ������� ������
�

���� �
��
��� ����
 ����� ��
����
��
 	�� �� ������� ����	
��
�
��
����	� 	��� ��� ����� �� ���� ����
 ��	���
� �����������
���� "���
����
�����

� �����
�� ������
� ��
�� �
���
��
�
��� ���
��
��� ������ #������� ��	��
��
� ����
��
�
����������
��������

�� ����� �������
��
 	�	�� �����
��

�������� ��
��� �$�	
���� ��
 �����
�� �
���
 �� �%��
��� ���
�����
�� �
����
���
������ ������ ������� ���
���� 	�
�����
�� ���
��
�
� �
 �����
���
�
���	�
� ���
���� ��������� �� ��	��� �������� ��� ������� �� �����
��
 ��	���
�

����
�����
� 	���� �� ���������� ����	� 	��� ��� ��	������� # ���
��� ���	���
���� ��
��� ����� 	�� �� ����� ��
�� &������'(������� ���� ����� �� !)))
 ��
���� �*���

!�
��� ����� �� �����
���
�
�� �$�	
������� �� +�� �����	�� ��������� �
�
�	
��
������ ������
���
����,��
���
�� ��	���
�
��
���
���� !" �� (���+�����
-#" � ����
 ��� .//0� /�� ������	� ��� ����
� +��
 ��
 �� ������
� ���
����
������ �� ��� ��$�� ����1�� ��� ���
�
 �
���� �

�	�� ���� ��� ���

���
��������� ����� �� �
��
��� ��
� ����
�+�� ��	���
� ����� 2�
���
��� ��
�
����	��
��
 ��
� ���
��
���� "��� ���� �� � ��������� �� &��� 2�������3�
4��
��3� "����� ��5��

"�� ���
 ��
�� ����� �� ������6�� �� �������� �	
��� � ���	����� ���	���

�
���
�����
��
 �� 70!8 ��� ��� ��$�� ����1�� ��� ���
�
 �
���� �

�	��
����� 9��� �� ��+�� ���
��
��� �� �� ���������� ���	
���� �� :� �	
��� �
������
�
�� 	��	��
 �� ��
������ ������
��� ��� ���	�����
��
�	���;��� ����
��
�� +�� �����6��
����� �	
��� � ������
� ��� �
����	�� 	�
������� ��
��

������ �����	
����� �
�	��� ��� ���
	����� �����	���
�������	�	�	��� ������� ����
	� ��������� 	� ����	�� �� �	����� ����	�� � �����	�� ��� �������	����

� ������� ��	
���
��������
�

��� ������	� �� 	�����	��� 	� ��	� ����� �������� � ������ �� ���
	����	��� ��
�����	�� ���	�	�� ���� ����� �����	���� � �����	�� 	�����	�� ������	�
 ����	�	���
	� ��� ��� ��� ��� !������� "����	�� #������� $%&'� !� ��� ������� �� 	�����	��
�� � ���������� ������ �	 � ��� �������� ��� 	
�
� �
��

�(����	�
 ��� ��������
������� ���	����� ����� "������� �����	�� ��
�(�� �����
���������(�����	�
 �����
�	�� �� 	�����	��� ��� ����	����� ��� ����� ����	��� �	���)���	����� ����* ��+
��� ���� �����	�
 � ��� ������ ��	� ����� �	�� ��
� ��� �� � ������ �	
��� ��
��� ����� �� ��� ������� ��������� !� ��� ������� ���

� ������(�� �	�� ���
�������� 	� �	� �� ��� ��� �����(���
	�
 ��� ����� ����� ���� ��� ��� �	�� ��
 ��	�����	���

��� �����	��
�� �
�� �� ���
��

,���
	�
 ��� -�� �� ������� ��� ������	�
 ���	����� ���� 	�
��
�� ��� ����� ���
�� ��������.

/� !�0���	�
 ������ �
�� �� ������ ��
�����
� 	��� �� � � ��� ��������� 1��
�
� �����2 �� ���
��������� ��������

%� 3���	�
 �� �
��������� �����	�� ��	�	�
 �� � ��� �� ��� ������� �� �����
���� ���� �������� ������	�� -���

3����� ���� ����� ��� ���� ��� ���� ��� �����	�
 � ����� 1���� ���� /44
����� ����� �	�� ��2 ������� ������ ���� ����� ��� ���� �� 	���� �� ���� �������
��	��	�
 	� ���
��������� �������(��� ��� ��� ��	�
 ��� ���� ���� ���������
�� 	���� �� ��� ���	
��
 �	����� �����	�� ����� ����� � ������
5�� �	

��� ������� 	� ���� ���6���	����	�
 ������� -�� �� ��	�	�
 �� � +

���� ���� 	� ��� ���� ���� ��� ��� ����	�	�	�� �� ����
	�
 ��� -�� �� �������
	� ��	� ��� 	� ��� ��� ���	���� ����	�	�� �� ��� ��� �� ����� ��� ����	�	�	�� ��
	�0���	�
 ������ ���� �� ������ ���� ����� 	� �	
��� �	��� 	� ���� ��� ��������	��
��
� ��
	����� ��� ����� �� �����	��	��� �� ��� ���
�� �
,���
	�
 -�� �� ������� 	� ��� �� �����	�
 � �
�� �
����
� 3 ���� ��	����

	� ���	����� �
���� ��	��
	
�� ��� �

�
�� �
����
 � ��� � ��� �������
�� ����� ������	�
 ���� ��� !� � ���� ��	���� ��� �� ��� �� ��	�� �� ������
���� ��� ���
�� 	�
���������� ��� ��� ������� ���� ��	���� �� ���
�� 	� ���
������ ������� �� ��� ������ 7�� ���
�� �� ������ ������
� �
����
�(�� ������
�
����� ����
�(��� ��� ��� ���� �
����
 ��� �8����� �����	
� ���
��� �� �������

��� ����� ������� �

����

7���� �
��-�� ������� ��� ��� ��� �� �� �����	�� 	�����	�� ������ $99(//'
��� ��� ���� ������	
��� �����:�� ��� �����	��� 	� ��
���� ������ ��� ��+�	��

��������	
���
�� �� ��� �����	� �������� ���� ��� ��������� �� ������� ���
�� �������� ���� ��� ���� ���� �� ����� �	 �� ���� �� ��	��� ���� ��� ����
����! ������� ���� ��� ����� �������� "�	 ������ #��� ��� ���� ���� �	 �������
���� � ����� ��� �$��� ���� ���� %	&��� ����' ���� ��� ��(����� ������ 	���������
���������� ����������! �������! ���� ��	 	����� ����� �������)��	 ��� �� ���	��
�� ��������� � ���� &������ ��� ����!� ��� ��� �� ��������

)�� ��	� ������ ����� ������� ����� �	 	���� �� ��� 	��&��"�� �$��&��
������ * ����� ����� ��������� �� ��� 	��� �	 �������� ���� +*+	 ��� ����������
��� ������ �����		 �	 ������������ �� ���	 ��	� ���� ��� �����		 �����������

,���� ����� ��������

��������

-�� ��	� &������ ��������

.����� �����		 ����������

*�!�����	 *�!�����	

���� �� * ����� ������� ����������! ��� ������ �����		�

/� �� ����� �� ��� 	�&&�� ��� ��&�� �� ��� ����� �� �� 	�� ��� ��	�!� ���
���� �� �������� ��� ������ �����		 �� ��	 �� ��� ����� �����

��� ��	
� �

���� ����
��������
�

0� ��� ���� ����� �	 �� ���� ������� ��� ���� "�	 ���� ��� ��	�������� �����1
)�� &������ �	 ���� 	������ �� *20/ 3+	 	������� ������� ��������	 ���� �� ���
&��!������ �� �� ��� ���� ��!� ����� ���� ����� �� ���� 4��� �� ���	� ��������	
��� &������� ��� �������! 	����!	 ��� ���	 &�&����� 4��� 	����� ���	���	 ����
�� 	��� ��	�	 ���� ��&�������� ��� ��� ��� �����	 ��� �� &��!������	�
)���� ��� ��	�	 �� ���	� ���!����	 3 ��������	 ����� �������� �� &����	��� �����
�������	
56� 57� 5
�� 8��� ���	� ��	�	 �� ���� ���	�� �� �� � ��� "����� ��������	
���	������ ��	� ��	 � ���� ��� ��	����9

� �	
��
 :� �����
��

�� ���	����

7� �
���
�

5� ������

� �
�����

;� �������

�� �
�	����

6� �������

5� �
�	����

�� �������

;� ������
��

�� ��������

6� �
�
����

�� ��������

)��	 ��	� �	 ��� �$���	���� ��� 	����� &������ �	���� ��	� ���� ��� ��� ���<
&���	�� �� ��� ����	�

��� �����	
	���
 �		����

���� �� ���� �			
�� �
�
 ������ ����	
 ������ ��� ��������� ����� ������
� ��

�� ������
 ���
�� ���� ��
��
�
�� ��
� �� ��
���
 ����� �
��
���
��� �����
��
�!�
" �� ����
�
" ��!� ��� �������" ��#����� $����
��� ��
��
 �

��! �

��#�
��%� ���� ��#������!�� ��
 ����! �� ���!�
��� �� ��&�
 �%�
'�� �

��#�� (��"
�
� ����
���� �� �� ��
����%� �

���� �" (��� (��� ���� ��� ���� �� � ���

�

�

���� �" (��)������ �����

$

��! ����
���� �� *)$+ � ��
�� ������ �� ������ ������ ����	
�� (��" �����
��
 �"����� �������
��� �
 ��
��

��! �� �

��!� ����! ��	
�����	 �����������	�

�
�

��! ��
�
�� ���
��
�
 � ��� �����! ��
� � ���%�
���� �������
� ,��� ���-
%�
���� ��������
���
����
� �� ��
����! .�
� �
 ��
� �����/���
 �
!����
��

0�
1� ��" � ��

 �� � �
�!
�� ���#� ��#�
���2

���� ����	
���
	���
��
��� ��	����� �

����	������� �	������ �

* ����
� ����	 ���
 ��� ����� �
��

�� �

��! �
!����
 ������� (�� ����
����
������
" ����� 3������!�"4 �� �����%�� ��
� �������
 ������
 ����2

���� ����	
���
	���
��
��� ��	����� �

����	���	������ �

 ���!
�� ����
��� �
!����
 �	���� ��
��
�" ���� �
��� �
��

�� �
!����

������
� ����	
���
	���
���� 5�
 ���
 �� �� ���� ����	
���
	���
�����
� �
�

��! ���
�����! ���%�
���� ��������
����6 ��
 ������� ����	
���
	���
�����
��������7 (��� ����	��� ���� ��
�
�
�

�� �

��! �� � ��
��
 �

��! ��� ��
���
���� ������
��

��
� �
� ���
 ��
�!�
� �
�
�� ��
�� �
��# ���
��� ��� ���

���� ���
 �"
�� �� �
��# ����
" ��� �
��

�� %����� �
�
��
��
�� $� �� �
�-
!
����
�
�#�
��� ���

��
 ���� ����! ��
��
 �

��! ����
����6
�� ���������
"
�
���� ��
 �� �

��#�

� ��8��
 ���%�
���� ��������
����
��
 ���� �� �%����
���

)��6 �������
��!
�� ���%�
���� �������
 ��
���!� !�
 ���!�
���� �� ����
�����
�� ��
��
 �

��! ����
���
� ��� ���
 �"
�� ��
�� �
��# ��� ���
��

%���� �� � ����
" ����
�
 ��
 �
�
��!
�� �����
 �� ���
��
�
� �� ��
 ��
��
��
��
 �

��! 3����
�� �����
 �� ���
��
�
� ����
� ���4� $� �" ��8��
��! � ��
��

�

��! ���
�����! �� �� �

��#�
 ��� ����� ��
� ��
�
�� �
�����1 ����
"�

+� �� �

��#�
 �� ����
� �
�%���
�� ��
��
 �

��!
� � �� *)$+ � ��
��

����
��� �� ��

 �
 �� � ����� � ��
��
 �

��! %����
�����
" �� �
����
� 5" ���-
�����!
�� %�
���� ���%�
���� ��������
���� ��� ��#��! ��� ��
�� ���

��

��
��
��
 �

��! �
���� �� �
�
�� ��
�� �
��# �� ��� %��� ��� �
�
� �� �
��

�
"
����
" ���
������

��� �����	
	���
 �����������	���

9����
�� �
�����-�����" �� ��%��%�� �� ����
��� �� ��&�
 �%�
'�� ������
�
���
�� ��
��
 �

��! �

��#� ��������� �����
�
�� ����	���-�����" �� ��
��

�

��! ����
���� ���6 :�� ;�

��

����� ��

��
 ���" �����
��
�� ��

�
 �����

�� ��� ���	
 ����
� ���������� �� ��
��
������ ����� �������� �
��� �� ���
������� ���������	
��
��������	
�� ���� ���������� ���� ��
� �� ��� �����
������� �
����

 !� �������	 "#�
�������	
 $� ��������	 " �
��������	
 %� ��������	 ""�
��������	
 &� ���������	 "'�
���������	

� �������	�
�������	�

(����
�� �����
� �
�� �� ������ ��)������� ����������� *
���
�� +
���)������

 �
,����� �� ������������	� �
����
�
� �
���� ���� - ./ ����� ���� ��0���

��������� 	�
�
������ 1�������� �� �������� �
����
)� ��� ��2������� ��
)
�3
�����
� ���������4� ��������

5� ������ ���������)��������� ���� ������ �������	� ��
�
���	�
�� �������

�������	� ��
�
���	�� 	� ���� ������� �� ���� 0��� �������� ��� ���������� �������
����� ��� �
��������� ��������6 �� �������� 0��)�������
�
��
��� ����� ��� ��
���
���������)���������6 �������� ������� ��� ���� ���26
�� �� ��� ��� ���)
��
����� ������������
�
���� ������
�������� ��������� �� ������� "�"� (��� �� ���

���)���� ������ �� ��
��� ���������)��������� �����6 �
����
 ������ ���� ���
��������� ������
�����

7 (���� ���� �� ��� �������)�
�� �� ��� �����
���
7 (���� ��
� ��8���� ��
������� �� ������ ���� �� ������ �������� ������
���������
7 (���� ��
�
�� ��)��������
��)�������
�
��
���6 ��� ������ �)���0� ������

9�� �����
���� ��� ���� �� �� ��
��
��
�� ���)
�� ����� ��
� ����� �
����

�� 8���2�� �� ���������� �� �����
�� ������)���
�� �����
�� �����
�� 8�
����
����
 ��������)���� �� �����

�� ������� ��������� ��
�
�����

(�� ���
��� �� �������
 ���������)���������
))��
�� �� �� ��
��� ��� ���3
���� ����������� �� ������ ��������
���� �
2��� ������
���)����
�� �
������
��
� ��
�� ���� ������
���� (��� ��
�� ��
� ��
� �����
�� ����������� ���
)����
� ����� ����� �� ������
��� ���� �������� ����
�� ����� ������ ��� �� ���
���6 ���� ������ ����������� ����� �
�� ������
�������� �
���� �� �,)������ ��
��� �
�� �
�:��)������� ��	�� �
����� ����
��
�2�� (���� �����
� ��
2����
���� �� ��� �
�� ��
� ���)��������� �������
�� ��)��� �� ��� ����
�� 2����
�� �� �,)������ ���
�6 ��� ���� �� ��� ��� ��� �� ���
���
� ����� 5�������
�

��
�2�� �
� 0����� ���
 ���
��
�2 �
���� ��
��
��� ���� ��� �
�� ��������
���6 ����� ���
��� ��������� ����� ��
�� ������������ 9� ��� ����� �
�� ����
���� �� ��������
�
���� �,)����
���� ��
�� ��� ����
����� ��� ��� �
�� �
�����

��� ������ 	
���
��
 �����
���

������ �����	�
� ���
����
� ����	 �
 ���
��� ������	 �� ������ ��� 	�������
������
��������	 �� ��� 	
���� �
�� 	
 ���� ��� ��
������� ��� ���

� ����� ���

���
��� 	������� ���	 ��
� � ��
���� �	 �
�	������ �����	���� ���� ����� ����	 ���
	����� 	
����
� ���
������� �
�������		! ���

��� ���	 ��
�� �
 �� �"��
������
�����	 �
�� ��� �������

�
� 	����		��� ������	 �����	� ��� �
		���� 	������� ����
���	 �� ��� 	
������� ������ �����	�
� ���
����
� ���

�	 ��� ��������	 �

�	! ���
	������� ���	� #�� ��
 ���� ��������	
� ���	 ����
��� �	 ���� 	
��
�� ��	
�
 ���� �� ������� ������	�

�� ��
�������� $��	 �
 ��	� �
�! ��� 	���� ���
�

�	
��� ������
�������������	 ��� �	�� ��	 �
 ��
� �
� �
 �" ��� ��
����

��� � ������� ��	 ���� �		���� %� ���	 ����� �� ��
� ��
	�� �
 �
��	
� �
�
�������� �
������� �

�	 �
� 	����� �����	�
� ���
����
��

��� 	���

%� ���� &''' ��	�������	 �� �������� �
������ #����
�
���	! �
� (������! ���	�����
� 	����� �����	�	 �

� �
� ��������� 	�������
�������������	 �� (��� ()) �
��*
���� ��� 	
���
�� 	������ 	������� 	�
����
� ��	� �
� 	�
�� �+'�� #�� �

� �
�	 �
��"���� �����	�	 �������� � �
��� 	�����
� ��� �
��� #��� ��� �
���	 ��� �������
���� ��
��
��������� ������
�	 �� � ������	�� #�� ���	
� �
� �
� ����
�����
� ������ �����	�	 ���� ��� ����
� 	�������� �����	�	 ,���	���- �	 ���� 	��� ��
�����	�	 ����
� �� ����
� ��� $� ������ ��
��������� %#�. �	 ����� �
 ��
�
��
��
���	 	���
�� ����� �
����! ������������ �
������� 	������� ��
����	 �	 ����
��� �������� /��	��� ��	
 	�0��	 ��
� ����� ����� ���������! �
� �����	 �

�����
��� ��
�� 	
���� �
�� �����	�
� ������
��		
� �
�����
���	�

1��� ������� ����� ����� ���
������������ ������	� �
������� �+� �
�������

�������������	 ��������� ��
����	 ���� �
�� �
�����
�� ,�
� �������� �� ���	 ���
���! �
� ��������� 	�� ������� �� 2�	�
� ��� 3����� �&�- ��� ��0��

��$
�	�
�����
 �
��
� ������
�� ��� ��	
 �
�	������ ��	�� 	���� ����4��
���� �	��
��
���� �� 	���������������� ���������
�	� 5� ����� �� ��� ������	� �
�	�	�	
�6

7 5 ����� ��	������
�
� ��� ��
����
7 5 �������
�� ��	������
�
� �
� �
 �
�� ��
��� ��� ��
�����
7 5 �������
� ���
������������
� ��� 	���� �������! ��	�����!

����
�������! �����! ����������!
����������

7 5� ��������
�
� ���� ����
� �����	�	 �
 ����
�� �����
�� ��� ������
� �	
�
����

7 1������
� �
� ��� ������
� ��� ������
� ����� ��
� �� �"������ 	
���� 	���
�	 � ���
� � ����
�� �
������
��

%#�. ��	 � �
����� ��	��� ����� ���
�	 �
� ���������
� ��
���
�	 ��
��
��
���� ��
��
�����	 �� ��������� ��	 ��
������
� ��������� %� ���� ���� ��	
��

� ��� ��	��� �
��	 �
� %#�.� 8
� ��� �
���� ��
��� 	���
��	 ���������
� ����
9 : ;���	�

#�� %#�. 	������� �

� �	 �
������� �
� �
���
��
� ��� %��������
�������������������������� �

��� �����	
�� �	

���

��� ��� ����	
�� ����
�
 ����� ���	� 	�������
� ��� �������������	 ������
���� �� ���
� �� ������	 � !" ���
��
� �������
 ���� ��	 ����	��� #$��%&
��������� �� %���	� %�'���	� %����
��� ��("� ���� ���� ���� ���	�� ���� ��
��� ��)
��� �����* ���	��
�
 '�	 ����	
�� ��
�� ���
	 �����
��� �	� ��	� �
+
��	 ��
,�%!� ����
� ��� ���
��� ���� ��� ��� ���+� ���	� �������
�
 �
+
��	 �����
���� ���
��� �� � ��++�� 	������ ���� ��� �� �	�
�
 �� ��+�
�� ��� ��� �����

��� ���
� ��� '���	��

-��� �� ,�%! .���/���	 ��	0� �� ��
�
 � ��
���
� �������� �' 12133 '����
�
��� �
�� �����0���� �	����+�* ���� �� ��4�	 ���	5�� 	
�0�* '�	+�� ��	
�

�	����+�* 	��� ����
�
���* ��� +�	�� ��� ���� �	������ � �
�� �' ������
�� ����
��	��
�
�
�� ��	��� �� 	
�0� ��
� 	
�0 ����� ������� ��� ���� �� ��� '����
��* ���
�� ��� ������ �' ��� ��	�+���	� �' ��� '����
��� .�	 �)�+���* �������� ��	
�
�
�	� ����
��	�� ���� 	
�0� ���� '���� ��	
���� ��	
�
�� ��� .���/���	 ���6 �����	�
��
�
�� �������� �����
�� 77 1 ����	
�� ��
��

$��% ����� ��� ���� 1 ��� 133 ���� ��� ���� 8�	�* 898 ��� 8�����
���	�� ���� ��� 5�
� ��++�� ����	
�� ��
� ���� �� ��4�	 ���	5��� ��� 	���
����
�
���� -��� �� .���/���	 ��� ,�%!* $��% ��� � �������� �' �����	��
�
�
��
��� ��	�� '���� ����	
�� ��
� �� 	
�0� ��� $��% �� �����	��
�
�� ��������
�����
�� ��� 1 ����	
�� ��
��

:��� ����� ����	
�� ����
�
 ����� �	�
���0�� '	�+ � ����� �
�� ���	�� ���� ��

����� ���� �	���	�� ��� ���� ��� �	����� ������ �
�� 	
�0
	��
�
 ��� ���	�
����	
��
��� �' ��� ������
�� �	����+��

��� ����	
�� ����� .���/���	 ��� $��% �	� ���
����� '�	 �������� �� ���
,���	����

��������������		
	���
���
������	��

������������	���	����
�������

��� ����	�

��� ��)� ����
� ������
� ���� �� ����	
��
� ������
+���+����� �� ���
� ;����
�� �� ���* � "� ��� ��+� ��� ��+� �'
�� '����
����
�� �	

����� '	�+ � ������	
����
� ������
� ���� '�	 1 ������ ���� 	�������
� ��� ������
�� ��7"� <1<
�� ���
����	 ���� �������� �� ���	�� '�	 ����	
�� ����
/� ��
� ��=" ��� ��� /	�� �'
-����	� ���� <1<
��
�� ��� ��+� ����	� �	�
	�����
 ���� �	 ������ '�	 ���	��

��� %��
�� ���	����
� �� ��� �	�
	�++�	 �	��
��� ��+���
� ��++����* ��
������ �����������* �� ��	'�	+ ����
� ������
� �� ��� �������
� �����* +�0
�
 ���
�' ��� �	�
	�+>� ��	�� �	��� ��
� +���� ���� ��� ���� ��� � +��� �����	 ������
�' �
4�	���
��
�
 ������� ��		��� ���
���		��� ��� �' '����
��� ���� ��� �����
��	0
�
 �� ��� ��)
��� ������

��� ����������	 	
����
 �������� ���	������	 �� ���
����������� � �����
���� �������� ��� �������� ���� �	 � 	��
����� ����
�� ���� ��� ��������� ������

���������� �� ��� �
����
�������

	���
���	��
	���
��� 	���
���

�
��������� ������
��� �� �������
��� �
�

�
�������� �������
��� �� �������
��� �
�

��� �������� ����	� 	
�����	 ���� ����� �� ��	� �� ��� ������ �� ���� ���
���������	 �������� ���� ����� ��� ��� ������� ����	� 	�
	 ���� �
�� ������
��� ������ �� ����� �� �	 �!��� �� ��� ������ �� ����� ��� "� �
������ �������	
� ���� �� ���	��
� ���� � ��	�������� ����� �� 	������ ���� ��� 	����� �����
�� � ����� �#��$�� #�����������
 �	
��	��� ��� �
���� 	����� ��
��� ��� ����

�� ������ ���	 ��� ���	������	 �� ��� ����������	 ��#� �� �� ��	��#��� %��
��#�� ���	������	 ��� ��	� �����	
�� �� ��� 	����
��		��� ��#�� &���� ���
 ��� ���
������ �
 ����������	'� ���� 	�������� ���	������	 ��� ��������� �
 ��(����
��� ���	� 	����
��		��� ���	������	 �		����� ���� ��� �������� 	����
��		���	
������ ������ ��� 	��� ����� ��� ��������� ���	������	 ��� ���� ������� ����
��� ��������� ���	������	 �� ��������� �� ��� ������ ����� "� ���
 �� ��� �
����
�		��	 � ��������

)��� ���� �� ���� ��� ��� ��
 ����������	 �� ��� ��	� 	����� ���� 	���� ����
����� �� � #�������� �� ��� 	����� ��	���� ���	������ ������ �� 	������ *� +�
���
 ����
 �� �
����,	 ��������� ��������	 �� ���� � ���� ���
���	���

��� �
���� 	������
 ���� �	 �#������� ��� �������� �� ��� "��������
������������� ����!�"�

��� ����

-�#�� +����� �� ��
��	����� � ���� �� ./// ��	������� ������ ��� ���������
����� �#��$�� #�������������	 �� 0 ���� 1**2� "� 3��
 .//. ����� ���� �� ������
�������
�����

� ��	
������
 �����	�� ����� ��� ���� �

� ����� 	����	
��� �����
������ ��
��
�
�� 4���� ��� �		��
���� ���� ��	� ����� �#��$��	
��� �� 	����� �����	 ���
 ����� 	����� #�������	 &���� ��� 	����� �����	' �	 ���

��
�����	���� ��������� 	�5� ��� ��� ������ �� �
��	 ��������
 �� �	�� ����
��� 	����� ��������	 ��� ������� �� ����	 �� ����� �����	 �� ���	� ���
��
���
���	 �� ��� 	����� #�������� ��� ���	������	 ��� 	��#�� ��� ������� �� ������
�����	�	������	 	�������
 �� �
�����

6����� ����
5��� ��� 	����� ����
�� ��#� �� �	� ��� 0
��
����		�� �� �� ��
��
��� ��� �����	 ��� 7�������,	� ���� 688)
��	�	 ��� ���� ��� ��
���	 ��

�������� #�������������	 �	 ��������� �� ��� �� ����� ���������	 �����
 9:���	�
��������
 � ����� �#��$��; 9<�		���
 � ����� �#��$��; ��� 9������ ������ ��
� ����� �#��$��;� ��� �	�� ����	 �� �� ����� ��� 	����� ���� �
 ���� ��� 	��
������� �� �	 � ���� ����� �#��$�� �� ����)��� ���� 688) ���	 ��� ������
������ 	����� #�������������	 ��� �	 ���	 ��� ��	��� ��� �����

��� 688) 	������
 ���� �	 �#������� ��� �������� �� ��� "��������
�����������	��#��$� �������%����#!!��

��� ����� 	�
��� 	
����
��

����� ��� ������� 	
��� ����	�����
	 �
�

�
�
���
	� ������

	�� ��� ����
�	����
�
	 ������� �	�
����
��

�� ��
�� ��	�
��� � ��	�� ����� 	� �	
��

��
��
�	�	�	�
���

�
		� ��

	 �� ����
����
� ����� �� �	�� �����
	 ����� ����
� � �	����
�	�� ����!
��
		�
��
 �
�� �	 ���� 	�
 �
�

� ������
� ��� ���
����
�
�

���

	
���
�� �
��� �������
� �
����
"�� 	�
�
����� ����
� ��������
��

��
������ ���	
 ��
��
��� ��� ���	 ���� ����
	 #�� ���	��
� �	�
���� �$%�� ��
�
��� ���� ���� �	� �����

�
��

��� &�
�'��

�� ����
�(
�� ���
�� ��
��
��
��

� �	����
�
	 �� ��	���	�� �
�
� ���
�� �)���

	� ���
�� �*��
� 	� ���
��
�����

�
� 	������� ��� ������
���

���� +�	�� �
 ��
�������
�� � ��	
	
���
		� ������ ���	
 ��
��
��� �����

��
� ���	(� ,-.� �	� ��	�
 ��%�� ���
		� ��	�� ��	�
�
�� �����
� ��
 �������/

	�� 	�
�� �	���� �	�� ����
	 �� ���� �� ���� ��
�� �����
��

�� ��	����

� �	
 ��
	��
��� ���	 ,-.�
� �	
 ���
����� �	� �	���	�� �	 �� ���� �)������

 ��	� 	�� ������
��

���	 0���
��� 1� ��� ��

�� 2�
��� ���� �	�� �������� 	� �	�
���� ����

�'��

	� �	� �����

�
��

�� �3�� ����
�'��
 ����
� ��	�
�� ���
�	����
 	�
��
����
��

	�(
��� ��	���	�� ����
���
(���	��	�� ���
�	����
 ���
����� ��� �	
	�� -�
��
� �����
��� �����
�� � ��
�	�	�	�� �	
 ��

�������
��� ������	��

��
� ����	���
� �	
 ���
 	� 	�� ������
��

�
����
�����
��� ������� 4���� .���!�� �
 �� ��	� 4�
����

� 	� ��
�	��
�
�
 &��!���� ������
 ��
�
����

�� �	��

	�
	 #��
�� �	���
 �
�
�� ��������
�/

�� �%5�� ���� ��� � ���
��� "���
#�� ������
���
��
	
�� ��
�
��
 ���
	�
�
��
�� ��	� �� ��
���
�	�
�� �	����� ����
��� ��
 ��
��
�� ����� �	
��

�
�
�� ��
� �
�� �� ��	����
��(!���
��

�
��� -�
�
�
�� ��
�
� ���� �� �
�	���
 �
�
��
��
��
��
� ������ 	�
�� �	��
��� ��������
�

�� .����(�� �
�
�	
 ������
	 ��

��
�
		�
	 ���	�
 ��� ��������
�

�� �

�
�� �����
��
���	
�
�� �
����� ����

	���

� �������	�
 �� �
�
�� �

��	��
 �����

��
 ����	

6��
��
��� �	�
�
�� %7 ���������� ����

	�� ��	��� ��	� -�.89� ��������
�

�
��
����� :��
��	�� �����
	 ���� �����;(.����� ��	�����
�� �	� <
��) ���
4�-= >60�6 �$?�(���
�� ��	�� 	
��
����
�
��/���
�� :��� ���

	� %�$
��� %�? �	� � �	����
� �
�
;� 0� �	 �	
 ���
�
��

�
�
��
 ��

�
� ������
�� ��
�(
�	� �	����
�� &�

�� �	����� ��	� ����� �� ���� ��	���
�� ��������
�

��
���� ����	����� ���
��
��
 �����
 �
�� �
 ����
 ��	�
�� �� �

� ��
�
����

��
�	����
�	�� 6�� %7 ���������� ����

	�� ��� ����
� �$ ���� ��*�� ��

���(�?
������ ��*�� ��

���(� ���� �	���
 �
�
�� ����� ��� � ������ �	���
 �
�
�� �����(

�
	
�� 88 ����

	� ������ 0� �
� �	
 �	
�
	 �	����) �	��
���
�
	
�������

��������	
��
 ���� ������ ���� �

���� ����	�
�� �� �
��� �� �
��� �
 ����� � ����� � �����

����� ����	�
�� �� ����� �� ����� �� ����� � ��
�� � �����

���� ����	�
�� � ��
�� �� ����� � ����� �� �����
 ��
��

����� ����	�
�� � ���� � �
�� � ����� �� ����� �� �����
����� �� �
����� ����	�
� ��� � ! �������" �# �	�	�� � 	����� $��
� 	�� % &����	�
�'
(�� � �)�� � �)�� �����!* &����	�
�' (�� � �)�� � �)�� �����!% + 	�	�� ��
#� �	�� �����* �� � ��#� � ! �� ��#�% , -��� � �" 	��	�!)�	. /���� �
��0�)
�� ��1
�/���	���%

��� ���� ���	�
�� 	����
 ������ � ����
��� ������� �����
��� �� ������� �� ���

�
�����	� ������� ���� ��� ������ 	����
� ����� ������

���� ������	
��
�����

������������������������
��
����

�������������� �������������� !
��� !

�������������� �������������� ! ������ !

������� ������� ���� ��� �����
� ���������
� ����� � ��� ����
��� ������� ���

���������
� ����� �� ��� ����	� 	���
� ����� ���� 	�� �� �����
� ������
�

�� ��� ���	� ����	� 	��� ��� ��� ��
������� ���� ��� ���
��� ����
�� ����� 	��

�� ����� �� ��� ���������

����" ###$�%�$���$�� &'(�#�

��� �����	
��
��
�� �
������
��

�� �� ����� ��
�! ��� ����� ���
	�� ����
�� ����� "�#$
 %���&���� ��� '��#

������� ����� ��� ���� �� ��� ���� ���
�
�� �
��� ����� ���
 � ����� ���� �� ���

������ ��������
�
�
�� ����� �����
� ���
� ��������� ��
� ����
	��
��� 	����	���

�� ����
 �� ������ ������� (�� ��� �
��� 	���
������ �� ��� ����� ���
�
���

����� "�#$
� �����

%�� ��	��
� ����� ����������� �
�� !�������� �� ��� ����� ����)�� ���

������ ���
�� ����	!� ���! ����� ����� 	�� �� ��� �������� ��� �
�� ���� �����

��� ��� �
��� ����
�� ������
 �� ���� �� ���� ��� ����
�
�������� ��� ����

��������� !��� ��� �� ����� ��� �������� ��������� %�� ���� �����
��	�� ����

�������� ��� ������ �
��� �� ��� ����� ��� �
�	� ��� ����� �
�� ��
�����	�
���

�� ��� �� ����� ��� �������� ��� �
�� ���� ���� ����� ���� �� �����

*�
��
�������
��
� ���� #��
�� ��� (��+ &��� �� ��� ����� ,� 	����	���

#��
�� ������ -��
� .���	����� 	��	���
�� ��
� ��� �� ��������� ���� ��� ���

����	��� ���� ����� ��� 	���
����� � ���
��� ������ �
�	� ��� ��� !���� ��

��� ��	��
� 	�����
� ��� ���
� ����� �
�� ��� /+"0 	������ ����� ,�

�
������ �
�� �
�1�� ��� ����	� �� ��� ��	��
� ���� �� ����
���2 ��� ��

��� ���� ��� ���������� ���� ��� ��� ����� �� ��� ��	��
� ��������
�
�
�� 	��
��

���� �
���� �� ������� 3 ���	�
���2

���������� 	��
�����
��� ���� ������ ����

	������� ���� ����� ���� ����� ���� ����� ���� ����� ���� �����

	�
���
 �
 �
 �
 �
 �

�������
 �
 �

 � � � �

��������
 �
 �

 � � � �

��������
 �
 �

 � � � �

��������
 �
 �

 � � � �

���������
 �
 �

 � � � �

���������
 �
 �

 � � � �

��������� � �
 �
 � � � � �

�����
���

 �

 � �

�
���
��

 �

�
������

 �

�
�������

 � � � � �

�
�������

 � � � � �

������
���

 �

 � �

�
�
�����

 � � � � �

����
���

 � �

�����
���

 � �

�����
���

 � �

������
���

 � � � � � �

�����
���

 � � � � � � � �

������
���

 � � � � � � � �

������
���

 � � � �

�������
���

 � � � � � �
����� �� ��
����� ����
������� ��� �������� �� ��
������ ������
���� ���� �
 �����
�� ������ ���� ��� ������ ����� �
 ����� � ���� ����
��� ���� ��� ������ ������� �!
����� �� ���"
��
 �� �����#���

������ �� ��	
��� �

� ����
�� ����������� �	��		� ���	 ��� �����	
���� �

�������� ��� �����	��� ���� �����
��	� ���� ������ ��� � �

� �
��������� �

�

����	�� �	�	
� �	
����� ���� ���� � �
� ���	
� ����	 �
�����	�� ���� �� �
�

�
��� �����

����	���� ��� �		�	� ��������
� ��	

�	�

��	 �	�	��� �		���� �	 �	� ���	� ������� ��	

������������	� �	����� �

�� ��

���� ��	� ��	 ����� �� �
�	 ����
� � ��
�
���	 ����	� ������ ��� �		� ��
��� ���	�

��	 ���	 ������ �
� �
�	 ���	 ��� �� ��	� �
� �	�	��� �����
��
�� ��� �	�����
��

�	������ ��� ��	 �	
����� ���� �		�� �
 �	

���	�	�� � ! �� �������	� �� �

��
�
���	 ��� ��
���
�

���	 �	 ����	� �� ��
��

!
�	
� ��	 �

�� ��� ���� 	�
��� ���	 �
�����	�

����	� ���� �
� 	�
���

����	 �
�����	�� ��

�
����
� �� ���� �
�	
� ��	�
�� �	���� ���	 ��	 ��
�����

�	� �	�
	
� ����� "��

������� ��	��
����� �
��� �	 �	��
���

� ������� �	
�

�� ���� ���	
 �	� ���
������� ���
� ��
� �� ������ �	������	
����	���	 ������
������� ��
� ���		��� ��� ������ ��
�� ���� �� ���� �� ����! "� ���
���� ���
������ ���� #$�%& '��()	
�� �	
 *+$� (��	 �����	, �
��� �� ��� ������ ��
�
��� -
�	./+0 1	�(�� �� ���	������! #� �	�� ��	���	� �	� ���� �� �	� �� ���
23 ���	������ ��	����	����������	
! �� ���� ��� �����
�������� ��
�	� ������!

+ ���
� (��� �	����� ����� ��� ������	, �� ���� �� 4+ ���
�����	 �� ������
+	������ �	
 '���� #	5�����	 $���	�6��� ��� /�����
�	, *����� ������ ���������
�� ����
(��� �	
 -	, �%�! $��� �	�����,��� ��� ����	,��� �� ������ �	������ ������
����(��� ����� �	5�����	 �)	
�	, ������ �	 ������� ���,� ����(���
��1�,�� ����
�� +
���� �	
 7��8.! #	 ������ �	������ ���� ��� #$�% ��)	
 ���� ��	
����	�
�	
 �--� ��)	
 ��9�� ����:�(�!

�
	������	��

�� ���� ���(���� ��� �����	� ����� �� ������ �	������	
����	���	 ����� �� 	��
��������	,! $���� ����
�	, �	 ��;���� �	������
��
��� ��� ��	� �����
��������
���
�	, �� ��	��� (��1& �	
 ����� ����
�	, �	
��
�� �	������ �	 ��	��������
�	
 ����	����� �����
��
��� ��� ��	� ����� 	�,������ ���
�	, �� �������� ���1�!
$��� ��� ���	 ���,� ��� ����� ����� (���
 �� �� ��

���
���	,
�����
��	�
�	
 ��
� ��
���	,& 	�� �� � ���������� ��� ��	���
���,,�	, �	
 �����	,!

����
�����

�� ����� ����	
���
����	 ������ ��� ����	�� ����� �������� ���	��	��� ���	���

�
����	� �� �	����� ��	� ��!�� ������������	
	������
������
���������	���
���
��	�� "������� �###�

$� %�		 �����! ��� %�����
 "�
���� &������� ��� ���� �����	���� �� '
� ���������
��������	
���
��� $($)��*�+�,$� �!���� �##-�

*� ���� %� ��.���� &��!����� �� 	�� ���� ��� ���/��	�� ��������	�
���������

���������������������� 0��/��� 11�
2� ��	� �����.�

 ��� 3��
 4��� � ���!������ �� �	�	�� ���
���� ��� ��/
	 �����	���
	�����5/�� ��� ����
�!��� ���/�	 ���	�� ��������� ��������
 ��!��	� &��!/	�� ���6
���� "�������� 7�������	� �� &�
�������� �����
��� ������������
��	��	�	��	� �
!���	���
�
��������� %�� 11�

,� &38� &�������	��� &��	��� &��	9�� �	�	��	��� �#::6$11�� ������������	�����"�

���
�� ;���/��� 11�

-� %�		 &������ ��� .11.11 ���/��	� ����� .11.11 �� ���! ����<�.�� �����

���������������"����	
�������	
��	��� ���#�� 0��/��� �###�
=� &���!�� &�.��� %�		 ���������� �	��� ���		��� >��� ?����6@��	���� %���
;���	A��� ��� 0���� ������� ;����	>/���� �/	���	�� !��	��	��� ���� !���	� ���6
��	 �	���� �/
������
�	���� B� ����

���	� �� ��
 ���� �
����

������
�����

����� ������	�� "&� 7��� �/�/�	 $11��
:� "�
"��� ��� 	�� �� ����.� �/C�� ����<�.� ������������ ���	�����������$�%

���	
��$���&��� �!��
 �##:�

�� �������	
� ���
����� �� ������� ������������� ������	 �� �������� ������
����	 ����� ���������� ��
� ! ������ "��#������! �������� $�%��� �&'() �����

�������	
��
���
��	�	������
�����
�����
�
������!
%��� *��&�
*(�
�#�� +#���! ,��� -����	! ,���� .�����	! ��� /��	 ���	 ��� 0�0���1
 ����

��� ����	 �%���2������� �� ����3 ����� 4� ���������	
 �� �
� ��� ������� ���

�����
��� �� �
� ����������
 �� �������� �	�������	! %�	�� &56�7!
�������
*��8�

**�
�#�� +#��� ���
�#�� 0���������� 4�%��#��	 �������� ����	 �9�������� ��	�����	��
������ ��������� � ��������! *�:*;18)6<*! =�������)(()�

*)�
��% -����! �� �>������! ��� -��� ��-����
� ��������� �%%����� ���
����������	 %�������� #�������������� �� ��������� 4� ���������	
 �� �
� � ���!

��
��� �� �������� ��� ���"���! %�	�� *(86**8! ��� *��&�
*?�
��% @� -����! ����3 .�����! ��� ,����
� ������3��� A������	 �������� ��'

������ ���� ��� 	����� �%� � ��������! *�:*;1*86*7! =�������)(()�
*8� 0������� $� .���� ��� $� @������ A�����
4B �������#��	1
 ��9�����

�� ����'��������� ������C���� �����������
��
��
���	������
	
��
�	
�������

��������!
%���)(((�
*<� �� �� ,������� 0���! � � %��	��� ����3���
 D A��� 0�����������1 ������ .���!

B,� ����������	
		
�����	����������
��� ���������! ,��� *�5&�
*7�
�#�� 0��������� ���
�#�� +#���� ���������� ��������	 ��3��� ��E�� �#��F�� #��'

������������� 4� ���������	
 �� �
� #$$% &� '�(�������� �����
���! ������	���

�! "�
!
�	���)((*�

*5� -��� ��-��� ��� ,��� ���	��
� �������� �� ��� ��E�� �#��F�� �����3�
���3� 4A� ��#���%�����3�1 ��������1 �������� �������� �����������!"#�����

�����	$	���	
��
�
�
	��
�������
�
��
��
������%��&��'	(
	��
���! �����
)(((�

*&� ,��� B�G����� ������� %�������H������ ���� �������� ����:�;� ��������	�������

��
�)�
�	��	��! �����)(()�

*�� ,��� B�G����� ������ ���� �������� ��� ������ ����� �� 0���9 ,������ �����
����������*���
���������
����	����%
��(+#�,! ,������)(()�

)(� AA� B���� �������� �������� ��� ����� ��������	�
��������������	����
��
���
�	����	�
��-!�#."""�!�#..#!�
��! ,������)(()�

)*� �� B������� =����� �����	 �����3�� ����� ��%�� ��������������
�	�������

�-����
-)�
���/	�
��������! ��%������)(((�

))�
��%� ���� �������	 ��� ����3 ��� ��� ��� %��2�� �������������*��
��

0����1��
���
�)�������! B�#����� *��7�
)?� � + ������� ��� � + -�%�3����� ������ ����3��	 �� � %��	���� ���� 0�0����

)���* ��+����! <* ���������������*��&	��	������

�	+!��
����	�����! �����
)(((�

)8� ���%���� ������� ��� B������� $������� ������� ����������������� A����� ��'
����������� ����� ��� ��������1 ��� ��� �� %�� ����� :%��%����������;� �����'
��� ��%���! B�������
��������! "�
! ���������������	�������
�","2" ,!.+�
�����! ,������)(()�

)<� ���� ��� ��� ���� +9%������	 ������ �����	 #��������������� ��������	
��
�	�	�
����
����	
�)�
���
�
����! ��%������)((*�

)7� "���� ����3��! @���� �����! ,�E��� �� =�����! ���
�#�� ��	����
��������
��������� �� ������'�����	 #�������������� ����	 ��%� C����2���� 4� ���������	
 �� �
�
%$�
 &� '�(�������� �����
���! ������������
��	
�	�	��	���3�
�����
�!

�	���)((*�

)5� $����� �� ������� $�C���� ��� ��������1)&)&! 4������� �������� 	�������� �����
������)�4
��
��
)�
�
)�. . �����! ���)(((�

��� ������ �	
��
�� �	�����	��� �	���
������� �		�
	� ��������� ���� ���� �����

�������	
��	���

�������� ��������� �����

� � �
�� !����
" �� ���#� $�%&��� ���	��
	��
� ������ ��
�' 	(������� (�����
�������

������������	
������

���

�����������)��� �����

���)	�� *���
�)��� !�	��� �
�
�	��� +	��	�
�� ,
�� -�,�
�� .��/0 � ��
���

(�����
������ ��
����
	� 1
�� 122 �	��� .� ���������	
 �� �
� ���
 ������

�������� �������� �����������
 ����������� 3������� �����

���)	�� *���

�� ,
�� -�,�
�� �������	 ������ �������� � ��� �� ����� ��������

�������
 �
� ��	
� ��� �����	�4$������ �����

���)�5��� *	
�
�� ,
�� -�,�
�� �������� !���� "�#������� "���������	 ���	���

�	���
� $����
�)	�� $���� 6 �	��� � #�

��� 3
(�� $
�����)�5��� �� &	����� 7��� �� !������
�� ���8
���� ��'��� � 9���

���� �	�
���
��	�
��� �������	� 	
 ��5�� 	(����� (�����
��������� .� ���������	

�� %�����& ��� '�
�������� ��
��� �������� �����
���� �
��� �4�#� 1
�
�
�
�

���	�� :	���� �
� 3���	� 1
��
	���
� &����
�� �����

�/� 3
(�� �� $������� &�
�9����� $�� �
�� ��������������		�	��

��

��������	��� -
� �����

�;� 3
(�� �� $������� ������ ��	��
�����
	� <���8
�� =��8 :>$�> (��� � �����

���������		�	��

���	
��	���
������� >��	��� �����

�?�)	�� $��
����� �������� �������	��
�� �������	� ���(����	�� -
����@� �������

<��'	����� ���(�������� ��������������������	���
���� ����� �����

� ������� �	
 ��
�
 ���
�	� ��� �	
��� ��
���

�����
���������

�� ���� ���	�
�� �	 ��
	 �����
	
 ��	 �� �������� ����� ��	
 �� ������	 ����

����� �
������	 ����� ��� ������ ��������� ��	
	������ �� �����	� ��
��� �	 ��
	

���� �����
	
 ��	 ���	�	����� ������ ��	 ���� ��
	 ��� �	
������
	
 ���� ���

���	���	 ������������	
�����
���������

������� ��	
��
 �

������ ���� �������������������� � ����

������ ���� ����������������	
��
 �

!""""" ������ #$�����% &�������������� """""!

'������ � ����(������)� !" ������ "!

�����(*+,�*- �����������)� !"
��� "!

�����(*+�*- �������������)� !" ������ "!

������(��'��(�������.�- *%*)- *+,�*- �����������)� !"
��� "!

������(��'��(�������.�- *%*)- *+�*- �������������)� !" ������ "!

������(��'���������- *+,�*- �����������)� !"
��� "!

������(��'���������- *+�*- �������������)� !" ������ "!

��(��������/) $�����(*+,�*- �������)� !"
��� "!

���� $�����(*+�*- �������)� !" ������ "!

��(��������/) $������(��'���������- *+,�*- �������)� !"
��� "!

���� $������(��'���������- *+�*- �������)� !" ������ "!

��(��������/)

$������(��'��(�������.�- *%*)- *+,�*- �������)� !"
��� "!

����

$������(��'��(�������.�- *%*)- *+�*- �������)� !" ������ "!

�'�����(�����������- *+,�*- ��'���������)� !"
��� "!

�'�����(�������������- *+�*- ��'���������)� !" ������ "!

��(������(��'���������)0��	
��
)

������(�����������- ��'���������)� !"
��� "!

������(�������������- ��'���������)� !" ������ "!

��(������(��'���������)0��	
��
)

����'1(�����������- ��'���������)� !"
��� "!

����'1(�������������- ��'���������)� !" ������ "!

�������(�������������)� !" ������ "!

��(��������/) $�'����� (�����������- *+,�*- �������)� !"
��� "!

���� ������	
 ��

���
���
�� ����� ������	�� �� ����
� ��

��� � �	�������

�����
�� ���� ���� �� ��
� ��

��� � �	�������

���
���
�� ���
	��	����� ���� �� ����
� ��

��� � �	�������

�����
�� ���� ���� �� ��
� ��

��� � �	�������

���
���
�� ���
	��	����� ���� �� ����
� ��

��� � �	�	�������� ���� ���� �

�����
��� �� ��
� ��

��� � �	�	�������
	��	����� ���� ���� �

���
���
��� �� ����
� ��

������ � �!�	 �	���� "
���������	��� ������

����	
�#�	�	����� �����

���� �� ��
� ��

����	
��� �����

���� �� ����
� ��

����	
��	�
	� #�	�	����� �����

���� �� ��
� ��

����	
��	�
	� �� �����

���� �� ����
� ��

�$�� � �����

��%&���'()*�

�� ��
� ��

�����	
�� �����

��� #�	�	����� �����

��� ���
	��	������

�� ����
� ��

�����	
�� �����

��� �� �����

��� ���
	��	������

�$�� � �����

��%&���'()*�

�� ��
� ��

������	
�� �����

��� &���'()� #�	�	����� �����

��� ���
	��	������

�� ����
� ��

������	
�� �����

��� &���'()� �� �����

��� ���
	��	������

�
��$ �����+� �����	
�#�	�	����� �����

��� ������	�� �� ��
� ��

���� �����	
��� �����

��� ������	�� �� ����
� ��

�
��$ �����+� �� ��
� ��

�
����	
��	�
	� #�	�	����� �����

��� ������	��

���� �� ����
� ��

�
����	
��	�
	� �� �����

��� ������	��

�$�� � �����

��%&���'()*�

�
��$ �����+� �� ��
� ��

������	
�� �����

��� #�	�	����� �����

��� ������	��

���� �� ����
� ��

������	
�� �����

��� �� �����

��� ������	��

�$�� � �����

��%&���'()*�

�
��$ �����+� �� ��
� ��

�������	
�� �����

��� &���'()� #�	�	����� �����

��� ������	��

���� �� ����
� ��

�������	
�� �����

��� &���'()� �� �����

��� ������	��

Encryption Cycles and Two Views of
Cryptography

Peeter Laud�

Tartu University, Liivi 2, Tartu, Estonia
Cybernetica AS, Tartu Lab, Lai 6, Tartu, Estonia

peeter@cyber.ee

Abstract. The work by Abadi and Rogaway has started the process
of bringing together the two approaches —formal and computational—
to cryptography. Their work has also shown, that it is impossible to
completely unify these two approaches in their typical forms — there
are some principal differences in their security definitions. The difference
is in the security of encryption cycles. An encryption cycle is a sequence
of keys, where each key is encrypted under the next one, and the last key
is encrypted under the first one. In formal treatment, they are considered
to be secure, but in computational treatment, insecure. In this paper we
make the encryption cycles insecure in the formal model (the Dolev-Yao
model) as well, by slightly strengthening the attacker. For the modified
formal model and the classical computational model, the unifying results
by Abadi and Rogaway hold unconditionally.

1 Introduction

This work makes a step towards bridging the gap between formal and computa-
tional treatments of cryptography in cryptographic protocols. A cryptographic
protocol is a sequence of messages between the entities participating in the pro-
tocol, together with rules that specify how these messages have to be constructed
and which identities they must satisfy. The protocols have been designed with
the aim to achieve their security objectives even when there is an adversary
present in the system. The adversary can read, intercept and analyse the mes-
sages sent by the parties of the protocol, and it can also construct and send new
messages.

Two different models for describing, how the adversary can analyse and con-
struct messages, have evolved over the years. In one of them, called the formal
model, the messages are considered to be formal expressions from a term algebra,
the cryptographic (and other) operations are modeled as constructors of terms,
and the adversaries abilities are defined by the structure of messages that are
known to it. Some of the most prominent examples of this treatment of crypto-
graphic protocols are [9, 8, 1]. In the other model, called the computational model

� Supported by Estonian Science Foundation grant #5279

[22, 10, 5], the messages are considered to be bit-strings, the cryptographic op-
erations are modeled as [probabilistic] functions over the set of bit-strings, and
the adversary can be any efficient algorithm.

Of these two models, the computational one is arguably more realistic, as
messages are encoded as bit-strings in real life. Also, in reality the adversary
can be any efficient algorithm. On the other hand, the formal model is easier to
reason about, because of its simple algebraic structure. Until very recently, these
two models have evolved mostly separately. Only some years ago the first results
relating these two models have started to appear. Abadi and Rogaway [3] have
shown that if two formal expressions (i.e. messages in the formal model) “look the
same” for an adversary, then the [distributions of] bit-strings corresponding to
these two expressions also look the same for the adversaries in the computational
model. Abadi and Jürjens [2] and Laud [12, 13] have generalised their results for
richer formal languages (instead of the values of formal expressions they are
handling outputs of programs).

There is an interesting case that the results of Abadi and Rogaway [3], as well
as Abadi and Jürjens [2] and Laud [12] (but not [13]) do not cover. Namely, these
same-looking formal expressions may not contain encryption cycles. The simplest
encryption cycle is {K}K — a key whose encryption under itself is made available
to the adversary. In the formal model, an adversary that knows just {K}K is
unable to obtain K. In the computational model, the encryption primitive is
traditionally required to be secure against attacks, whose setup implies that the
adversary cannot obtain {K}K . One cannot therefore say that if an adversary in
the computational model has obtained the encryption of a key under itself, then
it cannot find the key itself. Encryption cycles may also be longer, for example,
({K1}K2 , {K2}K1) is an encryption cycle of length 2. Again, they are secure in
the formal model but possibly insecure in the computational model.

There are basically two possible approaches to overcome this discrepancy
— something has to change in either the formal or the computational model.
Changing the computational model involves giving stronger definitions for se-
curity of the encryption primitive and constructing primitives satisfying this
security definition. This has been done by Black et al. [7]. However, their con-
struction satisfies their security definition only in the random oracle model [6];
the existence of random oracles is another security assumption. Changing the
formal model involves strengthening the adversary, such that it is able to obtain
K from {K}K (and also from longer encryption cycles involving K). Strength-
ening the adversary is the topic of this paper.

Considering, what is known about the encryption cycles, they should be
avoided if possible. The definition of the strengthened adversary, given in this
paper, provides a tool for avoiding them.

In this paper we define the strengthened attacker for the formal model. We
show that if two formal expressions look the same to this attacker, then the dis-
tributions of bit-strings corresponding to these two expressions look the same for
the adversaries in the computational model, no matter whether these expressions
contain encryption cycles or not. We also show, that if two formal expressions

do not contain encryption cycles, then they look the same to the strengthened
attacker, if and only if the look the same to the normal attacker.

This paper has the following structure. In Sec. 2 we give a short overview of
the work done so far for bringing these two treatments of cryptography together.
Sec. 3 introduces the formal model — in Sec. 3.1 we define the language of formal
expressions and some syntactic notions, in Sec. 3.2 we recall, how powerful the
attacker in its classical shape is, in Sec. 3.3 we describe, how the abilities of the
attacker define an equivalence relation over formal expressions, in Sec. 3.4 we
introduce the modified attacker. Sec. 4 recalls the computational model, it gives
the definition of security of encryption systems in Sec. 4.1 and the translation
from formal expressions to (families of probability distributions over) bitstrings
in Sec. 4.2. In Sec. 5 we state and prove our main justification for modifying
the attacker in the way that we did it in Sec. 3.4 (formal equivalence implies
indistinguishability of interpretations). In Sec. 6 we show that for expressions
without encryption cycles, the new attacker is no stronger than the classical one.
Finally, Sec. 7 concludes.

2 Related Work

We have already mentioned [3, 2, 12]. These works can be considered similar in
the sense, that they all attempt to show that some equivalence over a certain
class of formally defined objects translates to the indistinguishablity of the com-
putational interpretations of these objects.

A separate approach is that of Pfitzmann et al. [18–20] and Backes [4]. They
have devised a framework to faithfully abstract the cryptographic primitives,
such that the proofs about protocols using these abstractions would also hold if
the abstractions are replaced with actual primitives. This framework is more suit-
able for abstracting integrity properties than confidentiality properties (which
include the indistinguishability of interpretations of expressions). Their abstrac-
tions are generally more complex and elaborate than formal expressions and
process algebras using them.

Recently, Guttman et al. [11] have related two treatments of cryptography for
a certain class of authentication protocols. One of the treatments is the formal
treatment, where the messages are formal expressions, the other is based on
bitstrings, but in our opinion it should not be called “computational”. Rather,
it should be called “statistical” — the security definitions are not based on
computational complexity, but on statistical closeness. The relationship of the
treatments is the usual one — the correctness of the protocol in the formal model
implies its correctness in the statistical model.

Mitchell et al. [14, 15, 17] have not actually related the two aspects of cryp-
tography, but they have devised a computational semantics for π-calculus, which
is a process algebra that is often used for the formal treatment of cryptographic
protocols. They have given correctness proofs for some cryptographic protocols,
based on their semantics and corresponding (computational) security definitions.

The proofs are computational in kind, though. There is no translation of proofs
from formal to computational world.

3 Formal Model

In the formal model, messages are considered to be formal expressions — ele-
ments of a (free) term algebra. Their construction reflects, how they have been
put together from simpler messages. The set Exp of all formal expressions is
defined inductively.

3.1 Formal Expressions

Let Keys and Consts be two sets, we assume that their intersection is empty.
The elements of the set Keys represent keys in the formal expressions. The
elements of Consts represent constants, for example booleans or integers. This
representation is really only informal, formally the elements of Keys and Consts
have no further structure.

Definition 1. The set Exp of formal expressions is the smallest set containing
the following elements:

– If K ∈ Keys, then K ∈ Exp. If C ∈ Consts, then C ∈ Exp.
– If E1, E2 ∈ Exp, then the term (E1, E2) is also an element of Exp.
– If E ∈ Exp and K ∈ Keys, then the term {E}K is also an element of Exp.

The set Exp is the “smallest useful” set for describing the exchanged mes-
sages in cryptographic protocols. Of course, only protocols that use symmetric
encryption as their only cryptographic primitive, can be described. The set Exp
can be easily extended to include more cryptographic primitives. However, they
would only complicate our arguments.

Note that although the elements of Keys are intended to model crypto-
graphic keys, they are formally just objects without any further structure. Simi-
larly, the term {E}K is meant to model the encryption of the message modelled
by E by the key modelled by K. Formally, however, it has no further structure
than being a term, consisting of a binary constructor (denoted {·}(·)) and two
immediate subterms.

As the next step we are going to define, when a formal expression has encryp-
tion cycles. This property is defined by the structure of the formal expression.
We start with some definitions of simple properties of the structure of formal
expressions.

Definition 2. Let E, E′ ∈ Exp. Expression E′ is a subexpression of E (denoted
E′ � E), if one of the following holds:

– E′ = E;
– E = (E1, E2) and either E′ � E1 or E′ � E2;
– E = {E′′}K and E′ � E′′.

We see that K is generally not a subexpression of {E}K . We define a sec-
ond notion, specifically for keys, that also includes the keys that are used for
encryption.

Definition 3. Let K ∈ Keys and E ∈ Exp. We say that K occurs in E, if
one of the following holds:

– K = E;
– E = (E1, E2) and either K occurs in E1 or K occurs in E2;
– E = {E′}K′ and either K = K ′ or K occurs in E′.

Let Keys(E) = {K ∈ Keys : K occurs in E}.
Each formal expression E defines a binary relation “encrypts” on the set of

keys occuring in E. Namely, let K, K ′ be two keys occuring in E, we say that
K encrypts K ′, if there exists an expression E′ ∈ Exp, such that K ′ � E′ and
{E′}K � E. For example, K1 encrypts K3 in the expression {{(K3, K4)}K2}K1 .
We say that E has encryption cycles, if the relation “encrypts” is cyclic.

3.2 The Attacker (Classical)

As next we are going to describe the equivalence relation over formal expres-
sions given by Abadi and Rogaway [3]. We already mentioned that two formal
expressions are equivalent, if they “look the same” to the attacker. “Looking the
same” is given by defining, how each expression “looks”. This in turn is given
by defining, which subexpressions the attacker can see in an expression.

An entailment relation �⊆ Exp × Exp is given. Intuitively, E � E′ means
that the attacker can compute the expression E′ from the expression E. It is the
least relation with the following properties:

– E � C for all C ∈ Consts;
– E � E;
– if E � (E1, E2), then E � E1 and E � E2;
– if E � {E′}K and E � K, then E � E′.

This definition models, what an attacker can obtain from an expression E
without any prior knowledge of other keys or expressions. This model of the
attacker is ubiquituous in the formal treatment of cryptography.

Example 1. Consider the term ({{K1}K2}K3 , K3). The attacker can obtain from
this term the key K3, as well as the subterm {{K1}K2}K3 . By using the key on
that subterm, the attacker can also obtain {K1}K2 . But the attacker cannot
obtain the keys K2 or K1.

3.3 Equivalence Relation

The next step is to define, how a formal expression “looks” to the attacker. The
“look” of the expression E is an element of the set of patterns (or extended
expressions) Pat. It is the smallest set that contains the following elements:

– If K ∈ Keys, then K ∈ Pat. If C ∈ Consts, then C ∈ Pat.
– If P1, P2 ∈ Pat, then the term (P1, P2) is also an element of Pat.
– If P ∈ Pat and K ∈ Keys, then the term {P}K is also an element of Pat.
– An object denoted by � is an element of Pat.

Intuitively, � denotes a term {E}K , where the attacker does not know the key
K and therefore cannot see E. An element P ∈ Pat denotes some expression
that may have ciphertexts that the attacker cannot decrypt as subexpressions.

If the attacker knows the keys in the set K ⊆ Keys, then the formal expres-
sion E ∈ Exp “looks” to it like p(E,K) ∈ Pat, which is defined inductively
over the structure of E as follows:

p(K,K) := K (where K ∈ Keys)
p(C,K) := C (where C ∈ Consts)

p((E1, E2),K) := (p(E1,K), p(E2,K))

p({E}K ,K) :=

{
{p(E,K)}K , if K ∈ K
�, if K �∈ K .

This assumes that the attacker does not obtain any further keys from E. The
most natural value for K is the set of all keys that can be obtained from E. We
therefore define

pattern(E) := p(E, {K ∈ Keys : E � K}) .

The pattern pattern(E) defines, how an expression E “looks” to the attacker.
For example, pattern(({{K1}K2}K3 , K3)) = ({�}K3 , K3).

Finally, Abadi and Rogaway [3] define, that two expressions E1 and E2 are
equivalent (denoted E1 ≡ E2), if pattern(E1) and pattern(E2) are equal, and
they are equivalent up to renaming (denoted E1

∼= E2), if there exists a bijection
σ over the set Keys, such that E1 is equivalent to E2σ, i.e. σ is used to rename
all the keys occuring in E2. The equivalence ∼= is more natural — the elements
of Keys should be considered as bound names, they may be subjected to α-
conversion. The theorem relating two aspects of cryptography also holds for ∼=
— if E1

∼= E2 and E1 and E2 have no encryption cycles, then the computational
interpretations of E1 and E2 are indistinguishable, as shown in [3].

3.4 The Attacker (Our Definition)

Strengthening the attacker involves changing the entailment relation �. After
giving a new definition for �, the equivalence of formal expressions can be defined
exactly as in Sec. 3.3.

In fact, we are not going to give just a single relation �, but a family of
relations �K, parametrised by K ⊆ Keys. Intuitively, E �K E′ means that the
attacker can compute E′ from E, if it has access to oracles that decrypt with
K, where K ∈ K. The relations �K are defined as follows:

(i). E �∅ C for all C ∈ Consts;
(ii). E �∅ E;
(iii). if E �K E′ and K ⊆ K′, then E �K′ E′;
(iv). if E �K (E1, E2), then E �K E1 and E �K E2;
(v). if E �K {E′}K , then E �K∪{K} E′;
(vi). if E �K∪{K} E′ and E �K K, then E �K E′;
(vii). if E �K∪{K} K, then E �K K.

In this definition, the items (i), (ii) and (iv) are the same as in the definition
of �. The item (iii) is an obvious monotonicity property. The item (v) is a bit
more optimistic (from the attacker’s point of view) than the corresponding item
in the definition of � — one does not need the key K to decrypt a ciphertext
{E′}K , it is enough to have access to an oracle that decrypts with K. The item
(vi) says that one way to obtain that access is to have K itself. The item (vii)
breaks encryption cycles. It says that if a key K is obtainable by using an oracle
that decrypts with K, then this key is (or may be) also obtainable without that
oracle. Let us see some examples (with encryption cycles in them).

Example 2. The expression E is {K}K .

(1). E �{K} K is derived by items (ii) and (v);
(2). E �∅ K is derived from (1) by item (vii).

Example 3. The expression E is ({K1}K2 , {K2}K1).

(1). E �{K2} K1 is derived by items (ii), (iv) and (v);
(2). E �{K1} K2 is derived similarly;
(3). E �{K1,K2} K1 is derived from (1) by item (iii);
(4). E �{K1} K1 is derived from (3) and (2) by item (vi);
(5). E �∅ K1 is derived from (4) by item (vii).

Example 4. The expression E is {{(K1, K2)}K1}K2 .

(1). E �{K1,K2} (K1, K2) is derived by items (ii) and (v);
(2). E �{K1,K2} K1 is derived from (1) by item (iv);
(3). E �{K2} K1 is derived from (2) by item (vii);
(4). E �{K2} (K1, K2) is derived from (1) and (3) by item (vi);
(5). E �{K2} K2 is derived from (4) by item (iv);
(6). E �∅ K2 is derived from (5) by item (vii);
(7). E �∅ K1 is derived from (3) and (6) by item (vi).

We again define, how a formal expression “looks” to an attacker. Now we use
the relation �∅ instead of the relation �. Let

patternEC(E) := p(E, {K ∈ Keys : E �∅ K}) .

Similarly, we define

E1 ≡EC E2 if patternEC(E1) = patternEC(E2)

E1
∼=EC E2 if ∃ bij. σ over Keys : E1 ≡EC E2σ .

In Sec. 5 we will show that if E1
∼=EC E2, then the computational interpretations

of E1 and E2 are indistinguishable.

4 Computational Model

In this section we give an overview, what constitutes a symmetric encryption
system and what does its security mean. We also relate two models, by associ-
ating a family of distributions over bit-strings to each formal expression. The
content of this section is not original, it repeats [3, Sec. 4 and Sec. 5.1].

Some general concepts have to be introduced first. Let String = {0, 1}∗ denote
the set of all bit-strings. A function ε : N → R is negligible, if for all polynomials
p over R, |ε(n)| is asymptotically smaller that |1/p(n)|. Let Dn be a probability
distribution over String. We write x ← Dn to denote that the variable x is
sampled according to Dn. Writing x, y ← Dn means that the variables x and y
are sampled according to Dn independently of each other. Let D = {Dn}n∈N and
D′ = {D′

n}n∈N be two families of probability distributions over String. We say
that D and D′ are indistinguishable (denoted D ≈ D′), if for every probabilistic
algorithm A that works in polynomial time in its first argument, the difference
of probabilities

Pr[A(n, x) = 1 : x ← Dn] − Pr[A(n, x) = 1 : x ← D′
n] (1)

is negligible in n. Intuitively, indistinguishability means “being/looking the same”
in the computational model.

A simple property of indistinguishability is the transitivity — if D ≈ D′ and
D′ ≈ D′′, then D ≈ D′′. For the proof of this statement, see, for example [13,
Sec. 2.2.2].

4.1 Encryption Systems

A symmetric encryption system is a triple of (probabilistic) algorithms (G, E ,D),
whose inputs and outputs are bit-strings. The key generation algorithm G takes
as its input a security parameter n ∈ N (somehow encoded as a bit-string) and
returns a key k from a suitable domain Key ⊆ String. The encryption algorithm
E takes as its input a key k and a plaintext m and produces a ciphertext Ek(m).
The decryption algorithm D takes as its input a key k and a ciphertext c and
produces the underlying plaintext, such that Dk(Ek(m)) = m for all m and k.
The running times of the algorithms G, E and D must be polynomial in n.

Let 0 be a fixed member of String. The encryption system is type-0 secure1

(see [3] for discussions), if for all algorithms A running in polynomial time of its
argument, the difference of probabilities

Pr[AEk(·),Ek′ (·)(n) = 1 : k, k′ ← G(n)]−
Pr[AEk(0),Ek(0)(n) = 1 : k ← G(n)] (2)

is negligible (in n).
In the following we assume that (G, E ,D) is a fixed type-0 secure encryption

system. Abadi and Rogaway [3] have shown, how to construct such systems.
1 alternative name of this property is: repetition concealing, which-key concealing and

message-length concealing

algorithm Sample(n, E)
Initialise(n,Keys(E))
return Convert(E)

algorithm Initialise(n,K)
for all K ∈ K do τ(K) ← G(n)

algorithm Convert(E)
case E of

K ∈ Keys: return 〈τ(K), key〉
C ∈ Consts: return 〈[[C]], const〉
(E1, E2): return 〈Convert(E1),Convert(E2), pair〉
{E′}K : return 〈Eτ(K)(Convert(E′)), ciphertext〉

Fig. 1. Algorithm that samples [[E]]

4.2 Computational Interpretation of Formal Expressions

Two models of cryptography are related by associating a family of distributions
over bit-strings [[E]] to each formal expression E. The formal expression serves
here as a “program” that specifies, how the algorithm sampling these distribu-
tions works.

Let key, const, pair and ciphertext be four fixed bit-strings. For bit-strings
x1, . . . , xk let 〈x1, . . . , xk〉 be the encoding of the tuple (x1, . . . , xk) as a bit-string.
I.e. 〈x1, . . . , xk〉 is not just the concatenation x1 · · ·xk, but it contains enough
information to recover x1, . . . , xk from it. In other words, 〈·〉 : String∗ → String
is an injective function. The n-th component of the family of distributions [[E]] is
defined by stating, that it is sampled by the algorithm Sample(n, E) in Fig. 1.

This algorithm starts by picking a value for each key K that occurs in the
expression E, where the values for different keys are picked independently of
each other. The value that is picked for the key K is denoted by τ (K). After
that, the sampling algorithm proceeds recursively over the expression structure.
A key K is mapped to τ (K). A constant C ∈ Consts is mapped to the repre-
sentation of C as a bit-string [[C]] (i.e. [[·]] : Consts → String is a mapping that
is fixed beforehand). The mappings of (E1, E2) and {E}K are created from the
mappings of their components in the most natural way. All interpretations of
expressions are tagged by the type of their outermost constructor. This tagging
ensures that all bit-strings produced by the sampling algorithm can be uniquely
decomposed. Unique decomposition makes the interpretations of formal expres-
sions more similar to those expressions themselves, however, it is not necessary
for the proof of the next theorem.

5 Equivalence of Models

The equivalence relations over the formal expressions and their computational
interpretations are related by the following theorem:

algorithm Sample(n, P)
Initialise(n,Keys(P))
return Convert(P)

algorithm Initialise(n,K)
for all K ∈ K do τ(K) ← G(n)
κ ← G(n)

algorithm Convert(P)
case P of

K ∈ Keys: return 〈τ(K), key〉
C ∈ Consts: return 〈[[C]], const〉
(P1, P2): return 〈Convert(P1),Convert(P2), pair〉
{P ′}K : return 〈Eτ(K)(Convert(P ′)), ciphertext〉
�: return 〈Eκ(0), ciphertext〉

Fig. 2. Algorithm that samples [[P]]

Theorem 1. Let E1, E2 ∈ Exp, such that E1
∼=EC E2. Then [[E1]] ≈ [[E2]].

Proof. The proof is rather similar to that in [3], only the setup of the hybrid
argument requires a more elaborate step for sorting the hidden keys of the ex-
pressions. The recoverable and hidden keys of an expression E are defined by

recoverable(E) := {K ∈ Keys : E �∅ K}
hidden(E) := Keys(E)\recoverable(E) .

First we are going to extend the interpretation of expressions given in Fig. 1 to
patterns. Then we are going to show [[E]] ≈ [[patternEC(E)]] for all E ∈ Exp. This
more or less conlcudes the proof, because obviously [[E]] = [[Eσ]] for all bijections
σ over Keys. Also, for concluding the proof we need to use the transitivity
property of indistinguishability.

The extension of the computational interpretation to the language of patterns
is given by redefining the algorithm Sample as in Fig. 2. We see that there
are exactly two changes with respect to Fig. 1. First, the algorithm Initialise
generates an extra key κ. Second, the algorithm Convert uses this extra key
for interpreting the symbol �.

The next step in the proof is defining the hybrids for showing that [[E]] and
[[patternEC(E)]] are indistinguishable. This starts with suitably ordering the keys
in hidden(E); the hybrids are defined by successively “opening up” the hidden
keys of E. This way, the first hybrid (where all hidden keys are covered) is
equal to patternEC(E) and the last hybrid (where all hidden keys are visible) is
equal to E. In [3], the keys were topologically sorted according to the relation
“encrypts”; any order possibly resulting from such sort was suitable. We cannot
sort the hidden keys this way, because we allow the relation “encrypts” to have
cycles. However, suitable orders still exist.

Let h be the cardinality of hidden(E) and let Σ := {1, . . . , h} → hidden(E).
For each π ∈ Σ and i ∈ {0, . . . , h} define

Kπ
i := {π(1), . . . , π(i)}

Kπ
i := Kπ

i−1 ∪ {K ∈ Keys : E �Kπ
i

K} (3)

and let Kπ := (Kπ
1 , . . . ,Kπ

h). We are looking for a π ∈ Σ, such that

Kπ
i = Kπ

i−1 ∪ recoverable(E) (4)

for each i ∈ {1, . . . , h}. Note that (4) is the minimal possible value of Kπ
i .

Such π exists. To show it, we need to define two more notions. First, define
a partial order on the set {Kπ : π ∈ Σ}. The order is defined componentwise,
the components are ordered by set inclusion. Second, for each π ∈ Σ and i ∈
{1, . . . , h} define foπ

i ∈ {1, . . . , h} ∪ {∞} by

foπ
i = min{j ∈ {1, . . . , h} : π(i) ∈ Kπ

j } .

An important property of foπ
i is foπ

i �= i. Indeed, suppose that there exist π ∈ Σ
and i ∈ {1, . . . , h}, such that foπ

i = i. We have π(i) ∈ Kπ
i . From (3) follows

E �Kπ
i

π(i), because π(i) �∈ Kπ
i−1. From item (vii) of the definition of �K follows

E �Kπ
i−1

π(i). Therefore π(i) ∈ Kπ
i−1 (if i > 1) or π(i) ∈ recoverable(E). A

contradiction with the definition of foπ
i .

For any π ∈ Σ, where Kπ is minimal, the condition (4) is satisfied. Indeed,
suppose that Kπ is minimal, but (4) does not hold for some i. Let i be the
smallest index, such that (4) does not hold. There exists j ∈ {i + 1, . . . , h}, such
that π(j) ∈ Kπ

i ; we have E �Kπ
i

π(j) and foπ
j = i. Construct π′ ∈ Σ as follows:

π′ =




1
↓

π(1)
· · ·

i − 1
↓

π(i − 1)

i
↓

π(j)

i + 1
↓

π(i)
· · ·

j
↓

π(j − 1)

j + 1
↓

π(j + 1)
· · ·

h
↓

π(h)


 .

For l ∈ {1, . . . , i − 1, j + 1, . . . , h} we have Kπ′
l = Kπ

l . For l ∈ {i + 1, . . . , j} we
have

{K ∈ Keys : E �Kπ′
l

K} ⊆ {K ∈ Keys : E �Kπ
l−1∪π(j) K} =

{K ∈ Keys : E �Kπ
l−1

K},

where the equality holds because of E �Kπ
l−1

π(j). Therefore Kπ′
l = Kπ

l−1 ⊆ Kπ
l

for all l ∈ {i + 1, . . . , j}. Also, we have Kπ′
i ⊆ Kπ′

i+1 = Kπ
i . We have shown that

Kπ′ ≤ Kπ.
We also have Kπ′

i �= Kπ
i . Namely, we have π′(i) �∈ Kπ′

l for l ∈ {1, . . . , i − 1}.
This follows from the construction of π′ and from the definition of i as the
smallest index for which (4) is not satisfied. We also have π′(i) �∈ Kπ′

i , because
foπ′

i cannot be equal to i. On the other hand, we have π′(i) = π(j) ∈ Kπ
i .

Therefore Kπ′
< Kπ, this contradicts the minimality of Kπ.

algorithm Af(·),g(·)
0 (n)

Initialise(n,Kπ
i−1 ∪ recoverable(E))

return A(n,Convert’(E))

algorithm Initialise(n,K)
for all K ∈ K do τ(K) ← G(n)

algorithm Convert’(E)
case E of

K ∈ Keys: return 〈τ(K), key〉
C ∈ Consts: return 〈[[C]], const〉
(E1, E2): return 〈Convert’(E1),Convert’(E2), pair〉
{E′}K : if K ∈ Kπ

i−1 then
return 〈Eτ(K)(Convert’(E′)), ciphertext〉

else if K = π(i) then
return 〈f(Convert’(E′)), ciphertext〉

else
return 〈g(0), ciphertext〉

Fig. 3. Algorithm that breaks the type-0 security of the encryption system

Let π ∈ Σ be such, that Kπ is minimal. This fixes the order on the hidden
keys; the rest of the proof is more or less the same as in [3]. We define the
patterns P0, . . . , Ph ∈ Pat by Pi := p(E,Kπ

i). Obviously P0 = patternEC(E)
and Ph = E.

We claim that for each i ∈ {1, . . . , h}, the interpretations [[Pi−1]] and [[Pi]]
are indistinguishable. Indeed, suppose that A is an algorithm, such that (1)
is nonnegligible for the families of distributions [[Pi−1]] and [[Pi]]. Consider the
algorithm A(·),(·)

0 in Fig. 3. We claim that if its oracle f is Ek(·) and its oracle g
is Ek′(·), then the second argument given to A is distributed according to [[Pi]]n.
If the oracles f and g are both Ek(0), then the second argument given to A is
distributed according to [[Pi−1]]n.

First we argue that the algorithm A(·),(·)
0 never reaches a state where its

further action is undefined. This may happen, if the variant K ∈ Keys is chosen
in the algorithm Convert’ and τ (K) is undefined (note that Initialise does
not necessarily define τ for all keys that occur in E). However, it is easy to see
(follows from the definitions of p(·, ·) and �K) that the pattern Pi only contains
keys in Kπ

i . The property (4) guarantees that we have all these keys available.

When f is Ek(·) and g is Ek′(·), then the key that f uses corresponds to the
key τ (π(i)) in Fig. 2, and the key that g uses corresponds to the key κ in Fig. 2.
When both f and g are Ek(0), then the key that they both use corresponds to
the key κ in Fig. 2.

By our assumption, the algorithm A can distinguish [[Pi−1]] and [[Pi]], there-
fore the difference (2) is not negligible for the algorithm A0. But this contra-
dicts our choice of the encryption system as a type-0 secure system. Hence

[[Pi−1]] ≈ [[Pi]] and by the transitivity of indistinguishability, [[patternEC(E)]] =
[[P0]] ≈ [[Ph]] = [[E]]. ��

This gives the justification for our definition of �K.

6 On the Added Strength of the Attacker

We have defined an equivalence relation ∼=EC over the formal expressions. Let
us compare it to the relation ∼= defined in [3]. Obviously, it makes sense to only
consider expressions that do not contain encryption cycles. The following result
holds, showing that the relation ∼=EC is as precise as ∼=.

Proposition 1. Let E1, E2 ∈ Exp, such that E1 and E2 have no encryption
cycles. Then E1

∼= E2 iff E1
∼=EC E2.

Proof. It is enough to show that if E ∈ Exp has no encryption cycles, then for
all E′ ∈ Exp, E � E′ holds iff E �∅ E′ holds. Indeed, from this equality of �
and �∅ follows, that pattern(E) = patternEC(E). The direction “if E � E′ holds
then E �∅ E′ holds” is trivial. Consider the other direction.

The claim “if E �∅ E′ holds then E � E′ holds” is proved in two steps. The
first step is to show that if E �K E′ holds, then it can be derived without using
item (vii) in the definition of �K.

Let T be a derivation tree for E �K K, i.e. its root is labeled with E �K K,
its vertices are labeled with terms of the form E �K′ E′ for some E′ ∈ Exp and
K′ ⊆ Keys, and its edges correspond to the items in the definition of �K. Note
that K � E′ holds for all expressions E′ occuring in the vertices of T . We show
how to construct a derivation tree T ′ for E �K\{K} K, such that for all E �K′ E′

that are labels of vertices of T ′, K �∈ K′ holds. In the tree T ′, item (vii) of the
definition of �K cannot have been used for the key K. By repeatedly using this
construction, we can remove all occurrences of item (vii) of the definition of �K

from the derivation trees.
Let E �K′ E′ be the label of some vertex v of the tree T and let TK′,E′ be

the subtree of T that is rooted in this vertex. The tree T ′
K′,E′ , whose root is

labeled with E �K′\{K} E′ can be constructed as follows.
Let the immediate descendants of v be vi, where i ∈ {1, . . . ,deg v}. Let vi

be labeled by E �Ki
Ei. First construct the trees T ′

Ki,Ei
whose root vertices are

labeled by E �Ki\{K} Ei. The construction of T ′
K′,E′ depends on the item in the

definition of �K that was used to derive E �K′ E′. In most cases we have

(deg v∧
i=1

E �Ki
Ei ⇒ E �K′ E′

)
⇒

(deg v∧
i=1

E �Ki\{K} Ei ⇒ E �K′\{K} E′
)

(5)

and the tree T ′
K′,E′ can be constructed by taking a new vertex v′, labeling it

with E �K′\{K} E′, and letting its immediate descendants be the root vertices
of T ′

Ki,Ei
. The implication (5) does not hold in the following cases:

– E �K′ E′ is derived by item (v) in the definition of �K and E1 = {E′}K .
This case is impossible, because K � E′ and therefore we have an encryption
cycle in E.

– E �K′ E′ is derived by item (vi) in the definition of �K, E1 = E′ and
K1 = K′ ∪ {K}. In this case we just take T ′

K′,E′ = T ′
K1,E1

.
– E �K′ E′ is derived by item (vii) in the definition of �K. We again take

T ′
K′,E′ = T ′

K1,E1
.

The second step for proving the claim “if E �∅ E′ holds then E � E′ holds”
is to show, that if E �K E′ holds (we assume that it has been derived without
using item (vii) in the definition of �K), then there exists a derivation tree for
E � E′, whose leaves can be labeled not only with E � C or E � E, but also
with E � K for K ∈ K. Consider, by which item has E �K E′ been derived.

(i). The derivation tree of E � C has one vertex, labeled with E � C.
(ii). The derivation tree of E � E has one vertex, labeled with E � E.
(iii). The derivation tree for E � E′ that may have E � K, where K ∈ K′, as

additional axioms, has already been constructed.
(iv). The derivation tree for E � Ei with the additional axioms E � K, where

K ∈ K, consists of a root vertex labeled with E � Ei, whose descendant is
the root vertex of the derivation tree for E � (E1, E2) with the additional
axioms E � K, where K ∈ K.

(v). The derivation tree for E � E′ with the additional axioms E � K ′, where
K ′ ∈ K ∪ {K}, consists of a root vertex labeled with E � E′ and having
two descendants. The first descendant is the root vertex of the derivation
tree for E � {E′}K with the additional axioms E � K ′, where K ′ ∈ K. The
second descendant is a vertex labeled with E � K having no descendants.

(vi). The derivation tree for E � E′ with the additional axioms E � K ′, where
K ′ ∈ K, consists of the derivation tree for E � E′ with the additional
axioms E � K ′, where K ′ ∈ K ∪ {K}, that is modified by replacing the
axioms E � K with the derivation trees for E � K with the additional
axioms E � K ′, where K ′ ∈ K.

We have shown that if E �∅ E′ holds then there exists a derivation tree for
E � E′. ��

7 Conclusions

We have amended the Dolev-Yao model, making it in some sense more realistic.
By “more realistic” we mean closer to the computational model of cryptography,
which can be considered to be a good model of the real world. Our amendment
does not make the model much more complex, it should still be suitable for
(mechanical) analysis.

Micciancio and Warinschi [16] have refined the formal equivalence ∼=, such
that the computational interpretations of equivalent formal messages are in-
distinguishable also if the used encryption system is only type-1 secure (com-
pared to type-0 security, message length may be revealed). They change the

language of patterns, by replacing the undecryptable ciphertext � with a collec-
tion ��1 , ��2 , . . ., denoting the undecryptable ciphertexts of length �1, �2, etc.
Obviously, the equivalence ∼=EC can be similarly refined.

References

1. Mart́ın Abadi and Andrew D. Gordon. A Calculus for Cryptographic Protocols:
The Spi Calculus. Information and Computation, 148(1):1–70, January 1999.

2. Mart́ın Abadi and Jan Jürjens. Formal Eavesdropping and Its Computational
Interpretation. In Naoki Kobayashi and Benjamin C. Pierce, editors, Theoretical
Aspects of Computer Software, 4th International Symposium, TACS 2001, volume
2215 of LNCS, pages 82–94, Sendai, Japan, September 2001. Springer-Verlag.

3. Mart́ın Abadi and Phillip Rogaway. Reconciling Two Views of Cryptography (The
Computational Soundness of Formal Encryption). In Jan van Leeuwen, Osamu
Watanabe, Masami Hagiya, Peter D. Mosses, and Takayasu Ito, editors, Inter-
national Conference IFIP TCS 2000, volume 1872 of LNCS, pages 3–22, Sendai,
Japan, August 2000. Springer-Verlag.

4. Michael Backes. Cryptographically Sound Analysis of Security Protocols. PhD
thesis, Universität des Saarlandes, 2002.

5. Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway. A Concrete Secu-
rity Treatment of Symmetric Encryption. In 38th Annual Symposium on Founda-
tions of Computer Science, pages 394–403, Miami Beach, Florida, October 1997.
IEEE Computer Society Press.

6. Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm
for Designing Efficient Protocols. In CCS ’93, Proceedings of the 1st ACM Confer-
ence on Computer and Communications Security, pages 62–73, Fairfax, Virginia,
November 1993. ACM Press.

7. John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption Scheme Security
in the Presence of Key-Dependent Messages. In Proceedings of the Ninth Annual
Workshop in Selected Areas in Cryptography, St John’s, Newfoundland, August
2002.

8. Michael Burrows, Mart́ın Abadi, and Roger M. Needham. A Logic of Authentica-
tion. ACM Transactions on Computer Systems, 8(1):18–36, February 1990.

9. Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, IT-29(12):198–208, March 1983.

10. Shafi Goldwasser and Silvio Micali. Probabilistic Encryption. Journal of Computer
and System Sciences, 28(2):270–299, April 1984.

11. Joshua D. Guttman, F. Javier Thayer, and Lenore D. Zuck. The faithfulness of
abstract protocol analysis: message authentication. In Proceedings of the 8th ACM
conference on Computer and Communications Security, pages 186–195, Philadel-
phia, PA, November 2001. ACM Press.

12. Peeter Laud. Semantics and Program Analysis of Computationally Secure Infor-
mation Flow. In Sands [21], pages 77–91.

13. Peeter Laud. Computationally Secure Information Flow. PhD thesis, Universität
des Saarlandes, 2002.

14. Patrick Lincoln, John C. Mitchell, Mark Mitchell, and Andre Scedrov. A Proba-
bilistic Poly-Time Framework for Protocol Analysis. In CCS ’98, Proceedings of the
5th ACM Conference on Computer and Communications Security, pages 112–121,
San Francisco, California, November 1998. ACM Press.

15. Patrick Lincoln, John C. Mitchell, Mark Mitchell, and Andre Scedrov. Probabilistic
Polynomial-Time Equivalence and Security Analysis. In Jeanette M. Wing, Jim
Woodcock, and Jim Davies, editors, FM’99 - Formal Methods, World Congress on
Formal Methods in the Development of Computing Systems, volume 1708 of LNCS,
pages 776–793, Toulouse, France, September 1999. Springer-Verlag.

16. Daniele Micciancio and Bogdan Warinschi. Completeness theorems for the Abadi-
Rogaway logic of encrypted expressions. In Workshop on Issues in the Theory of
Security - WITS 2002, Portland, Oregon, January 2002.

17. John C. Mitchell. Probabilistic Polynomial-Time Process Calculus and Security
Protocol Analysis. In Sands [21], pages 23–29.

18. Birgit Pfitzmann, Matthias Schunter, and Michael Waidner. Cryptographic Secu-
rity of Reactive Systems. In Steve Schneider and Peter Ryan, editors, Workshop on
Secure Architectures and Information Flow, volume 32 of Electronic Notes in The-
oretical Computer Science, Royal Holloway, University of London, 2000. Elsevier
Science.

19. Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation
of secure reactive systems. In CCS 2000, Proceedings of the 7th ACM Confer-
ence on Computer and Communications Security, pages 245–254, Athens, Greece,
November 2000. ACM Press.

20. Birgit Pfitzmann and Michael Waidner. A Model for Asynchronous Reactive Sys-
tems and its Application to Secure Message Transmission. In 2001 IEEE Sym-
posium on Security and Privacy, pages 184–200, Oakland, California, May 2001.
IEEE Computer Society Press.

21. David Sands, editor. Programming Languages and Systems, 10th European Sym-
posium on Programming, ESOP 2001, volume 2028 of LNCS, Genova, Italy, April
2001. Springer-Verlag.

22. Andrew C. Yao. Theory and applications of trapdoor functions (extended ab-
stract). In 23rd Annual Symposium on Foundations of Computer Science, pages
80–91, Chicago, Illinois, November 1982. IEEE Computer Society Press.

Developing security protocols in χ-Spaces

Federico Crazzolara and Giuseppe Milicia

BRICS�, University of Aarhus, Denmark
{federico,milicia}@brics.dk

Abstract. It is of paramount importance that a security protocol effec-
tively enforces the desired security requirements. The apparent simplicity
of informal protocol descriptions hides the inherent complexity of their
interactions which, often, invalidate informal correctness arguments and
justify the effort of formal protocol verification. Verification, however,
is usually carried out on an abstract model not at all related with a
protocol’s implementation. Experience shows that security breaches in-
troduced in implementations of successfully verified models are rather
common. The χ-Spaces framework is an implementation of SPL (Secu-
rity Protocol Language), a formal model for studying security protocols.
In this paper we discuss the use of χ-Spaces as a tool for developing
robust security protocol implementations. To make the case, we take a
family of key-translation protocols due to Woo and Lam and show how
χ-Spaces aids several steps in the development of a security protocol –
protocol executions can be simulated in hostile environments, a security
protocol can be implemented, and security properties of implementations
can be formally verified.

1 Introduction

Security protocols describe the communications between agents with the aim
of exchanging information over an untrusted network in a secure manner. Ex-
perience shows that designing and implementing security protocols is a most
challenging task. This is the case for a variety of reasons. If we look at the gene-
sis of a security protocol, after determining the security requirements a protocol
needs to satisfy, we isolate the following three main steps:

– a design phase in which the protocol is devised and described in a concise
but often informal specification language,

– a verification phase in which the security properties of the protocol are stud-
ied, and

– an implementation phase.

The first two phases are closely related and may not occur in a clear-cut succes-
sion – the results of verification give hints on how to design a better protocol.
The third step in the life cycle of a protocol is its actual implementation from its
specification. The gap between the design phase and the implementation phase
� Center of the Danish National Research Foundation.

is remarkable. A concise description of a protocol, often given in few lines can
yield many lines of code. There is very little, if any, guarantee that the desired
security properties hold for the implemented protocol, even if great care has been
taken in studying a formal model of the protocol. The SSL protocol is a striking
example of a provably correct protocol for which a flawed implementation was
given and used in the Netscape browser [1]. We believe that the correctness of a
specific protocol implementation matters more than that of an abstract model
of the protocol. Unfortunately proving an implementation of a protocol correct
is often too difficult and abstraction is needed.

In this paper we argue that the χ-Spaces framework helps developing secu-
rity protocols. χ-Spaces is substantially a compiler for the SPL language [5, 6],
in which protocols can be easily and concisely specified. Therefore a protocol
written as a χ-Spaces program usually fits in less than a page. The behaviour of
a protocol in a simulation gives hints on what security properties stand or fall
for the implemented protocol. χ-Spaces compiles an abstract model of a security
protocol into java code and provides all necessary runtime support so that the
protocol can be executed in a distributed environment. Security properties of the
abstract protocol model transfer to its implementation provided the compiler is
correct and provided the underlying cryptography is “practically unbreakable”.
An advantage of this approach is that the correctness of the implementation of
a security protocol is checked once and for all. We plan to formally verify the
χ-Spaces compiler in the near future.

2 The χ-Spaces architecture

From an abstract point of view, the architecture of χ-Spaces rests on the general
notion of network middleware or tuple space similar to the one introduced in
the mid-1980’s by the project Linda [8].

This abstract architecture is sketched in Figure 1. Communication between
principals occurs via a space, a remotely available storage area. The approach
that χ-Spaces takes is not to rely on a specific implementation of a communica-
tion model. Instead, it provides interfaces to communication which can be imple-
mented using a variety of communication frameworks, not necessarily a space.
The standard χ-Spaces distribution provides a driver for IBM TSpaces [11], a
coordination framework based on the tuple space idea which reflects the abstract
architecture of Figure 1.

A χ-Spaces program implementing a security protocol usually makes use
of cryptography. Cryptographic primitives are not embedded in the χ-Spaces
framework either – any Java Cryptographic Architecture (JCA) [19] compliant
provider can be used. End-users don’t need to trust any particular JCA imple-
mentation and could even implement their own cryptographic primitives.

A χ-Spaces program can either be interpreted or compiled to Java [9] code
which can be easily refined (via inheritance) and integrated into existing appli-
cations.

Fig. 1. χ-Spaces Architecture

3 The χ-Spaces syntax

We briefly describe the syntax of χ-Spaces programs – for further details re-
fer to [2]. The χ-Spaces syntax is substantially that of SPL [5, 6]. The main
instructions are:

– new(V) generates a nonce and binds it to the variable V ,
– inPat takes a message from the space matching the pattern Pat, and
– outM sends the message M to the space.

Instructions separated by dots are intended to be executed one after the other
and are the simplest χ-Spaces processes. These simple processes can be composed
in parallel to form more complex χ-Spaces programs. As in other languages
inspired by the work on process calculi, and in particular by the π-calculus [15],
χ-Spaces provides an operator “!” for unbounded replication. The process term
!P stands for an unbounded number of copies of the process P.

A message in an output instruction can be a variable, a constant, a tu-
ple of messages or an encryption. Examples of messages are 5, "Eve", and
(x,(3,"Bob")). An encryption consists of a message and a key, for example
{(1,7)}Pub("Alice"), which is to be interpreted as the tuple {(1,7)} en-
crypted with the public key bound to the identifier "Alice".

A pattern in an input acts as a binder over its free variables. An input
successfully takes a message from the space if it matches against the pattern.

Input actions are blocking – execution can only proceed if the pattern is matched
with success. Simple examples of patterns are 5, x and (x,(x,10)). Non-linear
patterns and nested tuples are permitted; in that case the pattern matching is
performed left-to-right in a depth-first fashion. A decryption pattern consists of
a variable bound to the cipher-text that is decrypted, a key expression and a
pattern. For example [*C Priv("Bob") > (1,w)] is a decryption pattern – it
first reads a cipher-text from the space and binds it to *C, decrypts it with the
key Priv("Bob") and tries to match the result of the decryption against the
pattern (1,w).

To properly deal with keys, χ-Spaces introduces a simple type distinction: key
variables (e.g. $k), basic value variables for constants (nonces or agents names),
and general variables (e.g. *C) for any value, including constants, tuples, keys
and cipher-texts. The pattern matching takes into account these types so for
example $k only matches a key in the space.

A simple example. Security protocols are frequently described as a sequence of
messages between distributed principals. A very simple but yet effective example
is the ISO One-Pass Symmetric Key Unilateral Authentication protocol[4]:

A → B : {Na,B}Key(A,B).

In this protocol the initiator A sends a message to the responder B. The curly
brackets indicate encryption – in this example under the symmetric key shared
by A and B. The value Na, the nonce, is meant to be fresh and unguessable. Its
purpose is to ensure that the request of A is recent.

A possible χ-Spaces implementation of the protocol above is the following:

def
Init(A,B) := {Key(A,B)}

new(Na) . out {(Na,B)}Key(A,B);

Resp(A,B) := {Key(A,B)}
in [*C Key(A,B) > (X,B)];

end

Init{"Alice"}{"Bob"} | Resp{"Alice"}{"Bob"}

This implementation illustrates the use of parametric definitions, in this case
Init and Resp. The keys that are used for decryption and encryption are de-
clared in the preamble a definition. In the example only the principals "Alice"
and "Bob" are involved. In order to extend the protocol implementation to allow
another initiator, say "Eve", it is enough to replace the last line in the program
above with

Init{"Alice","Eve"}{"Bob"} | Resp{"Alice","Eve"}{"Bob"}.
In χ-Spaces different threads of execution are spawned for every possible com-
bination of the actual arguments. The process Init, for example, is launched
twice, one time with parameters "Alice" and "Bob" and the other time with
"Eve" and "Bob".

Pi f Pi 2Pi 1 PiPi 3

Fig. 2. The Woo-Lam hierarchy

4 The Woo-Lam key-translation protocols

Woo and Lam [22, 21] introduced a family of key translation protocols. The
protocols they introduced have an initiator role, here A, a responder role, here
B, and a trusted authority, here S. The trusted server S shares a key with both
the initiator Key(A,S) and the responder Key(B,S). The simplest protocol in
the family is named Π and goes as follows:

(1) A → B : A
(2) B → A : Nb
(3) A → B : {Nb}K(A,S)

(4) B → S : {A, {Nb}K(A,S)}K(B,S)

(5) S → B : {Nb}K(B,S)

The server translates A’s message {Nb}K(A,S) into {Nb}K(B,S) which can be
understood by the responder B. The Π protocol is derived from a more complex
protocol Πf by repeated simplifications aiming at a more efficient protocol and
giving rise to the “hierarchy” in Figure 2. The Π3 protocol is only a slight
variation of the Π protocol and is described as follows:

(1) A → B : A
(2) B → A : Nb
(3) A → B : {Nb}K(A,S)

(4) B → S : {A, {Nb}K(A,S)}K(B,S)

(5) S → B : {A,B,Nb}K(B,S)

The only difference between Π3 and Π is in step (5). This simple refinement
makes the Π protocol vulnerable to an attack.1

5 Protocol simulation

The χ-Spaces framework can be used to test protocols by running local simula-
tions. Different capabilities can be given to a spy process so gain insights in the
behaviour of the protocol when executed in a variety of environments.

1 The original version of Π3 is prone to a simple replay attack (see [4]). The χ-Spaces
implementation of Π3 is immune to this attack if the name of the responder is
included in message (5).

def

Init(A) := {Key(A,"S")}

! out A.

in Nb.

out ((A),{Nb}Key(A,"S"));

Resp(B,A,C) := {Key(B,"S")}

! in A.

new(Nb).

out Nb.

in *C1.

out {(A,*C1)}Key(B,"S").

in ((C),[*C2 Key(B,"S") > Nb]).

println (B,"took",C,"for",A).

exit;

Server(A,B) := {Key(A,"S"),Key(B,"S")}

! in [*C1 Key(B,"S") > (A,((X),[*C2 Key(A,"S") > Nb]))].

out ((X),{Nb}Key(B,"S"));

end

Init{"Alice","Eve"}

| Resp{"Bob"}{"Alice"}{"Eve"}

| Resp{"Bob"}{"Eve"}{"Alice"}

| Server{"Alice","Bob","Eve"}{"Alice","Bob","Eve"}

Fig. 3. The Woo-Lam Π protocol ready for a simulation in χ-Spaces

5.1 Implementing the Π protocol for simulation in χ-Spaces

To perform a simulation of the Woo-Lam Π protocol that is able to detect attacks
we tune the χ-Spaces implementation of the protocol so that the simulation stops
whenever a successful attack is carried out. The desired security property for this
protocol is an authentication property (see [22]):

“Whenever a responder finishes the execution of a protocol round, the
initiator of that round is in fact the principal claimed in step (1) of the
protocol.”

For the purpose of detecting a violation of this property we annotate some
messages with the name of the originator of the message. Figure 3 shows the
implemented protocol ready for a simulation. The message that is sent in the
last output performed by the initiator is tagged with the initiator’s name:

out ((A),{Nb}Key(A,"S")) .

The tag of this cipher-text is carried along until it reaches the responder’s last
input from the server. When the server performs the key translation, it keeps
the name of the agent that labels the original encryption. Then, in the code
of the responder, upon receiving the translated message from the server one
can compare the name appearing in the first input of the responder with the
one tagging the received cipher-text. The simulation stops if the two names are
different: the agent claimed in the first step of the protocol is not the initiator
that should have encrypted the responder’s nonce and therefore a successful
attack has been detected. In the implementation of the Π protocol of Figure 3
messages do not carry the addresses of the sender and intended receiver. The
messages that are sent and received through the space are “anonymous” and
therefore agents may pick messages that are not intended for them. In this way
the simulation of the protocol is carried out in a harsh environment that allows
messages to be redirected to different agents. Often an implementation of a
protocol that is intended for use rather than simulation includes identifiers of
sender and receiver as part of the messages – see for example the implementation
of the Π3 protocol in Section 6. In that case a spy could modify the “address
part” of a message so that it is redirected. A spy of this kind can be easily
programmed as a χ-Spaces process and executed together with the simulated
protocol. One can in fact program a very powerful spy as a χ-Spaces process
that makes the simulation environment even more hostile.

5.2 Simulation results

We run a simulation where two agents "Alice" and "Eve" can initiate the pro-
tocol and to which only "Bob" can respond following the protocol. Running
the simple program described in Figure 3 on an Athlon 1GH processor, with a
clean tuple space, an attack was detected in about 30 seconds. The attack is the
one pointed out by Abadi (see [22]); a trace of the detected attack is shown in
Figure 4. Threads stand for the parts of the protocol that run locally to each
principal. Threads display input and output events which correspond to input
and output actions of the χ-Spaces processes in Figure 3. The order of occur-
rence of the events in a thread is from top to bottom. Arrows between threads
are among output and input events and tell where a received message comes
from. Alice (thread 383) initiates a run of the protocol with Bob as responder
(thread 382). Concurrently Eve (thread 384) initiates a run with Bob (thread
377) too. Alice confuses the nonce Bob generated for Eve with the one Bob gen-
erated for her – an arrow connects the second event of thread 377, the output of
the nonce intended for Eve, with the second event of thread 383, an input event
of Alice. Alice continues the protocol interacting with Bob and the server. Bob
gets duped in thread 377 where in its last input he accepts a translation of the
nonce which was meant for Eve but which got encrypted by Alice. The purpose
of thread 374 is that of generating some junk to be received by the input event
in thread 377 and which, however, will never be used.

Simulation is done by running a protocol implementation. As a consequence
it won’t find all attacks the abstract protocol model is prone to but attacks

Out

 Out

In

 Out In

In

Out

 Out
"Alice"

 Out

 In

In

In

 Out

In

 Out

Out

Thread-383(Init) Thread-382(Resp) Thread-384(Init) Thread-377(Resp)

Thread-374(Init)

Thread-379(Server)

Out

In

GOTCHA

"Eve"

-1275886001

"Alice"

[["Alice"], EncryptedData]
[["Alice"], EncryptedData]

EncryptedData

[["Alice"], EncryptedData]

EncryptedData

Fig. 4. The simulated attack on Woo-Lam Π

that concern the specific χ-Spaces protocol-implementation instead – our sim-
ulation, for example, did not report a possible type-confusion attack on the Π
protocol [22] as this attack cannot be carried out against our particular χ-Spaces
implementation of Π. The attack succeeds if the initiator of the protocol can
be duped into thinking that a structured message is a nonce coming from the
responder. The types of χ-Spaces make the implementation of the Woo-Lam Π
protocol in Figure 3 immune to attack (for more details see [2]). Clearly, one
can give a different χ-Spaces implementation of Π that would permit even that
attack.

6 The implementation of a security protocol

The χ-Spaces programming language makes the task of implementing a security
protocol fairly easy yielding a concise program. This short program is close to
the description of a protocol as a sequence of messages but resolves all issues
left open by the informal protocol description – equality tests, for example, are
made explicit through the pattern matching mechanism of χ-Spaces and nonce
generation is done with the action new.

The χ-Spaces code of the Π3 protocol is shown in Figure 5. The agent names
(addresses) are not hardwired into the χ-Spaces communication mechanism. Effi-

def

Init(A,B) := {Key(A,"S")}

! out (A,B).

in (B,A,Nb).

out (A,B,{Nb}Key(A,"S"));

Resp(B) := {Key(B,"S")}

! in (A,B).

new(Nb).

out (B,A,Nb).

in (A,B,*C1).

out {(A,*C1)}Key(B,"S").

in [*C2 Key(B,"S") > (A,B,Nb)];

end

def

Server(A,B) := {Key(A,"S"), Key(B,"S")}

! in [*C1 Key(B,"S") > (A, [*C2 Key(A,"S") > Nb])].

out {(A,B,Nb)}Key(B,"S");

end

Fig. 5. The Woo-Lam Π3 protocol in χ-Spaces

ciency of protocol communication however, can be sensibly improved if addresses
are contained in messages. Then, through a more structured pattern on input
actions, agents get only those messages that are directed to them. Therefore
in the implementation of Π3 given in Figure 5 explicit addresses are added to
the messages that are sent between initiator and responder – in this case names
as addresses are enough. The protocol is meant to work in a distributed en-
vironment where each agent executes its own χ-Spaces program. Typically, an
ordinary agent "Alice" can take both the responder and the initiator role in
the protocol. Therefore the program of "Alice" consists of a system with two
components:

Init{"Alice"}{"Bob",...} | Resp{"Alice"} .

The server "S", in the case of a symmetric system where each agent can be both
initiator and responder, executes:

Server{"Alice","Bob",...}{"Alice,"Bob",...} .

The server process may be triggered by a request coming from any two “regis-
tered” agents.

Woo-Lam Pi3 Running Time

17 20.55555556
90

152.7 157.5555556

475.3333333

0

100

200

300

400

500

600

Machine 1 Machine 2 Machine 3

T
im

e
in

 m
s

Cryptographic functions Rest of the Computation

Fig. 6. Performance of the Π3 implementation

7 Performance evaluation

A natural concern when designing a new programming language is its perfor-
mances. The current χ-Spaces implementation is to be considered a prototype.
In particular we did not attempt to optimise the generated code. However our
benchmarks are encouraging. We conducted our tests using the BouncyCastle
JCE security provider (freely available from www.bouncycastle.org) as crypto-
graphic back-end. Communication to the space went through a local area network
(LAN) with a standard 10Mbs transfer rate. Encryption was performed using
the DES cipher with 128-bits pre-generated keys. The space implementation of
choice was IBM TSpaces [11] version 1.2sp2. The χ-Spaces protocol was com-
piled to Java bytecode using the JDK1.4 compiler. The machines used were the
following:

Machine 1 AMD XP 1800+ 512MB Windows 2000 Jdk1.4
Machine 2 AMD Athlon 1Ghz 256Mb Windows XP Jdk1.3.1
Machine 3 Celeron 300Mhz 256Mb Windows 2000 Jdk1.4

As we can see in Figure 6 very little time is spent on the low-level encryption
routines. As to be expected the main performance bottleneck is communication
over the network. Figure 6 shows that the performances degraded sensibly on

Woo-Lam Pi3 Scalability

0

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200

Tuples in the Space

T
im

e
in

 m
s.

Fig. 7. Scalability Test

a low-end machine (Machine 3). However very little, if any, is gained stepping
from the medium-end (Machine 2) to the high-end (Machine 1) machine. This
is the case as most of the time was spent doing communication rather than
computation. Machine 1, on the other hand, spends a noticeable amount of time
in the low-level cryptographic routines. It is conceivable that performances can
be improved using a more efficient cryptographic provider.

An interesting question regards the scalability of the system. Depending on
load of the space we would expect performances to drop. We run the protocol
using a space which was constantly filled. We performed the test with the space
running on Machine 1 and the protocol on Machine 3. Our results can be found
in Figure 7. As one can see, performance remains on acceptable levels. This test
is heavily dependant on the space implementation.

8 Security theorems

The process of developing a security protocol ideally ends with the formal proofs
of the security properties that one believes hold for the protocol implementation.
Simulation gives hints to which security properties stand and which ones fall for
a certain protocol – the protocol could be reviewed according to the results of a
simulation. Only a formal proof however, can give certainty of correctness and
in some cases it can reveal further weaknesses in the protocol.

The Petri-net semantics of SPL (see [6]) transfers directly to χ-Spaces and
therefore can be used for reasoning about the correctness of protocols written

in χ-Spaces. The proofs of security properties are carried out exploiting both
the dependencies among the events and the shape of events that occur in a run
of the protocol. In this short paper we do not include the proof of the security
theorem that we state later in this section – for a detailed proof please see [2].

8.1 The Π3 system

The system that we want to analyse is distributed among the agents that initi-
ate a protocol round or respond to a protocol initiation. In addition there is a
server that performs the key translation. We consider the rather general situation
where each agent can participate in the protocol in both initiator and responder
roles. For simplicity we assume that there is only one server that performs key-
translation. In the remaining part of this section, Π3 is the SPL-process term
formed substantially out of the parallel composition of the χ-Spaces programs
of the protocol participants (see [2] for details of how χ-Spaces maps to SPL):

PInit ≡ ‖A,B∈A Init(A,B)
PResp ≡ ‖A∈A Resp(A)
PServer ≡ ‖A,B∈A Server(A,B)
PSpy ≡ Spy

Π3 ≡ ‖i∈{Init,Resp,Server,Spy} Pi

Given a set I, the term ||i∈Ipi stands for the parallel composition of all processes
pi for i ∈ I. The set A is a set of agent names.

Security of the system is studied in a malicious environment and therefore a
spy is included as a parallel component of Π3. A powerful spy can be programmed
as a χ-Spaces process; it allows to decompose structured messages, compose
messages into tuples, encrypt and decrypt with available keys (see [2] for further
details about the program of the spy). We assume however that the spy can
not break the underlying cryptography that is used in the protocol and that it
cannot guess random numbers.

Even if there is always only a finite number of agents interacting using the
protocol, we do not restrict ourselves to a fixed finite number of agents when
analysing it (A is an arbitrary set of agent names). Proving security for an
arbitrary number of agents implies that our results still hold even when agents
join or leave the protocol system. For a similar reason we allow each agent to
perform an arbitrary number of rounds of the protocol.

8.2 Elements of Petri-net semantics

A run of the protocol is described by a sequence of configurations (markings)
and events of a Petri net:

〈Π3, s0, t0〉 e1−→ . . .
er−→ 〈pr, sr, tr〉 er+1−→ . . .

Configurations 〈pi, si, ti〉 are triples consisting of a process term pi which denotes
the point of control reached by the protocol and determines the possible events
that can occur from that point, a set si containing all the values that appeared so
far in the run, and a set ti of messages describing the contents of the tuple space.
The initial configuration starts with the term Π3 and is proper, in the sense that
the set s0 contains all values that appear in Π3 and in messages contained in the
initial tuple space t0 – the net semantics keeps track in si of the values that are
already present and if at step i + 1 a “new” value needs to be created it chooses
one that is not in si.

When an event occurs a configuration evolves into another one. Events carry
actions such as act(e) = i : out new n M , the action of an output event e, where
i is an index denoting the parallel component the event belongs to, n is a freshly
created value, and M a message sent onto the tuple space. We write out M if no
new names are created before sending M . The action act(e) = i : in M , instead,
is that of an input event. We write e −→ e′ when the event e precedes the event
e′ in a run. We also write M � t when there is a message in the tuple space t
containing M as a submessage.

8.3 Formal correctness of Π3

The rather informal authentication requirement for Π3:

“Whenever a responder finishes a round of the protocol, the initiator of
that protocol round is in fact the principal claimed in step (1) of the
protocol” [22].

can easily be made precise in the Petri-net model. The property should hold
for each run of the protocol. We are particularly concerned about those runs in
which the responder completes a protocol round.

The informal correctness requirement we recalled above can be seen, fol-
lowing the lead of Lowe (see [13]), as an agreement property: To a completed
responder round of B done apparently with A as initiator, should correspond
in that protocol run a completed initiator round of A done apparently with B
as responder. The messages that are exchanged should agree on their values.
Formally, one can prove the following correctness property for the Π3 protocol:

Theorem 1. (Authentication of the responder). If a run

〈Π3, s0, t0〉 e1−→ . . .
er−→ 〈pr, sr, tr〉 er+1−→ . . .

contains the responder event b5 with action

act(b5) = B : i : in {(A,B, n)}Key(B,S)

for some index i and if Key(A,S),Key(B,S) �� t0 then the run contains the
initiator event a3 with action

act(a3) = A,B : j : out (B,A, {n}Key(A,S))

and such that a3 −→ b5 �

Even if the statement of the theorem starts from the final event of the respon-
der and asks for the final event of the initiator, it fits the shape of the agreement
property that we discussed above. The complete responder and initiator rounds
can be reconstructed from those two events:

– Whenever a sequence of configurations and events obtained from the net of
Π3 contains an event corresponding to the last action of the responder one
can recognise that the responder indeed completed the round and who was
claimed as initiator in the first step of the protocol. Let A,B ∈ A be names
of agents and S the name of a server in the Π3 system. From the dependency
among responder events in a protocol run (see [6, 2]) it follows that if a run
of the protocol contains the responder event b5 with action

act(b5) = B : i : in {(A,B, n)}Key(B,S)

it also contains the responder event b1 with action

act(b1) = B : i : in (A,B)

and such that b1 −→ b5. Therefore B believes that he responded to a request
initiated by A.

– In a similar way as for the responder, whenever a run contains an initiator
a3 with action

act(a3) = A,B : j : out (B,A, {n}Key(A,S))

one can construct from the event dependencies the complete initiator round
obtaining a1 −→ a2 −→ a3 where the events a1 and a2 have actions

act(a1) = A,B : j : out (A,B)
act(a2) = A,B : j : in (B,A, n) .

Therefore in that round A believes that it was engaged in the protocol to-
gether with agent B as responder.

9 Related work

Much work has been done in the field of security protocol analysis and tools have
been developed for that purpose. Some of the approaches that we find are more
related to χ-Spaces are those taken by Casper [12], Athena [18] and CAPSL [7].

Casper translates an abstract protocol specification to a CSP [10] description
of the protocol that can then be checked using FRD [16]. Similarly to χ-Spaces,
Casper aids the formalisation of informal protocol descriptions in a high level
language. In χ-Spaces the simulation and verification are steps in the protocol
development process and they target the implementation of a protocol, not its
abstract specification. This sets apart χ-Spaces from tools like Casper. Athena
is based on the strand-space model [20] which is known to be related to the

net-semantics of SPL [6] and therefore to χ-Spaces. Athena has been used to
automatically generate protocols that satisfy certain properties. Like done with
“χ-Spaces protocols”, Java code can be generated from “Athena protocols” [17].
CAPSL is a high level language close to the informal notation. Its primary goal
is to serve as a common specification language that can be translated to input
for different tools for the verification of security protocols. The semantics of
CAPSL is given by a translation to an intermediate language based on a multiset
rewriting model [3]. Recent work showed how to generate java code from CIL
code and so implement protocols [14]. In our opinion, for both Athena and
CAPSL it is not clear weather the behaviour of the running code reflects that
of the formal model for which security properties of protocols can be verified.
The Java code for a “CAPSL protocol” allows communication via sockets to an
environment (or network). An environment for demonstration that works locally
has been programmed. We do not know if at present the system has been tried
in a distributed setting.

10 Conclusions

This paper addresses the problem of developing robust and correct security-
protocol implementations.

The χ-Spaces framework is only a prototype at the moment. Some extensions
to the language are needed for being able to develop industrial strength proto-
cols. The extensions that one seems to require substantially consist in allowing
recursive definitions and in adding an “if then else” instruction and some other
cryptographic primitives. The process of tailoring a protocol for simulation is
rather ad-hoc. We plan to study a general methodology and extend χ-Spaces to
better support simulation. Our goal is to devise an automatic procedure that
given a security property formalised in terms of events of a protocol annotates
a χ-Spaces implementation of the protocol with the necessary information to
perform a simulation.

References

1. ACROS. Bypassing warnings for invalid SSL certificates in Netscape Navigator.
ACROS Security Problem Report, 2000.

2. M. Cáccamo, F. Crazzolara, and G. Milicia. χ-Spaces: From a model to a working
language. Technical report, BRICS, 2002. http://www.chispaces.com.

3. I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. A meta-
notation for protocol analysis. In R. Gorrieri, editor, Proceedings of the 12th IEEE
CSFW, June 1999.

4. J. Clark and J. Jacob. A Survey of Authentication Protocol Literature: Version
1.0. www-users.cs.york.ac.uk/̃ jac, 1997.

5. F. Crazzolara and G. Winskel. Petri nets in Cryptographic protocols. In Proceed-
ings 6th FMPPTA Workshop, April 2001.

6. F. Crazzolara and G. Winskel. Event in security protocols. In Proceedings of the
Eight ACM CCS, November 2001.

7. G. Denker and J. Millen. CAPSL integrated protocol environment. In DISCEX,
2000.

8. D. Gelernter. Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80–112, 1985.

9. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification
Second Edition. Sun microsystems, June 2000.

10. C. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
11. T. J. Lehman, A. Cozzi, Y. Xiong, J. Gottschalk, V. Vasudevan, S. Landis, P. Davis,

B. Khavar, and P. Bowman. Hitting the distributed computing sweet spot with
Tspaces. Computer Networks, 35(4):457–472, 2001.

12. G. Lowe. Casper: A compiler for the analysis of security protocols. In Proceedings
of the 10th IEEE CSFW, 1997.

13. G. Lowe. A hierarchy of authentication specifications. In Proceedings of the 10th
IEEE CSFW, 1997.

14. J. Millen and F. Muller. Cryptographic protocol generation from CAPSL. Tech-
nical Report SRI-CSL-01-07, SRI International, December 2001.

15. R. Milner. Communicating and mobile systems: The π-calculus. Cambridge Uni-
versity Press, 1999.

16. A. W. Roscoe. Modelling and verifying key-exchange protocols using CSP and
FDR. In IEEE Symposium on Foundations of Secure Systems, 1995.

17. D. Song, A. Perrig, and D. Phan. AGVI – Automatic Generation, Verification, and
Implementation of Security Protocols. In Proceedings of the 13th CAV conference,
2001.

18. D. X. Song, S. Berezin, and A. Perrig. Athena: A novel approach to efficient
automatic security protocol analysis. Journal of Computer Security, 9(1/2):47–74,
2001.

19. Sun microsystems. JavaTM Cryptography Architecture API Specification and Ref-
erence. http://java.sun.com.

20. J. Thayer, J. Herzog, and J. Guttman. Strand spaces: Why is a security protocol
correct? In 1998 IEEE Symposium on Security and Privacy, 1998.

21. T. Y. C. Woo and S. S. Lam. Authentication for distributed systems. Computer,
25(1):39–52, January 1992.

22. T. Y. C. Woo and S. S. Lam. A Lesson on Authentication Protocol Design. Op-
erating Systems Review, pages 24–37, 1994.

The Role Compatibility Security Model

Amon Ott

Compuniverse / RSBAC
Email: ao@rsbac.org, WWW: http://www.rsbac.org

Abstract. This paper presents the “Role Compatibility” access control
model. It has been specially designed to address recent vulnerabilities in
network servers by confining compromised services and protecting the
base of the system. Furthermore, while being powerful and flexible when
needed, it remains fast and easy to use for simple setups.

The model design goals, its specification and implementation outline are
presented, followed by a brief comparison to the RBAC and the DTE
model. Finally, a Webserver example shows how the model can be used
to protect real server systems.

Keywords: Security Model, Access Control, Internet Server, Linux

1 Introduction

As a response to the increasing rate of server vulnerabilities and attacks against
them, network server systems require a conceptional solution for better security.
Kernel level access control with a specialized security model provides such a
solution.

Since no existing model suited our requirements, the Role Compatibility (RC)
model has been designed and implemented in the RSBAC framework since De-
cember 1998. It supports both a general protection of the base system and an
encapsulation of all network service programs to strictly confine security com-
promises. The abstraction of a role-based model seemed appropriate for this
task.

The RSBAC framework provides a generic infrastructure for security model
implementations, including persistent list management. It groups access objects
into so-called target types, e.g. FILE, DIR or IPC1. Network access is controlled
through Network Templates, which provide persistent default attribute values
for dynamic network objects.[RSBAC]

The RC model has been in stable production use since January 2000, and a
lot of experience with the RSBAC framework and the RC model has been gained.
The latest application benchmarks show an RC model overhead of 1.25% against
an empty framework, including the Authentication Enforcement (AUTH) mod-
ule, which is outside the scope of this paper.

1 System V Inter Process Communication Object, e.g. Shared Memory.

As an example, the typical configuration as given in section 6 effectively
confines the Apache Webserver and thus prevents an infection by recent Linux
malware like the OpenSSL Slapper worm family. The RC model has also been
used to secure several Linux firewall configurations, which has been a common
DTE model application for some time.2

2 Design Goals

The RC model design had to meet most access control requirements on modern
Linux based server systems. In detail, the following design goals were accom-
plished:

Role based model: The abstraction of users to roles and objects to types leads
to administration on a functional level and avoids the complexity of per-
object control.

Single roles: Each process must have only one current role at a time. Each user
ID must have only one default role, which can be assigned to the process
when the user ID is acquired.

Program roles: Different programs run by the same user must be able to have
different roles. Program roles must override user default roles.

Changing of roles: A process must be able to actively change its current role,
if allowed by administration.

Single types: Each object must have only one type.
Granularity: Every role and type combination must have an individual set of

allowed accesses.
Separation of administration duty: The model must support separation of

duty for administration.
Full configurability: No hard-wired settings should be enforced.
Functional default settings: When unconfigured, the model must allow the

system to work as expected.
No changes to existing applications: All applications that are not aware

of the model must work as expected, unless when they have insufficient
privileges.

Adaptive complexity: Model administration should be only as complex as
necessary to meet the actual requirements. Using default settings, the model
must behave as a simple role model. All special behaviour must be optional.

3 Specification

3.1 Basic Definitions

Within the RC model specification, the active entities (subjects) are processes
working on behalf of users and executing one program file with a set of dynamic
libraries at a time.
2 Section 5 contains a comparison with RBAC and DTE models.

Objects are grouped into the RSBAC framework target types, but different
groupings of objects would not change the model significantly.

Access rights are the standard framework request types plus some model
specific rights. Like modified object groupings, a different set of standard access
rights would not affect the model itself.

The following terms will be used:

– owner(p:process):user := owner of process p
– parent(p:process):process := parent process of process p
– program(p:process):file := program file currently executed by process p
– parent(f:filesystem object):filesystem object := parent object of filesystem

object f
– attributenametn(o:object):valuetype := value of attribute attributename of

object o at time n

Processes as subjects can perform some model relevant actions:

– changeownertn(p:process, u:user) := change owner of process p to u at time
n

– clonetn(p1:process, p2:process) := creation of process p2 by parent process
p1 at time n

– executetn(p:process, f:file) := start execution of program file f in process p
at time n

– createfstn(p:process, f:filesystem object) := creation of filesystem object f by
process p at time n

– createipctn(p:process, i:IPC object) := creation of IPC object i by process p
at time n

Three types of rules will be specified:

1. Invariants define rules, which must always be met. Here the effective values
of inheritable filesystem object attributes are determined.

2. Transitions define the next state of an attribute after a certain action.
3. Constraints define the conditions to be met when an action is performed.

3.2 Roles and Types

Roles Roles and types are identified by a non-negative integer index. Every
process has one current role, and every user has one default role.

– currentroletn(p:process):role := current role of process p at time n
– defroletn(u:user):role := default role of user u at time n

The first system process 0 gets the default role of user 0.

currentrolet0(0) := defrolet0(0) (1)

In the default setting, i.e., if not specified differently by the Initial Role or the
Forced Role attributes of the program file or the process (see subsection 3.5),
the following implicit role transitions are performed:

– All subprocesses inherit the current role of their parent process.

clonetn(p1,p2)⇒ currentroletn+1(p2) := currentroletn(p1) (2)

– On every change of the process owner, the process current role is set to the
new owner’s default role.

changeownertn(p,u)⇒ currentroletn+1(p) := defroletn(u) (3)

– When another program is executed, the current role of the process is kept.

executetn(p, f)⇒ currentroletn+1(p) := currentroletn(p) (4)

Thus, the default scheme follows the expected behaviour of a role based model.

Types Every object has an RC type. Hierarchically organized objects of RSBAC
target types FILE, DIR, FIFO and SYMLINK3 can have a special type value
inherit parent , in which case the parent object’s type is used. If there is no
parent, the default value 0 is applied.

Whenever values may be inherited, the term effective value is used to denote
the final value. Inheritance greatly reduces the number of attribute values to be
stored and follows the usual way of grouping objects in hierarchies.

– typetn(o:object):type := type of object o at time n
– efftypetn(f:filesystem object):type := effective type of filesystem object f at

time n, including inheritance

The effective type is derived as follows:

efftypetn(f) :=

 if typetn(f) = inherit parent ∧ ∃parent(f) : efftypetn(parent(f))
if typetn(f) = inherit parent∧ 6 ∃parent(f) : 0

if typetn(f) 6= inherit parent : typetn(f)
(5)

When a new filesystem object is created, its type is set to the value of the role
attribute Default fd create type of the current role of the creating process, which
can also be the special value inherit parent mentioned above.

createfstn(p, f)⇒ typetn+1(f) := default fd create typetn(currentroletn(p))
(6)

When a new process object is created, its type is set depending on the value of
the role attribute Default process create type of the current role of the creating
process. The special and default value inherit parent sets the type value to that
of the creating process. Be

pcttn(p1) := default process create typetn(currentroletn(p1)) (7)

3 Objects of these target types are also referenced as filesystem objects.

clonetn(p1,p2)⇒ typetn+1(p2) :=
{

if pcttn(p1) = inherit parent : typetn(p1)
if pcttn(p1) 6= inherit parent : pcttn(p1)

(8)
On execution of a new program file, the process type is set according to the
value of the role attribute Default process execute type of the current role of
the process. The special and default value inherit parent leaves the process type
unchanged. Be

pettn(p) := default process execute typetn(currentroletn(p)) (9)

executetn(p, f)⇒ typetn+1(p) :=
{

if pettn(p) = inherit parent : typetn(p)
if pettn(p) 6= inherit parent : pettn(p)

(10)
Changing the owner of a process leads to the process type being set to the

value of the role attribute Default process chown type of the current role of the
process. The special and default value inherit parent leaves the process type
unchanged. The other valid special value use new role def create uses the value
of the role attribute Default process create type of the new current role of the
process (see Roles). Be

pottn(p) := default process chown typetn(currentroletn(p)) (11)
pcttn+1(p) := default process create typetn(currentroletn+1(p)) (12)

changeownertn(p,u)⇒

typetn+1(p) :=

 if pottn(p) = inherit parent : typetn(p)
if pottn(p) = use new role def create : pcttn+1(p)

else : pottn(p)
(13)

Finally, the types of newly created IPC objects can be influenced by the value
of the role attribute Default ipc create type of the current role of the process.

createipctn(p, i)⇒ typetn+1(i) := default ipc create typetn(currentroletn(p))
(14)

The types of all newly created network objects are derived from their templates4

and cannot be preset through role attributes.
Default type values provide a mandatory way to keep new objects suitable

for the roles that created them, while completely avoiding discretionary elements
for type selection and the necessity of making applications aware of the access
control model.

3.3 Role Compatibility

While most changes of the current role of a process are implicit with certain
actions, processes can also actively change their current role. This is specially
4 RSBAC Network Templates, see documentation at [RSBAC].

useful for short term administration tasks and for server programs, whose sub-
processes have to act in several roles without changing their user ID.5 In both
cases, the original role should not be regained.

– changeroletn(p:process, r:role) := process p actively changes its current role
to r at time n

The right to do so is called Role Compatibility : A process may change its current
role r1 to role r2, if role r2 is in the set of compatible roles of role r1.

– comproles(r:role):set of roles := set of compatible roles for role t

changeroletn(p, r)⇒ r ∈ comprolestn(currentroletn(p)) (15)

3.4 Type Compatibility

Accesses by processes performing a current role to objects of certain types are
controlled through the Type Compatibility settings.

– getaccesstn(p:process, o:object, a:access type) := process p gets access to
object o with access type (request type) a at time t

A process with current role r may access objects of type t with accesses of access
type (request type) a, if role r is marked as Type Compatible with type t for
access type a.

– compatibletn(r:role, t:type, a:access type) := role r is marked as compatible
with type t for access type (request type) a at time n

getaccesstn(p, o, a)⇒ compatibletn(currentroletn(p), efftypetn(o), a) (16)

Type compatibility sets are kept separately for the different RSBAC target types.

3.5 Program Based Roles with Initial and Forced Roles

There are two ways to assign roles to programs: initial and forced roles. Both
program role settings are kept as file attributes.

Initial Roles If an initial role has been assigned to a program file, it is set
as current role of every process that executes this program. However, the role
can be changed at any time by all implicit or explicit mechanisms mentioned
above, e.g. by changing the process owner. Initial roles are typically used for
login programs, which need special privileges for authentication, but have to
switch to a new owner’s default role afterwards.

Two special initial role values affect implicit role transitions:
5 See Webserver example in section 6.

role inherit parent (default value): Get initial role setting from filesystem
parent object. If there is no parent object, use root dir default value role use-
forced role. This default value allows to set an initial role for whole directory

trees.
role use forced role (root dir default value): Only use the forced role set-

ting.

As usual, the inheritance implies the notion of effective values:

– initialroletn(f:file):role := initial role value of file f at time t
– effinitialroletn(f:file):role := effective initial role of file f at time n, including

inheritance from parent filesystem objects

The effective initial role is derived as follows:

effinitialroletn(f) := if initialroletn(f) = inherit parent ∧ ∃parent(f) : effinitialroletn(parent(f))
if initialroletn(f) = inherit parent ∧ 6 ∃parent(f) : role use forced role

if initialroletn(f) 6= inherit parent : initialroletn(f)
(17)

Initial roles for program files change the implicit role transition on execution
from rule 4 as follows:

executetn(p, f)⇒ currentroletn+1(p) :={
if effinitialroletn(f) = role use forced role : follow rule 20
if effinitialroletn(f) 6= role use forced role : effinitialroletn(f) (18)

Forced Roles While initial roles are only set as temporary current roles, forced
roles are kept until either another program with initial or forced role is executed
or the process actively changes to a compatible role. Certainly, it has to be kept
in a process attribute for later use.

All other implicit mechanisms, e.g. when changing the process owner, do not
affect the current role while a forced role is set.

Forced roles are useful for those server program encapsulation cases, where a
server program must always run with the same privileges for all process owners.

There are several special forced role values which affect implicit role transi-
tions:

role inherit user: Always set the (new) process owner’s default role as current
role when executing this program or when changing process owner while this
program is executed. This can be used for login shells to make sure that the
user’s default role is used.

role inherit process: Keep the current role when executing this program or
changing process owner while this program is executed. This value lets sub-
programs keep the forced role of their parents in all cases.

role inherit parent (default value): Get forced role setting from filesystem
parent object. If there is no parent object, use root dir default value role-
inherit up mixed. This default value allows to set a forced role for whole

directory trees.

role inherit up mixed (root dir default value): Keep the current role when
executing this program, but set it to new owner’s default role when changing
the process owner. This is the standard role model behaviour as mentioned
above.

The forced role default settings make all programs run with the process owner’s
default role, which is the desired behaviour in most cases.

– forcedroletn(f:file):role := forced role value set for file f at time n
– effforcedroletn(f:file):role := effective forced role of file f at time n, including

inheritance from parent filesystem objects

The effective forced role is derived as follows:

effforcedroletn(f) := if forcedroletn(f) = inherit parent ∧ ∃parent(f) : effforcedroletn(parent(f))
if forcedroletn(f) = inherit parent ∧ 6 ∃parent(f) : role inherit up mixed

if forcedroletn(f) 6= inherit parent : forcedroletn(f)
(19)

Forced roles for program files extend the implicit role transition on execution
from rule 18 as follows:6

executetn(p, f)⇒ currentroletn+1(p) :=
if effforcedroletn(f) = role inherit user : defroletn(owner(p))

if effforcedroletn(f) = role inherit process : currentroletn(p)
if effforcedroletn(f) = role inherit up mixed : currentroletn(p)

else : effforcedroletn(f)

(20)

The effective forced role value from the executed file is copied to the respective
process attribute.

executetn(p, f)⇒ forcedroletn+1(p) := effforcedroletn(f) (21)

The implicit role transition on process owner changes from rule 3 is modified as
well:

changeownertn(p,u)⇒ currentroletn+1(p) :=
if forcedroletn(p) = role inherit user : defroletn(u)

if forcedroletn(p) = role inherit process : currentroletn(p)
if forcedroletn(p) = role inherit up mixed : defroletn(u)

else : forcedroletn(p)

(22)

3.6 Standard Administration

In the standard case, all RC model administration is done through one or more
roles, which have their Admin Type attribute set to Role Admin. This value gives
6 If the initial role is set to the default value role use forced role.

full administrative privileges, overriding the separation scheme presented in the
next subsection, but no access rights to objects.

Administration tasks are definition of roles and types, specification of com-
patibilities, assignment of default, initial and forced roles to users and program
files and assignment of types to objects.

3.7 Separation of Administration Duty

Security administration should best be separated into several tasks, performed
by several different administrators, which have to cooperate to provide additional
privileges.

The Role Compatibility Model contains a separation of administration duty
scheme, which allows to generate limited workgroups as well as enforce cooper-
ation of two or more roles for most administration tasks. However, the Admin
Type role attribute makes the separation scheme completely optional.

As the separation of duty related settings can only be changed by roles with
Admin Type set to Role Admin, removing these roles or resetting their Admin
Type value fixes the separation for future use.

Admin Roles Every role definition contains a set of roles, called Admin Roles,
which processes performing this role are allowed to administrate. For many set-
tings, e.g. the compatibility sets, additional privileges are required, which are
explained below.

– adminroles(r:role):set of roles := set of administrated roles for role r
– administrateroletn(p:process, r:role) := process p administrates settings of

role r at time n

administrateroletn(p, r)⇒ r ∈ adminrolestn(currentroletn(p)) (23)

The Admin Roles set of any role can only be changed by roles with Admin
Type value Role Admin.

– changeadminrolestn(p:process, r:role) := process p changes the set of admin
roles of role r at time n

changeadminrolestn(p, r)⇒ admintypetn(currentroletn(p)) = role admin (24)

Assign Roles Another set of roles contained in all role definitions is called As-
sign Roles. It defines, which roles processes running this certain role are allowed
to assign as compatible role to roles, as default role to users or as initial or forced
role to program files or processes.

– assignroles(r:role):set of roles := set of assignable roles for role r
– addcomproletn(p:process, r1:role, r2:role) := process p adds role r1 to the set

of compatible roles of role r2 at time n

– assigndefroletn(p:process, r:role, u:user) := process p assigns default role r
to user u at time n

– assigninitialroletn(p:process, r:role, f:file) := process p assigns initial role r
to program file f at time n

– assignforcedroletn(p:process, r:role, f:file) := process p assigns forced role r
to program file f at time n

– assignforcedroletn(p1:process, r:role, p2:process) := process p1 assigns forced
role r to process p2 at time n

addcomproletn(p, r1, r2)⇒ r1 ∈ assignrolestn(currentroletn(p))
∧ r2 ∈ adminrolestn(currentroletn(p)) (25)

Default roles can only be assigned to users, if both the old and the new role are
in the set of Assign Roles. This restriction, together with the sets of compatible
roles, creates a range of reachable roles, which easily forms a workgroup.

assigndefroletn(p, r,u)⇒ r,defroletn(u) ∈ assignrolestn(currentroletn(p)) (26)

To set an initial or forced role for a program file or process object, the addi-
tional right MODIFY ATTRIBUTE to the type of the object is needed.

assigninitialroletn(p, r, f)⇒
r ∈ assignrolestn(currentroletn(p))
∧ compatibletn(currentroletn(p), efftypetn(f),MODIFY ATTRIBUTE)

(27)
assignforcedroletn(p, r, f)⇒

r ∈ assignrolestn(currentroletn(p))
∧ compatibletn(currentroletn(p), efftypetn(f),MODIFY ATTRIBUTE)

(28)
assignforcedroletn(p1, r,p2)⇒

r ∈ assignrolestn(currentroletn(p1))
∧ compatibletn(currentroletn(p1), typetn(p2),MODIFY ATTRIBUTE)

(29)

Changes to the Assign Roles set of any role are restricted to roles with Admin
Type value Role Admin.

– changeassignrolestn(p:process, r:role) := process p changes the set of assign
roles of role r at time n

changeassignrolestn(p, r)⇒ admintypetn(currentroletn(p)) = role admin (30)

Special Rights Some special rights to types have been defined:

ADMIN: Administrate this type, i.e., change type name or remove type.
ASSIGN: Assign this type to objects. Additionally, MODIFY ATTRIBUTE

to the previous type of the object is needed.
ACCESS CONTROL: Change type compatibility settings for this type and

all requests, which are no special rights.
SUPERVISOR: Change type compatibility settings for this type for all special

rights. If no role has SUPERVISOR right or Admin Type set to Role Admin,
the special right settings can no longer be changed.

– specialrights := {ADMIN, ASSIGN, ACCESS CONTROL, SUPERVISOR}
– administratetypetn(p:process, t:type) := process p administrates type t at

time n
– assigntypetn(p:process, t:type, o:object) := process p assigns the type t to

object o at time n
– changetypecomptn(p:process, r:role, t:type, a:access type) := process p adds

or removes access type a to or from the type compatibility set of role r to
type t at time n

administratetypetn(p, t)⇒
compatibletn(currentroletn(p), t,ADMIN) (31)

assigntypetn(p, t, o)⇒
compatibletn(currentroletn(p), t,ASSIGN)
∧ compatibletn(currentroletn(p), efftypetn(o),MODIFY ATTRIBUTE)(32)

changetypecomptn(p, r, t, a) ∧ a 6∈ specialrights⇒
compatibletn(currentroletn(p), t,ACCESS CONTROL)
∧ r ∈ adminroles(currentroletn(p)) (33)

changetypecomptn(p, r, t, a) ∧ a ∈ specialrights⇒
compatibletn(currentroletn(p), t,SUPERVISOR)
∧ r ∈ adminroles(currentroletn(p)) (34)

3.8 Lifetime Limits

All compatibility, Admin Roles and Assign Roles settings have an optional time-
to-live parameter. After the given time, the set of requests for a type compati-
bility setting gets cleared by the system, while compatible, admin or assign roles
get removed from their set.

With lifetime limits, temporary additional rights do not require manual ac-
tion to be revoked and thus avoid this typical situation of unnecessary permanent
rights. Certainly, time-to-live settings rely on the correct system time to be al-
ways maintained.

4 Implementation

The Role Compatibility model has been implemented as a decision module for
the RSBAC framework[RSBAC] and makes extensive use of its infrastructure.

The Rule Set Based Access Control (RSBAC) system is an open source secu-
rity extension to current Linux kernels, which has been continuously developed
by the author for several years.

RSBAC was designed according to the Generalized Framework for Access
Control (GFAC)[Abrams+90] to overcome the deficiencies of access control in
standard Linux systems, and to make a flexible combination of security models
as well as proper access logging possible.

Only smaller RC changes and adaptions to changes of the framework have
been made from November 1999 till November 2001, like initial roles or the
extension for new target types. From November 2001, the RC model implemen-
tation has been moved to generic RSBAC lists and the original limit of 64 roles
and 64 RC types per target type has been removed. Also, the new network target
types and time limits have been included.

4.1 Roles and Types

Role and type definitions are registered as persistent generic lists with their index
number as list index.

Role data includes a role name for human use and the simple attributes
Admin Type, Default fd create type, Default process create type, Default process
chown type, Default process execute type and Default IPC create type.

Type data only includes the type name for human use.

4.2 Role Compatibility, Admin and Assign Roles

Persistent generic lists of lists without data are registered for Role Compatibility,
Admin and Assign Roles. The first level index is the role number of the set owner,
the second level index the role number of the set member.

Set membership is tested by existence of the second level entry.

4.3 Type Compatibility

For each RSBAC target type one persistent list of lists is registered. The first
level index is the role number, the second level index is the type number. Only
second level data is used, it contains the set of allowed requests coded as a 64
bit integer used as bit set.

Absence of an item is interpreted as the default value of an empty set.

4.4 Program Based Access Control with Initial and Forced Roles

Unlike the above items, initial and forced role settings are implemented as at-
tributes of file objects, the forced role also as attribute of process objects. They
are kept and provided by the RSBAC General Data Structures component.

4.5 Access Control Decision and Notification

RSBAC request decisions and respective automatic attribute updates are per-
formed in the decision function rsbac adf request rc and the notification function
rsbac adf set attr rc, which are called from the ADF dispatcher functions.7

Administration and role changing decisions are made in the respective indi-
vidual functions, which have been implemented as additional system calls.

For most requests, the decision function only takes the process current role,
the object type and the request and matches them against the type compatibility
settings.

The notification function performs all implicit role and type changes for ex-
isting or newly created processes and objects as specified above.

The time values tn and tn+1 used in the specification are interpreted as at
the time of the decision request call and directly after the notification call . Since
all attribute changes from the specification rules are either for the requesting
process only, or for a newly created object, which cannot be accessed by any
process before notification has completed, race conditions can only occur with
active administration.

5 Comparison with RBAC and DTE Models

5.1 Role Based Access Control (RBAC)

Model Description The RBAC access control model as described in [FerKuh92]
defines subjects, roles and transactions. A transaction is defined as a transforma-
tion procedure plus its necessary data accesses. All subject activities in a system
are performed through transactions, but not the system tasks like identification
or authentication.

The RBAC model defines three basic rules:

1. Role assignment: A subject can execute a transaction only if the subject has
selected or been assigned a role.

2. Role authorization: A subject’s active role must be authorized for the sub-
ject.

3. Transaction authorization: A subject can execute a transaction only, if the
transaction is authorized for the subject’s active role.

Additionally, transformation procedures, objects and access modes can be
separated, and an access function can define, which role executing which trans-
action may access which objects with which access modes.

In [FeCuKu95], the term operation is introduced, which denotes an access
with a certain mode to a set of objects. Roles are then authorized for operations
and no longer for transactions or transaction procedures. Also, users are distin-
guished from subjects. A subject is an active entity, performing operations on

7 See e.g. [RSBAC,Ott2001,Ott2001a] for RSBAC structure.

behalf of one user at a time, and has a set of active roles, for which the user
must be authorized.

Roles may be members of other roles, so that membership in a subrole im-
plies the membership in all parent roles, including all their authorizations. The
possible membership in several roles requires the definition of mutual exclusion
to preserve separation of duty, i.e., pairs of roles which may not share the same
member or, in the revised model, which may not be activated at the same time
by the same subject.

Finally, the RBAC model defines static and dynamic capacities of roles, the
first being the maximum number of members, the latter the maximum number
of subjects having the role activated.

In [Ferraiolo+2001], a NIST standard for RBAC models has been proposed. It
adds the notion of user sessions, which allow to selectively activate or deactivate
roles within a session. All RBAC features are grouped into Core RBAC , which
contains the basic functionality, Hierarchical RBAC to define role hierarchies
and Constrained RBAC with Static and Dynamic Separation of Duty Relations.
All RBAC separation of duty relates to what roles from the assigned set of roles
can be used by a single user at the same time. Of this, mutual exclusion is only
a subset.

Comparison to RC Model Similar to the RBAC model, RC defines subjects
as processes, the active entities within a system, working on behalf of users with
a current role and performing accesses to objects. However, in RC model each
process can only have one active role at a time, avoiding the complex scheme of
mutual exclusion. This means that in some cases several roles with overlapping
rights may have to be defined.

The RBAC set of authorized roles of users is covered by the RC set of com-
patible roles, which are reachable from the user’s default role. Even more, after
changing into a role there might not be a way back to the original role. This
can effectively avoid uncontrolled flow of information through process memory
by switching to another role with higher privileges and then back to the original
role.

The RC model can even simulate the transaction concept from the first RBAC
version through program based roles and separate types for the program files:
Transaction authorization is mapped as EXECUTE right on the program object
type, while operations allowed for a transaction can be assigned as compatibilities
to the program’s assigned role.

The RBAC model does not have an equivalent for RC type abstraction,
program based roles and separation of administration duty. Time limits can
only be simulated through dynamic mutual exclusion.

RC only lacks role capacities, which were not considered as useful.

5.2 Domain and Type Enforcement (DTE)

Model Description As stated in [Badger+95], Domain and Type Enforcement
is based on an enhanced version of Type Enforcement (TE). The main additions

to the original model are a high level policy specification language and a human
readable format of attribute values in the runtime policy database.

Type Enforcement is a table based access control model. Active entities, the
subjects, have an attribute Domain, while passive entities, the objects, have
a type attribute. Possible accesses by subjects to objects are grouped into the
access modes read, write, execute and traverse.

A global Domain Definition Table (DDT) contains the allowed interactions,
where domains and types form rows and columns, and each cell holds a set of
access modes.

Subject-to-subject access control is based on a global Domain Interaction
Table (DIT) with subjects as both descriptors and, again, a set of access modes,
e.g. signal, create or destroy, in the cells.

In contrast to the original TE model, DTE supports implicit attribute main-
tenance. This means that values may be only kept on a higher level of the
directory and file hierarchy, but are used for all levels below as well. Also, the
specification language allows to specify types by lookup path prefixes.

The first process on a system, the init process, gets a predefined initial domain
assigned. Each process can enter another domain by executing a program bound
to it, a so-called entry point . An entry point may be executed to explicitely enter
one of its associated domains, if the subject’s current domain has exec right on
the target domain. The auto access right to a domain automatically selects this
domain, if one of its entry points gets executed.

The user-domain relationship is entirely built on entry points like command
shells etc. However, a DTE aware login program can select from all domains
associated with an entry point to avoid individual copies for each domain.

Comparison to RC Model While the RC model makes role assignments based
on users and programs, both represented by processes, the DTE model itself
avoids the concept of users and only focuses on programs. User representation
and role assignment are placed under the discretion of unspecific DTE aware
applications outside the scope of the model.

Another DTE drawback is that roles can only be changed through entry
point programs, while the RC model allows to dynamically switch to compatible
roles within one single application and to default roles on every change of the
process owner. Dynamic role changes are specially useful for user based server
programs.

Finally, DTE administration concepts were not mentioned in [Badger+95]
and thus remain unclear.

6 Application Example

This section describes how the RC model is used to secure a typical server
system. The approach given here can easily be adapted to many other types of
services.

6.1 Base Protection

Those parts of the RSBAC and RC access control setup, which are applicable
for all types of systems, are called Base Protection. Objects to be protected
include the basic directory structure, executables, libraries, configuration files,
kernel objects and boot loaders, raw devices, account and authentication data,
log files, home directories etc.

Generally, for each of these object categories one RC type gets defined and
assigned to the individual objects, and all existing roles get appropiate type
compatibility settings to these types.

As an example, the type Executables is assigned to the directories /bin and
/usr/bin, which contain executable files. All of these then inherit the effective
type Executables. As soon as the type compatibilities of all roles to this type are
set accordingly, executables are fully protected. Furthermore, after setting all
desired executables to this type, one can safely remove the execute right to all
other types and thus avoid any execution of unprotected and possibly malicious
files.

6.2 Service Encapsulation

While the Base Protection secures the base system, the different services are
additionally encapsulated to restrict them to the absolutely necessary. Here pro-
gram based roles are most useful.

A typical example of good RC usage is a virtual Webserver system with an
arbitrary number of customers, who want to use their own CGI scripts with
private data.

We use a forced role Webserver , which gets assigned to the Webserver binary.
This role may not access any of the base protection types except the mapping
of libraries. The general Webserver logging type Webserver Log can be accessed
to create and append to log files.

Each customer C gets a separate directory tree, three RC types, called Web-
Data-C , CGI-Program-C and Private-Data-C , and three roles, called Webserver-
C , Upload-C and CGI-C .

The general Webserver role may not access any customer data. Instead, a
serving process changes to the compatible role Webserver-C when serving content
for customer C. The role handling can e.g. be implemented in a simple Apache
module.

Role Webserver-C may read Web-Data-C and execute CGI-Program-C. The
CGI folder for customer C has a forced role setting of CGI-C, which gets inherited
to all programs in it. Thus, when one of C’s CGI programs is run, it uses role
CGI-C and gets limited access to all of C’s data, specially Private-Data-C.

Finally, the upload account for customer C gets the default role Upload-C,
which has read and write, but no execute access to all three types. Access to any
other type is denied.

6.3 Further Refinement

The setup presented here makes use of several RC features like compatible roles
and program based roles to protect the system and the customers from each
other and from client systems.

It can easily be extended by network access control to prevent unwanted
connections by customer CGIs or a compromised server program, e.g. to avoid
the spreading of worms.

For a complete setup, every single service can be encapsulated with individual
roles and types. The focus should certainly lie on the network services.

7 Conclusion

Practical experience with server systems using the Role Compatibility model for
access control shows that base protection and service encapsulation are possible
without drawbacks in usability. All protection requirements of these systems
could be solved by proper RC configuration, while the well-known RBAC and
DTE models each show several deficiencies.

The RC model as presented in this paper proved to be easy to use in simple
setups, but also very flexible and powerful in complex environments. Combined
with the RSBAC concept of Network Templates, even access to and from remote
systems can be effectively controlled.

References

[Abrams+90] Abrams, M. D., Eggers, K. W., La Padula, L. J., Olson, I. M., A
Generalized Framework for Access Control: An Informal Description,
Proceedings of the 13th National Computer Security Conference, Ok-
tober 1990

[Badger+95] Badger, L., Sterne, D. F., Sherman, D. L., Walker, K. M., Haghighat,
S. A., Practical Domain and Type Enforcement for UNIX, 1995 IEEE
Symposium on Security and Privacy

[FerKuh92] Ferraiolo, D., Kuhn, R., Role-Based Access Control, Proceedings of
the 15th National Computer Security Conference, 1992

[FeCuKu95] Ferraiolo, D. F., Cugini, J. A., Kuhn, D. R., Role-Based Access Con-
trol (RBAC): Features and Motivations, Proceedings of the Computer
Security Applications Conference 1995

[Ferraiolo+2001] Ferraiolo, D. F., Sandhu, R., Gavrila, S., Kuhn, D. R., Chandramouli,
R., Proposed NIST Standard for Role-Based Access Control, ACM
Transactions on Information and Systems Security, Vol. 4, No. 3, Au-
gust 2001

[FiHueOtt98] Fischer-Hübner, S., Ott, A., From a Formal Privacy Model to
its Implementation, Proceedings of the 21st National Information
Systems Security Conference (NISSC ’98), Arlington, VA, 1998,
http://www.rsbac.org/niss98.htm

[Jansen98] Jansen, W. A., A Revised Model for Role-Based Access Control, NIST
IR 6192, 1998

[Ott97] Ott, A., Regelsatz-basierte Zugriffskontrolle nach dem “Generalized
Framework for Access Control”-Ansatz am Beispiel Linux, Diplo-
marbeit, Fachbereich Informatik, Universität Hamburg, 10. November
1997, http://www.rsbac.org/dipl-ps.zip

[Ott2001] Ott, A., Rule Set Based Access Control (RSBAC), Paper for the Snow
Linux Event / Unix.nl congress ”Reliable Internet”, Waardenburg,
14th of September 2001, http://www.rsbac.org/unix-nl

[Ott2001a] Ott, A., The Rule Set Based Access Control (RSBAC) Linux
Kernel Security Extension, Paper for the 8th International
Linux Kongress, Enschede, 28th to 30th of November 2001,
http://www.rsbac.org/linux-kongress

[RSBAC] Ott, A., RSBAC Homepage, http://www.rsbac.org
[Sherman+95] Sherman, D. L., Sterne, D. F., Badger, L., Murphy, S. L., Walker,

K. M., Haghighat, S. A., Controlling Network Communication with
Domain and Type Enforcement, TIS Technical Report TISR 523, 1995

Using the Java Sandbox for Resource Control

Almut Herzog and Nahid Shahmehri

Department of Computer and Information Science, Linköpings universitet,
SE-581 83 Linköping, Sweden

{almhe, nahsh}@ida.liu.se

Abstract. Java’s security architecture is well known for not taking the security
aspect of availability into account. This has been recognised and addressed by a
number of researchers and communities. However, in their suggested resource-
aware Java environments, policies for resource control have so far been stated
in proprietary, sometimes hard-coded, or undocumented ways. We set out to
investigate if standard Java permission syntax can be used to formulate policies
for resource management of high-level resources and if the enforcement of
resource policies can successfully be done by the standard Java access
controller. Such a solution would neatly fit in the existing Java security
architecture.
We have implemented resource control for the serial port and for the file system
by using the Java permission syntax for stating policies and the standard Java
access controller as the enforcement mechanism. The implementation was
straightforward and resulted in an API useful also for control of other high-level
resources than the serial port and file system. A performance test showed that
such resource management easily leads to excessive invocations of the access
controller and that optimisation steps are necessary to prevent performance
penalties.

Keywords. Java; Availability; Resource Management; Policy; Performance.

1 Introduction

In comparison to other programming languages, Java has good architectural support
for access control to resources. While the CPU is under the hard-coded control of the
Java virtual machine thread scheduler, and memory is allocated through object
allocation and deallocated by the garbage collector, initial access to higher-level
resources is granted by an optional security manager. Higher-level resources are e.g.
the file system, I/O device APIs (application programmer interface), threads, sockets
or properties. The security manager can be switched on for applications and provides
a so-called sandbox that consults a policy—based on the contents of system policy
files and user policy files—prior to granting access to resources.

Despite the support for initial access control, the Java sandbox lacks control over
the extent to which a resource can be used. This has been recognised in multiple
sources, e.g. [1][2][3]. Once access to a resource has been granted to a piece of code,
the code is free to use it to any extent. For example, if a Java application is allowed to

write in /tmp, there is no control over how many bytes it writes or how many files it
creates in /tmp. However, such control is needed to guarantee availability of a
resource and, consequently, to counter denial-of-service attacks. Otherwise, writing
excessive amounts of data to a temporary directory fills up the disk and denies other
applications the creation of files in that file system. On Unix systems, creating an
excessive amount of files results in the exceeding of kernel limits and effects also
other user processes.

This problem has been addressed by a number of contributions (cf. §4 Related
Work) that result in resource-aware Java environments. However, little is mentioned
on the syntax used for resource management policies. Yet other work ([4][5][6], cf.
§4 Related Work) has been experimenting with new permission languages that allow
advanced policies such as time-based, context-based, user-based or hierarchical
permissions. However, these languages are no longer based on Java’s permission
syntax nor are they enforced by the Java access controller.

Our work sets out to prove that resource management of higher-level resources is
possible using the syntax of Java permissions and the standard Java access controller.
The advantage of this solution is that resource control is integrated in the standard
Java security architecture and implemented within the existing sandbox.

In this work, we do not deal with resource control of low-level resources such as
CPU (central processing unit) or memory. Low-level resources are not mediated by
the Java virtual machine, i.e. there is no way to ask the Java virtual machine for the
CPU or a piece of memory, instead thread priorities must be manipulated or objects
allocated. Thus, these resources cannot well be handled by the high-level access con-
troller, which itself is implemented in Java. Access control for CPU and memory is
preferably addressed within the core Java classes through modification of the Java
thread scheduler, the heap manager and the garbage collector. Such work has been
done for real-time Java and is described in e.g. [7][8][9].

The rest of the paper is organised as follows. Section 2 recalls existing Java
permissions, their syntax and the existing enforcement mechanism. Section 3
describes our implementation of resource control using Java permissions and the Java
access controller. It also describes our performance test. Section 4 supplies detailed
references to related work. Section 5 concludes this paper and gives an outlook to
future work.

2 Existing Permission Syntax and Enforcement

Java’s current access control model for high-level resources, i.e. resources that are
mediated by the Java virtual machine, is built of a policy and an enforcement
mechanism.

The policy normally resides in files. There is a system policy file, usually within the
installation directory of the Java virtual machine, which sets a system-wide policy. A
user policy file, usually residing in the home directory of the user, can set a stricter
policy for this user. These policy files can be overridden by a command line option to
the Java virtual machine. Also, the policy can be set from within the application (if
the effective policy allows the application to do so).

A policy consists of sets of positive permissions. A set of permissions is assigned
to a given code base and/or a signer. The example policy file of Fig. 1 contains Chris’
policy. Chris trusts code that was signed by Alice with full permissions. Chris allows
Bob’s tools only to read the file /tmp/a. Code in the jar-file app.jar is only allowed to
read from /tmp/b.

keystore "file:/home/user/chris/.keystore";

grant signedBy "alice" {
 permission java.security.AllPermission;
};

grant signedBy "bob", codeBase "file:/sw/lib/tool.jar" {
 permission java.io.FilePermission "/tmp/a", "read";
};

grant codeBase "file:/sw/lib/app.jar" {
 permission java.io.FilePermission "/tmp/b", "read";
};

Fig. 1: Example policy file

A Java permission is identified by its class name, a target string and an action string.
File permissions are e.g. identified by their class name java.io.FilePermission. Their
target string identifies the file(s) to which the permission applies, and the action string
denotes which actions are allowed for the given file(s) (cf. Fig. 2).

FilePermission(“/tmp/myLogFile”, “read,write,execute,delete”)

target string action string

Fig. 2: File permission syntax

Even though the two strings that initialise a permission are referred to as target string
and action string, the semantics of the two strings are up to the implementing sub-
class. A simpler subclass of permission is basic permission which only considers the
target string and ignores the action string. This is e.g. used for runtime permissions—
e.g. RuntimePermission(“setPolicy”).

The policy is enforced by Java’s security manager, or rather by the Java access
controller that is wrapped by the security manager (lines 9-12 of Fig. 3). Whenever a
resource that is subject to access control is to be accessed, the access controller is
invoked to check that a positive permission for this resource exists or that the
permission is implied by another permission. For example, the permission to read all
files implies the permission to read /tmp/myLogFile.

The typical way of doing access control is shown in Fig. 3. Prior to the actual
access of the resource—in this case the policy object (line 7), the needed access

permission is constructed and submitted to the access controller (line 5). This access
control is only performed if a security manager is installed (lines 3-4). By default,
Java applications run without a security manager. The access controller checks this
permission against the effective policy (line 11). If the permission is implied by the
current policy for every piece of code within the call chain (i.e. on the call stack), the
access control successfully returns and access to the resource is permitted (line 7). If
the permission is not granted, an access control exception is thrown.

from SUN’s J2SDK 1.3.1: java.security.Policy.Java (our comments)
 1 public static void setPolicy(Policy policy) {
 2 // Do access control only if a security manager is installed
 3 SecurityManager sm = System.getSecurityManager();
 4 if (sm != null)
 5 sm.checkPermission(new SecurityPermission("setPolicy"));
 6 // The access check was successful, access resource now
 7 Policy.policy = policy;
 8 }

 from SUN’s J2SDK 1.3.1: java.lang.SecurityManager (our comments)
 9 public void checkPermission(Permission perm) {
10 // Delegate access control to AccessController
11 java.security.AccessController.checkPermission(perm);
12 }

Fig. 3: The setting of a policy is subject to typical Java access control, example from SUN’s
J2SDK source code

Fig. 3 illustrates also our research problem for this paper. The access check is
performed before the resource is accessed. Once the access check has successfully
completed, the resource is accessed without further restrictions.

For complete descriptions of the Java security architecture refer to [10][1][2][11].

3 Resource Control with the Java Sandbox

Within this project, we identify three typical cases of resource control (cf. Table 1)
that can be used for any resource. The cases can be roughly grouped into irrevocable
and revocable resource control. By definition, the two groups are mutually exclusive.
However, in our solution, parts of a resource can be granted irrevocably, while other
parts of a resource can be granted in a revocable fashion. For instance, an application
may be allowed to open a file for an arbitrary length of time (irrevocable) but is only
allowed to write a maximum of 500k to it (revocable).

Irrevocable resource control (described in the first column of Table 1) is the
existing, standard way of making use of Java permissions. The permission is
constructed for the needed resource and the action that is to be performed on it. No
accounting data is needed for the permission check; and access is granted without
further limits.

The two revocable types are implemented by us and make use of accounting data.

In the first of these two revocable cases—shown in the second column of Table
1—a permission is checked at regular intervals through a timer thread. This is needed
in cases where a piece of code holds a lock on a resource and the lock shall be
revoked when a certain condition is met. For example, an open file shall be released
after 2 seconds, or a database connection is to be terminated after 60 minutes.

The second case of using accounting data—shown in the third column of Table
1—is more advanced. Not only is accounting data needed for constructing the
permission for the first resource access, it is also needed for any subsequent access
and accounting data is updated depending on the outcome of the actual access. The
typical example is the writing of a file where one wants to limit the number of bytes
that can be written to disk —either in total or for one specific file. Accounting data
must be updated depending on if the disk write succeeded or failed. This second type
of revocable resource control is needed for fine-grained, continuous monitoring of
access to a resource.

Table 1: Different types of access control to resources

Irrevocable access
control

Revocable
access control

Construct
permission,
check

Expiration of the
access to a resource

Construct permission
with accounting
data, check, perform
checked action,
update accounting
data based on
outcome

Examples

Typical Java
permissions as
described in Fig. 3

Limiting the time a
file can be open

Limiting the number
of bytes written to a
file

Accounting data

– Timestamp when the
file was opened Bytes written per file

In order to achieve resource control as shown in columns two and three of Table 1,
the following issues need to be worked with.

Table 2. Steps needed for making the Java virtual machine resource-aware.

1. A syntax for expressing a resource policy as Java permissions.
2. An enforcement mechanism for the permissions, which in our case is

given with the standard Java access controller.
3. A decision of which code base is accountable for the resource use.

4. A data structure for keeping accounting data.
5. An identification of the places in the code where accounting data

needs to be updated.
6. An identification of the places in the code where the enforcement

mechanism must be invoked.

These issues are dealt with in the following sections. Section 3.1 describes the syntax
we use for Java permissions for resource control. Section 3.2 deals with issues of
permission enforcement and the timely update of accounting data. Section 3.3
provides performance data for our solution.

3.1 Permissions for Resource Control

In this section, we describe how we made use of the syntax for standard Java
permissions to integrate resource control (cf. Table 2, item 1).

We integrate resource limits in the target and action strings of permissions.
Following our approach described in Table 1, we use one syntax for expiration of
access for the whole resource and another for fine-grained, continuous access control.
The target string can be extended with a target-specific resource limit

<target>[:<global_target_limit>]
that restricts the access to the resource as a whole. The action string—if present—can
receive an action-specific resource limit:

<action>[:<action_limit>]
For convenient handling, we build an abstract permission class1 called

ResPermission. This abstract class can then be subclassed for specific permissions.
The ResPermission class extends java.security.Permission and supports e.g. the
parsing of target and action string for resource limits. The implemented method
implies() returns true when the resource limit of the implied permission is lower than
the resource limit of the premiss. Targets and actions must be a full match. E.g.:

new ResPermission(“/dev/term/b:1000”).implies(

 new ResPermission(“/dev/term/b:20”)) returns true

new ResPermission(“/dev/*:1000”).implies(new
 new ResPermission(“/dev/term/b:20”)) returns false
because wildcard-matching is not implemented. This must be done in a suitable
subclass.

Below are some instantiations of subclasses to ResPermission. They further illustrate
the use of resource limits within target and action string.

Example: The serial port on /dev/term/a shall only be accessible for 50 seconds.
almhe.sec.ResCommPortPermission(“/dev/term/a:50000”)

1 An abstract class is a class that cannot be instantiated, only subclassed. It consists of

method signatures but can also contain fully implemented methods.

Example: The file /tmp/a shall only be open for reading or writing for 20 seconds.
almhe.sec.ResFilePermission(“/tmp/a:20000”, “read, write”)

Example: The file /tmp/b can be open for an unlimited amount of time. A
maximum of 1K may be written to the file.

almhe.sec.ResFilePermission(“/tmp/b”, “write:1024”);

Example: The code executing under the following permission is only allowed to
create a total of 500k in all the files it creates.

almhe.sec.ResFilePermission(“<<TOTAL>>”, “write:512000”);

3.1.1 Extended Resource Control

So far we have only been dealing with one dimension of resource access, i.e. at the
moment only one limit is allowed per target and action. However, further dimensions
can be thought of e.g. not only the length of time a resource is accessed but also the
number of times a resource can be accessed, created, modified or deleted. This could
be solved using the same syntax but iterating the resource limit, preferably under the
presence of an explanatory tag, e.g.

<target>[:<<tag_name>><global_target_limit>]*.

Following such an extended syntax, the following permission
ResCommPortPermission(“/dev/term/a:<length_ms>50000:<num_times>10”)
would allow the access to /dev/term/a for a maximum of 5000ms but no more than 10
times during the life of the Java virtual machine. This syntax could also be used for
the action string limit. This extended syntax has not been implemented yet, it simply
shows the way our proposed syntax could develop to comprise even finer-grained
resource control.

3.2 Enforcement of Resource Control

The enforcement mechanism for our approach was given with the Java access
controller. However, the access controller must be invoked at the correct position in
the code with the correct permission that is to be checked.

To keep a clean design, we subclass or—where subclassing is not possible—wrap
the concerned classes, i.e., java.io.FileOutputStream, java.io.FileInputStream, and
javax.comm.CommPortIdentifier, and make all resource-specific changes in these
subclasses or wrappers. We are aware that such a solution is not secure, because
programmers can simply avoid using these classes. However, we set out to prove that
resource control is possible using the standard Java security architecture. How to
securely deploy the solution is left to future work.

Resource-accounting and policy-checking code has to be added when the resource
is initially seized, e.g. in the constructor of the streams and the open()-method of the
serial port, and when it is released and modified (e.g. bytes are written to or read from
a file) (cf. Table 2, items 5 and 6). Unlike the policy-checking code, resource
accounting must also consider the failure of a resource access. If e.g. no bytes were
written due to a disk failure, this must also be reflected in the accounting data.

The required additions in the code are rather small and one path of future
development is to find general ways of inserting resource control hooks without the
need to subclass, e.g. through an event listener interface.

In order to enable our new permissions for the file system, we create a new security
manager by subclassing the existing security manager and overwriting
SecurityManager.checkWrite() and SecurityManager.checkRead(). The new security
manager is extended by a new class field that is used for keeping accounting data.

A problem prior to the design of the class for accounting data is to decide which
code—according to the code base entry of the policy file—is made responsible for
resource use (cf. Table 2, item 3). It could be (1) the top caller or (2) the lowest caller
that does not belong to a core Java class or (3) all callers. The Java security model
would demand to make all callers accountable. But in that case, when it is time to
check a permission, this permission does not remain static during the permission
check but needs to be updated with accounting data for each protection domain. This
is not possible with the standard access controller but would require a re-definition of
the checkPermission()-method. In addition, the dynamic behaviour makes it difficult
for an end user to understand why a resource permission fails because there is no way
to provide an error message to the Access Controller—it only returns “Access denied”
but no reason. Because of this, we make the top protection domain accountable (i.e.
choice (1) above, cf. also Table 2, item 3) which also implements a semantics of trust
between protection domains [12]. However, the top protection domain is not
necessarily the protection domain that is on top of the call stack. When the resource
access is done by privileged2 code, or by code called by privileged code, then the
privileged code is considered the top domain.

We store accounting data in fast and thread-safe hash tables. There is one hash
table per accounted resource. The contents of the hash tables is specific per resource.
However, the accountable protection domain must always be part of the accounting
data. An example hash table that shows accounting data when limiting the size of files
is shown in Table 3.

Table 3. Hash table with accounting data for writing files

Key Value
Protection domain of the accountable code source + file
name

Bytes written to the file

Example data
Protection domain identifier 1: /tmp/a 2000
Protection domain identifier 2: /tmp/b 10
Protection domain identifier 2: /tmp/c 50000

We comprise all accounting data in one class, the ResourceManager. Thus, one can
use the resource manager when information is needed about current resource use. By

2 Just as the Unix operating system supports privileged code with the setuid feature, Java
allows the marking of certain code within a class as privileged. This code ignores the
permissions from its callers and only considers the permissions stated for this specific code
and its called subroutines.

outputting the resource manager object, a snapshot overview over all resource usage
is supplied.

3.3 Performance

In order to have a hint as to the performance penalty introduced by our resource
management, we conducted a simple but deliberately stressful performance test by
writing a 1MB file in chunks of 1, 10, 100, 500, and 1000 bytes. We tested the
performance by letting the application perform under the Solaris utility truss that can
be used to trace execution time. The test was run on a Sun Sparc work station running
Solaris 8. The application was run with two versions of our resource-aware security
manager, with the standard Java security manager and without a security manager.

Due to the fact that our resource management excessively invokes the access
controller, namely three times per write due to three protection domains on the call
stack, the performance penalty was high, especially in the time spent in user code.
With a first version of the resource manager, there was even an invocation rate of five
times per resource access. This was eliminated with a small change in the access
controller that returns the top protection domain without invoking the access
controller (but unfortunately makes the solution less portable). See Fig. 4 for details.

10000001000001000020001000

3.7
4.71

7.69

11.07
12.02

2.96 3.59

5.49

6.98
7.76

1.06 1.12 1.13 1.2
1.26

0

1

2

3

4

5

6

7

8

9

10

11

12

Execution Time
of three

Security Managers
divided by the

Execution Time
without

 Security Manager

Number of Disk Writes/Resource Accesses

Standard Security Manager
Resource-Aware Sec.Mgr.

Resource-Aware Sec.Mgr.
ver.1

Fig. 4. Performance results when accessing the disk resource 1000, 2000, 10,000, 100,000 and
1,000,000 times. The more resource accesses, the slower perform the resource-aware security
managers. In the worst case of 1 million resource accesses, the resource-aware security
manager slowed the program execution down with a factor of 12. It is interesting to note that
even the standard security manager is slightly affected by the number of resource accesses,
although the access controller is invoked the same number of times (namely 41) in all five runs.

A conclusion drawn from the performance test is that the access controller must
perform very fast if resource management with the help of the access controller shall
be feasible. To unburden the access controller, additional intelligent assumptions
about the outcome of an access control check could be implemented (e.g. if a small
disk write is attempted within a certain time window after a successful disk write, the
probability that the new write will succeed is high). However, such reasoning leads to
an undeterministic behaviour of the access controller and could possibly be exploited
by attacks.

We conclude this section by a critical view of our approach and give an outlook to
one area of application. Our solution adds complexity to the already complex Java
security architecture. Not even the standard security manager is much used for
applications or servlets because often there is a trust relationship—e.g. through
contracts—between code producer and platform owner. But also, because the policy
management is considered cumbersome and error-prone. When there is a trust
relationship, the “trusted” code is often given full permissions without much thought.
Our solution may suffer from the same problem.

However, new platforms are emerging that run untrusted code, possibly without a
trust relationship. In such cases, resource control is an important issue for
guaranteeing the availability of the platform. An example for such new architectures
are residential gateways or service gateways [13] that run services from multiple
vendors as threads within one Java virtual machine with dynamic policies. Security
problems in such a platform and their possible solutions have been dealt with in
greater detail in [14].

4 Related Work

As mentioned in the introduction, much work has been done to bring resource-
awareness to Java. The focus of previous work is rather on the goal of arriving at a
resource-aware Java environment than on the integration of the solution in the
existing architecture, which was our prime goal. Solutions are often used for real-time
applications, i.e. for quality-of-service and not so much for availability as part of
security. Also, research has been conducted in the area of formulating advanced
policies for Java. We start with references to resource-aware Java virtual machine
implementations.

JRes [15], a resource-accounting interface for Java, adds resource accounting and
limiting facilities to Java as a class library, using bytecode rewriting. JRes introduces
a resource manager class that co-exists with the Java class loader and the security
manager. The resource manager contains native code for CPU and memory
accounting. Overuse callbacks are generated and throw exceptions when resource
limits are exceeded. The policy is hard-coded as Java code and resource limits apply
to any code base.

J-Kernel [16] addresses the problem of untrusted servlets or Java plug-ins
executing in one Java virtual machine, e.g. a web server. J-Kernel implements
capabilities—access tokens—that represent handles to resources, i.e. a resource can
only be accessed when the requester holds a corresponding capability. Unlike Java

object references, capabilities can be revoked at any time. J-Kernel is implemented as
a Java library and sets out to prove that Java language features can be used to secure
communicating pieces of Java code in a Java server. The access control policy is hard
coded.

Chander, Mitchell and Shin [1] introduce bytecode instrumentation to remedy
Java’s lack of resource control. New, safe classes and methods will automatically—
through the bytecode modifier—replace the original Java code prior to execution. The
approach is as follows.
∗ Identify the Java classes that control the resources that need further monitoring.
∗ Subclass this class and add additional security checks and resource control to the

subclass.
∗ Invoke the bytecode filter on the original class so that all references to the

original class are replaced with references to the new, safer class.
Handling final classes is more complex than described above—it needs method-

level bytecode instrumentation—but follows the same approach.
No examples of policy statements or a description of their syntax are provided. The

specification language is said to be proprietary. It allows listing all classes and
methods that need to be replaced. In addition, a graphical user interface is provided to
edit resource limits such as number of windows, network connections or threads.

Much work deals with CPU and/or memory management. Real-time Java
(www.rtj.org) allows resource control of the CPU through installable thread
schedulers. Bernadat, Lambright and Travostino [8] have implemented a Java virtual
machine that controls CPU and memory according to a policy in a policy file (with
undocumented syntax). Another case of undocumented policy syntax comes from the
Aroma Java virtual machine [9], which allows resource control for CPU, disk and
network. SOMA [7] allows control over the thread scheduler and garbage collector
and makes use of the Java VM Profiler Interface
(java.sun.com/j2se/1.3/docs/guide/jvmpi/). Spout [17], originally designed for applet
security, allows resource control for CPU, memory, threads and windows.

The specification of policies for Java is a related field to our work. Even before
Java 2’s security model with permissions in a policy files was introduced, researchers
have been looking at ways of expressing advanced access control policies for the Java
security manager. Nimisha, Mehta and Sollins [4] propose a constraint language that
allows for three different kinds of permissions.
∗ Subject-based permissions base the access control on caller credentials—e.g. an

applet’s signature or code base.
∗ Object-based permissions consider the resource that shall be controlled—e.g. the

total number of created windows.
∗ History permissions express e.g. that an applet is not allowed to connect to the

network after it has read a private file.
This system was implemented in Java 1.0 by extending the security manager.

Java Secure Execution Framework (JSEF) [5] introduces a syntax for negative
permissions—permissions that disallow access. JSEF also comprises support for
hierarchical policy files that allow more than the Java 2 system policy file and user
policy file. In addition, JSEF allows the negotiation of permissions at run-time. A
piece of Java code could e.g. ask the user or a policy server at run time if a specific
access should be completed.

Corradi, Montanari, Lupu et al. [6] propose a new language (Ponder) for Java
permissions. Ponder supports negative permissions, support for subjects and objects,
time restrictions and conditional expressions. Also the instant revocation of granted
privileges is discussed.

5 Conclusion and Future Work

In this paper, we have shown that resource control of high-level resources is possible
by using extensions of Java permissions and an unmodified Java access controller.
Thus, resource control can be done within the existing Java sandbox. This contributes
to a clear design of the security architecture. The Java permission syntax is so
versatile that it can be extended to also support resource limits. However, the major
work lies in finding all places in the code where the resource limit should be enforced
or accounting data updated.

Still, the solution we present here is far from being deployed. In this paper, we only
wanted to give a proof of concept. In order to work with it, ways must be found that
force programmers to adhere to resource control and to use resource-aware classes.
Ways of achieving this are modified Java virtual machines or automatic class
modification at runtime (so-called bytecode modification).

The performance penalty in code that excessively accesses resources is mostly due
to the fact that each resource access implies a number of invocations of the access
controller—the number depends on the number of protection domains on the call
stack. If the performance is to be improved, the number of calls to
AccessController.checkPermission() needs to be reduced, for instance by intelligently
avoiding to check permissions that have only a slightly changed resource limit.

Other performance bottlenecks can be synchronisation issues on the accounting
data object. If different execution threads need access to a common accounting object,
only one thread gets the access at one time; others have to wait. Also the used hash
tables may be bottlenecks. Other structures, for instance containers that are similar to
database tables, should be explored and tested for their performance.

So far we have only been dealing with the length of time a resource can be
accessed. Another dimension is the number of times a resource can be accessed,
created, modified or deleted. Further development includes the expansion of this
technique for other high-level resources such as windows, microphone, speaker, etc.
More thorough performance tests using recognised benchmarks should be done.

However, one of the more important future tracks is an investigation of what new
vulnerabilities are introduced by such high-level resource management.

References

[1] Marco Pistoia, Duane F. Reller, Deepak Gupta et al. Java™ 2 Network Security. 2nd

Edition. Prentice-Hall. 1999.
[2] Gary McGraw, Edward Felten. Securing Java—Getting Down to Business with Mobile

Code. Wiley & Sons. 1999.

[3] Ajay Chander, John C. Mitchell, Insik Shin. Mobile Code Security by Java Bytecode
Instrumentation. Proceedings of the 2001 DARPA Information Survivability Conference
& Exposition II, DISCEX. Vol.2. pp. 27-40. IEEE. 2001.

[4] Nimisha V. Mehta, Karen R. Sollins. Expanding and Extending the Security Features of
Java. Proceedings of the 7th USENIX Security Symposium. January, 1998.

[5] Manfred Hauswirth, Clemens Kerer, Roman Kurmanowytsch. A Secure Execution
Framework for Java. Proceedings of the 7th conference on computer and communications
security. pp. 43-52. ACM. November, 2000.

[6] Antonio Corradi, Rebecca Montanari, Emil Lupu, Morris Sloman, Cesare Stefanelli. A
Flexible Access Control Service for Java Mobile Code. Proceedings of the 16th Annual
Conference on Computer Security Applications (ACSAC). pp. 356-365. IEEE. 2000.

[7] Paolo Bellavista, Antonio Corradi, Cesare Stefanelli. How to monitor and control
resource usage in mobile agent systems. Proceedings of the 3rd International Symposium
on Distributed Objects and Applications, DOA’01. pp. 65–75. IEEE. 2001.

[8] Philippe Bernadat, Dan Lambright, Franco Travostino. Towards a Resource-safe Java for
Service Guarantees in Uncooperative Environments. In Proceedings of the IEEE
Workshop on Programming Languages for Real-Time Industrial Applications. Madrid.
IEEE. Dec. 1998.

[9] Niranjan Suri, Jeffrey M. Bradshaw, Maggie R. Breedy, et al. State Capture and Resource
Control for Java: The Design and Implementation of the Aroma Virtual Machine.
Proceedings of the Java™ Virtual Machine Research and Technology Symposium.
Usenix. April, 2001.

[10] Li Gong, Inside Java™ 2 Platform Security. The Java Series. Addison-Wesley. 1999.
[11] Scott Oaks. Java Security. 2nd Edition. O’Reilly. 2001.
[12] Dirk Balfanz, Drew Dean, Mike Spreitzer. A Security Infrastructure for Distributed Java

Applications. Proceedings of the IEEE Symposium on Security and Privacy (S&P), 2000.
Pages: 15-26. May, 2000.

[13] Kirk Chen, Li Gong. Programming Open Service Gateways with Java Embedded
Server™ Technology. The Java Series. Addison-Wesley. 2001.

[14] Almut Herzog. Secure Execution Environment for Java Electronic Services (tentative).
Licentiate thesis. Dept. of Computer and Information Science. Linköping university. To
be presented, fall 2002.

[15] Grzegorz Czajkowski, Thomas von Eicken. JRes: A Resource Accounting Interface for
Java. Proceedings of OOPSLA’98. Pages 21-35. ACM. 1998.

[16] Chris Hawblitzel, Chi-Chao Chang, Grzegorz Czajkowski, Deyu Hu, Thorsten von
Eicken. Implementing Multiple Protection Domains in Java. Proceedings of the USENIX
1998 Annual Technical Conference. pp. 259-272. Usenix. 1998.

[17] Tzi-cker Chiueh, Harish Sankaran, Anindya Neogi. Spout: A Transparent Distributed
Execution Engine for Java Applets. Proceeding of the International Conference on
Distributed Computing Systems (ICDCS). pp. 394-401. IEEE. April, 2000.

Performance Evaluation of Cryptographic Algorithms
for Multicast Secrecy Protection

Josep Pegueroles Vallés, Francisco Rico-Novella

Telematics Engineering Dept. Polytechnic University of Catalonia (UPC).
c/ Jordi Girona 1-3 CAMPUS NORD 08034 Barcelona. Spain

{josep.pegueroles, f.rico}@entel.upc.es

Abstract. Security has become a significant requirement in nowadays
multimedia communications. Once bandwidth constraints are being overcome,
secrecy arises as a new desirable property for group communications.
Multimedia group communications are very time restrictive so an unreliable
transport protocol such as User Datagram Protocol (UDP) is used. Furthermore,
due to latency and synchronism considerations for multicast rekeying, block-
cipher instead of stream-cipher algorithms are used. This scenario forces us to
limit the size of plain-text data to be ciphered to the maximum transfer unit
(MTU) of the transport protocol. In any other case, a packet loss will lead us to
spreading errors. On top of that, group communications usually take place
between heterogeneous agents. So cross-platform would be a desirable feature
for group communication applications. This paper presents the characterization
and performance evaluation of the most important ciphering algorithms
recommended in IPSec to provide data confidentiality. This study takes account
of the behavior of JAVA source code over different platforms in order to
choose the better algorithm for ciphering data in such environments.

1. Introduction

When cryptographic techniques are added to advanced video services such as video-
conferencing many aspects have to be considered. First of all multimedia
requirements are very time-restrictive, this is why unreliable protocols such as UDP
are used, so ciphering techniques cannot rely on transport protocol and they may be
fitted to isolated protocol data units (PDU), in any other case, a packet loss will cause
forward errors. Secondly, ciphering algorithms may not increase significantly the
packet delay. If this occurs, security increase will lead to visual quality decrease or
excessive transmission delay, and interactive services will not be possible.

The main purpose in this study is the characterization of the behavior of different
symmetric block-cipher algorithms in order to add confidentiality to multicast
multimedia communications.

A simple video server model was implemented. It uses JAVA programmed
ciphering and communications modules. This choice was due to the platform-
independent feature of the mentioned language that makes it especially suitable for
heterogeneous agents’ communication.

Java offers a wide range of cryptographic tools. Among these facilities are
Cryptographic Service Providers. These refer to a package or a set of packages that
supply a concrete implementation of a subset of the cryptography aspects of the Java
security API. So application programmers do not need to deal with the algorithms
details but only call a generic instance that does it for them. Differences in the code
implementation of these providers can be critical in time restrictive applications.
Measures in order to choose properly the algorithm, the provider, and the plain text
block size were taken.

Particularly, we measured how long it takes to cipher a block, the ciphering speed
and dependency on type of processor. We also took measures of Loss and Rejection
Probability due to network or excessive delay reasons. All these parameters were
considered for different block sizes, providers and algorithms.

The rest of the paper is organized as follows: Section 2 gives the overview of our
video-server model. The usage of multicast communication and its security
requirements are discussed in Section 3. Section 4 introduces Java tools for security,
especially cryptographic service providers’ properties and possibilities. A description
of the developed modules is given in section 5. We examine the obtained results in
section 6 and finally we present a summary in section 7.

2. Video Server Model for Multicast Communication

Typically, a multimedia server works as sketched in Fig. 1.

When a client wants to access multimedia content in a near-on-demand video
server, it accesses the server Menu via a web browser (step1 in Fig. 1) where
available films and show hours are presented. After that, the client can select his own
preferences (film or content to view, timetable…). Once the server knows exactly
what the client wants, it asks for a payment. When this is done, the server returns to
the client the data he will need in order to get the multimedia stream (step 2 in Fig. 1).
It gives to the client the multicast address where the data will be delivered and the
needed key in order to decipher the communication. It also sends the key to the server

Fig. 1. Communication steps in video server architecture

host (step 2 in Fig. 1). Then the client is able to join the multicast group to get the
purchased content (step 3 in Fig. 1) [1].

2.1 Vulnerabilities of the system

When using open networks, security troubles become important. In the mentioned
model a very weak point is showed up: communication via Internet [2].

First, the Security Module must protect the information that the client sends to the
server to order the content. Second, it must warrant that the payment will be done
properly and that no participant in the transaction will be harmed. Finally, multimedia
data have to be protected from malicious third parties or eavesdroppers.

According to the former paragraph, the security services required are secure access
and secure payments via web, both over reliable protocols, and data secrecy over
unreliable protocols.

Since these three steps are done over different transport protocols we will divide
the security services in our system into two phases: secure services over reliable
protocols: that is, authentication and payment; and secure services over unreliable
transport protocols, that is to say, secrecy.

Next sections will discuss the assumptions we took in order to implement the
security services over the unreliable phase.

3. Multicast Ciphering

As we mentioned before, data should be protected from unauthorized third parties.
This is easily achieved by means of ciphering. The inclusion of ciphering algorithms
in multimedia communications is critical in terms of time. Cryptographic techniques
must not add significant delay to data transmission or excessive packet loss due to
time constraint violation will occur.

Besides that, when multicast technology is used, additional considerations should
be taken into account. When adding confidentiality to multicast communications a
common secret shared by all the multicast group members is needed. The shared key
provides group secrecy and source authentication. This key must be updated every
time membership in the group changes, if so Forward and Backward Secrecy (FS and
BS) are provided. FS means that the session key gives no meaningful information
about future session keys, that is to say no leaving member can obtain information
about future group communication. BS means that a session key provides no
meaningful information about past session keys or that no joining member can obtain
information about past group communication.

This is why video files are encrypted on-line before sending. Different keys are
used for the same file, even during one session. So stored ciphered files have no sense
in this scenario.

On the other hand, the Internet Engineering Task Force (IETF) defines how secure
group communications should be in the Group Domain of Interpretation (GDOI) [3].
This document only specifies data-security for one security protocol, IPSec ESP. The
current specification dictates that a compliant implementation must support DES in

cipher block chaining mode. A number of other algorithms have been assigned
identifiers in the DOI document and could therefore easily be used for encryption;
these include the following [4][5]1:

• Three-key triple DES
• RC5
• IDEA
• Three-key triple IDEA
• CAST
• Blowfish

Finally, it is important to the client application to be as much universal as possible.
This is why the client side was implemented in Java language. This allows the client
to be loaded via web by using the applet technology. This choice greatly simplifies
the development of the client side since Java has a wide variety of cryptographic
tools.

So, the study and right election of the Java cryptographic tools of the client side for
secure multicast video on demand is an important item if high quality multimedia
servers want to be achieved [6].

4. Java security tools

Since its inception, Java was conceived as built for the net. So, unlike other
programming languages, security mechanisms have always been an integral part of
Java.

The Security API is a core API of the Java programming language, built around the
java.security package. It is designed to allow developers to easily add security
features to their programs. JDK 1.1 introduced the "Java Cryptography Architecture"
(JCA) as a framework for accessing and developing cryptographic functionality for
the Java platform. It included APIs for digital signatures and message digests. Java 2
SDK significantly extended the former security features of JDK 1.1 and introduced a
new Java Security Architecture for fine-grained, highly configurable, flexible, and
extensible access control [7].

The Java Cryptography Architecture (JCA) was designed around two basic
principles: implementation independence and interoperability algorithm independence
and extensibility [8].

Implementation independence and algorithm independence are complementary;
you can use cryptographic services, such as digital signatures and message digests,
without worrying about the implementation details or even the algorithms that form
the basis for these concepts. When complete algorithm-independence is not possible,
the JCA provides standardized, algorithm-specific APIs. When implementation-

1 Although latest versions of SunJCE and Wedgetail offer AES algorithm for ciphering, the

available versions when the study was done did not include it. Besides that, the latest Internet
draft for the use of the AES Cipher Algorithm in IPSec (ESP) was published on June 2002
<draft-ietf-ipsec-ciph-aes-cbc-04.txt>, and is still a work in progress.

independence is not desirable, the JCA lets developers indicate a specific
implementation.

Algorithm independence is achieved by defining types of cryptographic "engines"
(services), and defining classes that provide the functionality of these cryptographic
engines. These are called engine classes.

Implementation independence is achieved using a "provider"-based architecture.
The term Cryptographic Service Provider (or simply provider) refers to a package or
set of packages that implement one or more cryptographic services, such as digital
signature algorithms, message digest algorithms, and key conversion services. A
program may simply request a particular type of object implementing a particular
service and get an implementation from one of the installed providers. If desired, a
program may instead request an implementation from a specific provider. Providers
may be updated transparently to the application, for example when faster or more
secure versions are available.

Implementation interoperability means that various implementations can work with
each other, use each other's keys, or verify each other's signatures. This would mean,
for example, that for the same algorithms, a key generated by one provider would be
usable by another, and a signature generated by one provider would be verifiable by
another.

Algorithm extensibility means that new algorithms that fit in one of the supported
engine classes can be added easily.

JCA includes the Java 2 SDK Security API related to cryptography. It has a
"provider" architecture that allows for multiple and interoperable cryptography
implementations.

The Java Cryptography Extension (JCE) extends the JCA API to include APIs for
encryption, key exchange, and Message Authentication Code (MAC). JCE was
previously an optional package (extension) to the Java 2 SDK, Standard Edition,
versions 1.2.x and 1.3.x. JCE has now been integrated into the Java 2 SDK, v 1.4.

The multimedia server developed in this project takes advantage of the encryption
utilities of JCE and uses the “provider”-architecture in order to have algorithm and
implementation independence. The right election of the algorithm and provider for
minimum packet loss is one of the goals of this study.

4.1 Providers

As mentioned before, JCA introduced the notion of a Cryptographic Service Provider
as a package that supplies a concrete implementation of a subset of the cryptography
aspects of the Security API [9].

The providers used in this project contain an implementation of one or more
ciphering and key generation algorithms.

As previously noted, our multimedia server application may simply request a
particular type of object (cipher engine) for a particular service (such as encryption)
and get an implementation from one of the installed providers. The program can
request the objects from a specific provider as each provider has a unique name used
to refer to it.

Next we will introduce the tested providers we have studied in the current work
and the block ciphers that provides each one.

ABA/OpenJCE
ABA stands for Australian Business Access, the name of the company that starts the
project. In 1999 it was renamed to eSec Ltd [10], and the provider becomes the open
source OpenJCE Project. It is a clean room implementation of the JCE API as defined
by Sun, plus a provider of underlying crypto algorithms. The source code of the
Provider can be found in [11].

Currently the project is defunct and no maintenance is provided [12].

DSTC
DSTC means Distributed Systems Technology Center and it is the name of the
company that starts the JCSI (Java Crypto and Security Implementation) provider.

JCSI Provider 2.2 is a provider for JCA/JCE implementing industry standard
algorithms for public and symmetric key cryptography. It is a "signed JCE provider",
meaning it can be used with the standard JCE 1.2.1 framework and with JDK 1.4.
Although the project was initiated by DSTC it is currently maintained by Wedgetail
communications. It is not open source but you can ask for an evaluation copy at [13].

SunJCE
SunJCE is the provider that is included and automatically registered in the
java.security security properties file included with the Java 2 SDK, v 1.4 [14].

From all the features that these providers include, this work has centered its efforts
in studying the performance evaluation of symmetric ciphers. In Table 1 are
represented the studied cipher engines included in each package.

Table 1. Ciphering algorithms for different providers.

DES DESede Blowfish IDEA RC4
ABA ü ü ü ü ü

DSTC ü ü ü ü ü
SunJCE ü ü ü r r

5. Developed Modules

In order to take the desired measures for real implementation, a simple video client-
server framework was developed. The experimental platform was Unicast in nature.
In spite of that, all the obtained results referring to ciphering time and speed can also
be applied to multicast ciphering. Results related with loss probability, although not
directly applicable to multicast can easily be extrapolated.

 In Fig 2 it is shown the architectural design.

Three different processor types were used for measures:
• AMD K6-II 350 Mhz 128 RAM
• Intel P-II 400 Mhz 256 RAM
• Intel P-III 800 Mhz 128 RAM

All of them acted as client and servers in order to measure ciphering time for
different algorithms and providers. When taking measures for real traffic, an Intel PIII
800Mhz were used as server, since servers normally need much more processing
capacity.

Real background traffic was considered by connecting a public web and ftp server
in the same LAN segment. All measures were taken at the same hour and similar
background traffic levels. No variations of background traffic level were considered
to force packet loss. Incidence of different background traffic levels is beyond the
purpose of this study and we point it as future work.

Clients were all connected to a shared 100 Mb Ethernet LAN segment. They where
connected to the video server through a 100 Mb switch.

All the video sequences used in this work were VBR coded with maximum peak
rates of 4Mbps. The peak rate settles a notion of the desired ciphering speed.

Fig 3. and Fig. 4 show the block diagram of the server and client Java programmed
modules.

As we have mentioned above, the cipher speed and cipher time measures were
taken using a simple Unicast client-server model. The server application (called
UDPServer) first establishes an UDP Socket from where it waits for the client film
request. When it receives the request with the corresponding parameters (java
provider and algorithm to use and packet size) the server begins to read the data from
the video file. After that it ciphers the video fragment using the chosen provider and
algorithm, insert a sequence number in order to control packet loss, constructs the
UDP packet and sends it. Marks for ciphering time traces are introduced in the cipher
payload module.

On the client’s side the behavior is as follows. After invoking the application with
the proper parameters, the client sends a request message to the server. Then it waits

Fig. 2. Developed video server framework

for the video stream listening to the UDP socket connection. The client application
mainly receives the UDP packets, checks whether they have the desired sequence
number or if they have excessive delay for accepting and processing them or
rejecting. With this information, the loss probability can be calculated.

Fig. 4. Block diagram of client module.

Fig. 3. Block diagram of server module.

6. Results

6.1 Different plain text block size

Measures showing the dependency on plain text block size were taken. Although
mean cipher speed was the same for different packet sizes fluctuations in the cipher
speed due to processor scheduling were observed. Fig 5 shows cipher speed for 300
video packets. Packets greater than 32K exhibits more stability in cipher speed than
smaller ones.

This behavior can be easily explained if we consider that no process can use the
processor while another process is executing an atomic instruction. If we consider the
ciphering instruction as atomic, additional processes in the same computer as our
server can only access the processor after a ciphering instruction. The smaller the
packet size is, the more the probability that a process asks for the processor is. So
greater size packets will lead us to stable ciphering time patterns. In the other hand,
we must limit the plain text block size to MTU in UDP packets, if not a UDP packet

 Fig. 5. Behavior for different plain text block size

Fig. 6. Cipher Time for different providers

loss will affect the packets in which the plain text block size are split, cause receiver
will not have the enough information in order to decipher the message.

6.2 Different algorithms and providers

Maybe the most important parameter to study was what provider and algorithm were
the most suitable for our application. The ciphering speed was calculated from the
ciphering time following expr. (1)

][timeCiphering
]size[Packet

][
ms

Kbytes
Mbpsspeed =

As different providers can have different code, first we tested the ciphering time
for the three studied providers (Fig 6 and Table 2). In almost all the tested cases ABA
showed the best performance.

Respecting the cipher speed for different algorithms, DES had the best behavior.
Table 2 and Fig. 7 show the speed for different algorithms in ABA provider. It is

important to note some abnormal results. First RC4 it is not the fastest, as for a stream
cipher is expected. Second, Blowfish, conceived as an algorithm to be faster than
DES does not reach this feature. Finally, DESede is not three times slower than DES.

It is very difficult to analyze the actual reasons that can cause these misbehaviors.
Source code for different providers is not public so details of how a particular

(1)

algorithm is programmed and what optimization techniques were used cannot be
studied. However, we can assume that the RC4 behavior is due to the misuse that we
make of it, since we actually are ciphering blocks (UDP packets) using a stream
cipher.

Respecting to DES, it is plausible that the best performance behavior was due to its
popularity. DES is one of the most used ciphering algorithms and because of it, many
optimization techniques at the programming level have been developed in order to
achieve better performances.

Table 2. Speed for different algorithms.

Mbps ABA DSTC SunJCE
DES 4.917 3.4487 2.8168

DESede 1.9117 1.5802 1.0516
Blowfish 3.2986 2.4321 4.9688

IDEA 3.2871 2.7357 -
RC4 3.9104 3.4164 -

Fig. 7. Cipher Speed for different algorithms

6.3 Different processors

In order to test behavior of different processor types expr (2) was calculated. Results
show that Intel Pentium family processors have the best performance. See Table 3.

][speed Processor
][speed Ciphering

]/[
ms

Kbytes
MhzMbpsef =

Table 3. Efficiency parameter for different processor types

[Speed/Mhz]·10-2 PIII 800Mhz PII 400Mhz AMD K6 350 Mhz

DES 0.6146 0.6195 0.4020
DESede 0.2389 0.2437 0.1584
Blowfish 0.4123 0.4166 0.2415

IDEA 0.4108 0.4158 0.3268
RC4 0.4888 0.5020 0.3759

6.4 Loss Probability

Finally, loss probability was measured for different providers, algorithms and packet
sizes.
Figures were obtained by the comparison of the original video file and the received
one. A packet loss is represented in the received file by means of a blank block, so
video files do not differ in size but in content.
We did not find any regular pattern in the behavior of the Loss Probability depending
on the used provider nor algorithm. Note that in Fig8 SunJCE has the best behavior
for some plain text block size but it also has the worst behavior for other sizes.
Results respecting variations in client buffer size were not the purpose of this study
but it can be taken into account in future works.
All the obtained results are less than 0.5% and they are not significant in relation with
other loss probability causes. Results show that choosing 32K DES ABA parameters
as our video server configuration does not affect Loss Probability.

(2)

7. Conclusions

In this work we have described the design and implementation of a secure
communication infrastructure for multimedia multicast applications. This
infrastructure use Java tools to provide confidentiality to multimedia data streams.
The election of Java was due to the inherent secure nature of this programming
language and the wide variety of cryptographic facilities aiding the development of
secure applications. Usage of Java language adds a new design parameter to consider:
the Cryptographic Provider. Different providers show different performance
behaviors so the study for the right election of the provider was also considered.

Few studies have been done in order to characterize the speed and behavior of
these tools. No previous works comparing theoretical results to real implementations
are known.

This characterization is critical in real-time environments such as multimedia
multicast communications. Time spent in ciphering UDP packets is an important
parameter when electing a certain algorithm or tool. Particularly, cipher block time,
ciphering speed and dependency on processor type was measured. Loss and Rejection
Probability due to network or excessive delay reasons were also measured. The
measures were taken in our implementation for three different Providers: ABA,
DSTC and SunJCE, different block sizes and different processors.

Fig. 8. Loss Probability for different packet sizes and providers using DES algorithm.

Results lead us to choose ABA provider for DES CBC ciphers in 32Kbytes plain
text block size. This election fits with IPSec recommendation and achieves a
throughput of near 5Mbps, enough for our video streams.

Peculiarities observed in the behavior due to processor scheduling or type of
processor have also been discussed.

Acknowledgments

This work has been supported by the Spanish Research Council under project
SSADE [CYCIT TEL 99-0822]

References

1. Szuprowicz, Bohdan O. Multimedia Networking. Harness the power of new multimedia
networking technologies. Mc Graw-Hill Inc. 1995

2. Schneier, B. Secrets & Lies. Digital Security in a Networked World. John Wiley & Sons
Inc. 2000.

3. Baugher M., Hardjono T., Harney H., Weis B. The Group Domain of Interpretation. I-D
Draft-ietf-msec-gdoi-04.txt Feb 2002. Work in progress.

4. Stallings, W. Network Security Essentials. Applications and Standards. Prentice-Hall Inc.
2000.

5. Kent S. IP Encapsulating Security Payload (ESP). IETF RFC 2046. Nov 1998
6. Arasa, Jose L. Estudi de la integració de confidencialitat en servidors de vídeo. Aplicació a

tràfic real. Master Thesis for the Telematics Engineering degree. Supervisor: Josep
Pegueroles 2002.

7. Pistoia M., Reller D.F (et al) (1999), Java 2 Network Security 2nd Edition. Prentice Hall
Inc.

8. Gong, Li (1998) Java Security Architecture (JDK1.2) version 1.0. Sun Microsystems Inc.
9. http://java.sun.con/products/jce/jce122_providers.html Official Java Providers web page
10. http://www.esec.com.au. ABA provider web page.
11. http://online.securityfocus.com/tools/category/21 OpenJCE download page.
12. http://www.openjce.org. OpenJCE provider defunct web page
13. http://www.wedgetail.com/jcsi/2.2/provider/index.html
14. http://Java.sun.com/products/jce/index-121.html. SunJCE provider web page.

Computational Power Borrowing Model for Mobile
Security Computations

Wael Adi1 IEEE member, Ali Mabrouk2

1 Etisalat College of Engineering, United Arab Emirates.
e-mail: wael@ece.ac.ae

2 Lufthansa Systems AS, Germany.
ali.mabrouk@lhsystems.com

Abstract. Nowadays there is an ever-growing demand in the world of telecommunication,

that highly complex arithmetic operations are to be performed online. The recent technological
achievements in communication systems allow collaboration between mobile equipment and
fixed network entities. Such collaboration could be very helpful if we consider the fact that
mobile terminals possess mostly low computation power, which leads often to serious process-
ing bottlenecks in mobile security functions. Flexible allocation of computational power for
security processing is becoming increasingly essential to achieve affordable modern security
schemes. Such schemes require increasingly tremendous computational power. Computational
power borrowing mechanisms for mobile security computations are needed to cope with the
ever growing demand on security for mobile applications in highly complex and heterogeneous
IT environment having different processing power and storage constraints. Wireless LANs seem
to be a promising technology providing new features to the world of telecommunications, which
could be adapted to achieve the previously stated demand. Wireless LAN often connect a mo-
bile user to a local area network (LAN). Some wireless LANs are implemented at strategic
points (so called traffic hot spots) like airports, railway stations and hospitals to provide access
to nearby “roaming” users. However migrating security relevant computations to any collabo-
rating host may lead to the loss of secrecy or authentication. Thus it is essential to involve
secret hiding arrangements during such migrations to avoid any security threats on sensitive
information. We propose a so called "fuzzy computation schemes" which allow powerful net-
work nodes to perform the most complex security computations on behalf of weak terminals
with minor security loss. In a previous paper1, we outlined a fundamental technique known as
“fuzzy modular arithmetic”. Possible use in well-known public-key cryptographic scenarios2
for mobile applications was also introduced. The idea is generally applicable to all systems with
entities of highly different computational capabilities. In this paper, we introduce a general
computational power borrowing model that is based on the “Fuzzy Modular Arithmetic” and

1 Wael Adi, “Fuzzy Modular Arithmetic for Cryptographic Schemes with Applications for Mobile
Security”. IEEE/AFCEA EUROCOMM 2000
2 Wael Adi, Ali Mabrouk; “Fuzzy Public-Key Exchange Mechanism with Applications to Mobile
Security” I2TS’2002, (International Information Technology Symposium Florianopolis, SC, Brasil
October , 2002

mainly adapted to the mobile environment.
Index Terms—fuzzy modular arithmetic, encrypted functions, mobile agents, computa-

tional power on demand, wireless LAN.

A Holistic Information Security Management
Framework

applied for electronic and mobile commerce

Albin Zuccato

Karlstad University, Universitetsgatan 1, 65 866 Karlstad

keywords: security management, information security management, systemic-
holistic approach, security management workflow

Abstract. Due to shortcomings in state-of-the-art security management
methodologies and special requirements for e/mCommerce, the author
has - during his working period in a large Austrian bank - discovered a
need for a comprehensive security management framework. Due to that
need a systemic-holistic framework for security management has been
developed which will be presented in this paper.
In order to create a framework, at first the generic model is going to
be presented where also the framework´s components will be described
briefly. The analysis will be backed up by real work experiences.

1 Introduction

Today’s society becomes more and more dependent on information technology.
A computer break down mostly means loss of money. For companies this raises
the necessity to prevent such a situation. Given the tendency of eCommerce,
where the companies business activities only can be conducted by information
technology means, this matter becomes even more important.

It seems that the tendency described also raises the interest for information
system security. However, most companies who are willing to engage in security,
face standards or methodologies of high complexity which are sometimes heavily
technology centric and do not reflect their business needs. This discourages a lot
of companies and reduces their motivation to invest in security.

To counteract the complexity, this paper proposes a “Holistic Security Man-
agement Framework” (HSMF) for electronic and mobile commerce which espe-
cially considers business, technique and sociology (see figure 1). The framework
is based on a systemic-holistic approach of information security as proposed
by Louise Yngström [Yngström, 1996] and will therefore be based on theoretic
concepts enforced by General System Theory [von Bertalanffy, 1969].

To be able to construct a framework that can be applied successfully in
business life, a set of requirements supported by the framework will be defined.
Based on these requirements a generic outline of the framework will be pre-
sented. Then, according to system theory, the environments, components and
interactions of the framework are defined. Finally, experiences of applying this

Technique

Busi-
ness Sociology

6

-�
�

���

Fig. 1. Dimensions for holistic security management

framework will be described. Additionally it will be analyzed in how far the
requirements previously defined, are realized in the framework.

2 Requirements

If we look to software engineering literature (see for example [Boehm, 1986],
[Jacobson et al., 1999]), we can see that every development is preceded by the
formulation of requirements. However, to develop a management framework is
not entirely comparable with software engineering. A requirement definition,
though, gives us a sound base to build on and it makes it possible to evaluate
the result later on.

The framework has already been, and will also in the future be, further de-
veloped in an iterative way – by means of action research – and the requirements
will be improved and completed in the same way. In the beginning, a first re-
quirement draft was developed by brainstorming in the security group in a large
Austrian bank. Also the first refinement step – a consideration of characteristics
that should be supported – was defined. Before that, the requirements had been
refined but stayed stable.

The current status of generic requirements that the framework has to fulfill,
is that they must be:

1. Fast due to short time-to-market cycles in the e/mCommerce environment
2. Business centric to motivate security by business means
3. People centric to mitigate resistance and enhance awareness
4. Technology-oriented, but not driven, to support state-of-science security
5. Supportive in relation to the conventional software development process.

With these requirements as a base, a generic list of characteristics that the
framework supports, was developed:

– Due to the fact that m/eCommerce requires short time-to-market cycles,
such methods, that promise a good time behavior even for the cost of less
accuracy, need to be selected with higher priority.

– A focus on existing business methods is necessary to make the framework
fit better to the existing organization. In other words, you have to avoid the
use of proprietary technology-oriented methods.

– Security has to be justified by economic means. However, a use of only risk
analysis cannot be sufficient as it exclusively reflects an insurance perspec-
tive. To use business modelling instead helps finding security requirements
that act as business enablers1.

– People are a crucial part of security management and need support in their
roles as users, developers and decision makers.

– Privacy is an important and recommended feature but should be optional in
the framework due to different requirements in B2C and B2B eCommerce2.

– Security is not an add-on approach but needs to be conducted together with
the system development.

– An iterative approach has to be built on a life-cycle model that supports the
current software engineering trends.

– Security must be observed during a system´s whole lifetime.

3 The Framework

Based on the requirements and the scientific concepts of general system the-
ory enhanced by the systemic-holistic findings of Yngström [Yngström, 1996], a
generic security management framework for e/mCommerce was developed. Sci-
entifically the model is as complete as it possibly could be, but in the same
time it is also applicable with justifiable resources. Special attendance has been
payed to the balance between practicability concerns and state-of-the-science
knowledge.

We have seen a lot of approaches that, according to the criteria developed in
[Siponen, 2001], are acceptable from a scientific perspective but much too com-
plicated or outdated. So for example Automated Secure System Development
(ASSDM) by [Booysen and Eloff, 1995] or Life Cycle Model in Organizations
(LCMO) by [Badenhorst and Eloff, 1989] which follow old Software Engineering
methodologies3 which are not up-to-date with the development of Object Ori-
ented systems – which eCommerce systems depend on. Other approaches like
Virtual Methodology (VM) by [Hitchings, 1995] or Structures of Responsibility
by [Backhouse and Dhilon, 1996], which focus on social relationships to deter-
mine security needs, and in that way neglect economy and technic as driving
factors for security. This means that this approaches do not reflect the mutli-
dimensional requirement structure which emerges with eCommerce. For us this
1 A business enabler is a crucial function. Without its existence business would be

impossible.
2 B2C means Business-to-Consumer, B2B mean Business-to-Business
3 ASSDM follows the spiral model and LCMO follows a waterfall approach

means that current scientific methods are either base on data that are not – or
only at an unaffordable price – available in business, or neglect the fact that
“people” have to implement and work with the system or simple do not cope
with business and/or technology as driving factors for eCommerce systems. On
the other hand, there are also “practical models” that are incomplete as they do
not generate the expected effects and benefits.

When the first theoretical framework had been built (at that time by con-
sidering the environmental factors in eBanking), practical improvements were
carried through in an iterative way. By the use of action research methods, 3
iterations of applying and improving the framework were conducted. During the
application cycles some deficits were realized and some minor corrections were
required and undertaken at runtime. In the analysis phases, between the itera-
tions, the framework was consolidated and improved. As an outcome the generic
model was generated – see figure 2.

In the following part we will briefly describe every component in the model.
With this in mind, we will follow the system theoretic structure of models
that is built out of components, interactions of components and environment(s)
[Schoderbek et al., 1985].

3.1 Components

Components or objects are the elements of a system. Together they form the
system. From a functional perspective they represent the basic functions of
a system and are mostly grouped into input, output and process components
[Schoderbek et al., 1985].

In the framework the workflow and the support components are of process
type. The input and output of the processes are due to space restrictions not
listed in this paper. However, because of their special role the environmental
input components are listed here too.

Workflow components

These components form the main foundation for the implementation and assur-
ance of security. Together they constitute the core workflow of the system as
described below. The goal of the following description is to briefly show what
they include.

Business modelling First of all the security enhanced business model has to
be developed. In this part the company states its business intends, and how
they can be fulfilled from a strategic and tactic viewpoint.
Here “security enhanced” means that security is introduced into the business
model at the very beginning. This is the building block by which future
activities are legitimated.

Project Planning In this step, plans are made how to incorporate security into
the operative business. This task brings with it that a lot of daily business
needs have to be considered. In difference to the business model – where an

Fig. 2. Component interaction of the holistic security management framework

overall security position is taken – here the short time orientation enforces
a focus to security needs emerging from operation (e.g. defining specialized
product policies as a refinement of an overall policy).
Additionally, a project plan how to implement security efficiently, is devel-
oped and the project is launched.

Security Analysis and Design When the security needs have been defined,
the concrete functions have to be identified in the security analysis.
It is not sufficient to look at the services that are available. It is also im-
portant to consider if the services are necessary for the company at all. In
the part where security is considered as an insurance, a balance between
costs and risks needs to be achieved. Earlier we have proposed a tool (A
modified mean value approach – [Zuccato, 2002]), that can be helpful and
probably have a good time behavior. Additionally the security requirements,
that were developed during business modelling and project planning, need
to be analyzed for there feasibility and profitability.
During the design the actual or the planned system concept (or if available,
information system design) is enhanced with security functions.

Implementation of security functions When the planning of the implemen-
tation of security has been finished, an implementation project has to be
launched where the required actions are undertaken.
This part is related to software engineering enhanced by special security
needs as a higher requirement for specification and additional forms of quality
assurance, like security review and penetration testing.

Maintenance When the system has started to run it must be kept running and
every error has to be corrected. To ensure that the system stays on a high
security level permanent improvements have to be conducted. This should
be enforced by the workflow component.

Privacy Planning The component “Privacy Planning” plays a special role. It
can be seen as a part of all three component groups, but does at the same
time not fit 100% to any category. It was decided that it had to be included
in the main workflow. The reason is that it is strongly coupled with the
activities in that workflow.
It has, however, not become a built-in feature as eCommerce aims at private
customers and business costumers. In the first case European legislation
requires that privacy is enforced, whereas for the business costumer case
privacy consideration it is not required by legislation.
But why is then privacy included at all? The answer is that we agree with
[Fischer-Hübner, 2001] about its strong relations to security, and believe
therefore that it is important in this context. An additional benefit is from
our point of view that privacy can become a business enabler.
We would also like to distinguish privacy from data protection 4, which is
a legal concept, because we agree with [Fischer-Hübner, 2001] in concern

4 We think that data protection and privacy overlap eachother but are not the same,
as privacy is related to a physical person whereas data protection deals with every
data subject independent of its shape.

of a much broader definition of privacy. This distinction also explains why
privacy is not included in the environmental component legislation, even if
some reasons indicating that could be found.

Support components

The idea of support components was derived from business process modelling
(see [Hammer and Champy, 1994] and [Vetschera, 2000]). Here the support pro-
cess enables a carrying through of the main work, but does not directly contribute
to the final product’s function.

Humans and Organization During the whole workflow process, people have
to be convinced that this makes sense and brings advantages for the company
as well as for themselves. Additional tasks conducted are awareness raising
and human relations management.

Business Foundation Without a proper business foundation, the management
probably refuses to carry through the expensive implementation of security.
Therefore the component must be a part of the process from the very be-
ginning. Experience has shown that this support process should accompany
the workflow over its whole lifetime to justify the investment.

Environmental components

As already mentioned, the environmental components hold a specific role. They
are not really parts of the system but are still mentioned because of their ex-
tensive influence. It is important not to forget that they must be controlled
too.

Legislation The legal framework provided by authorities gives not only a guid-
ance of what is allowed in the implementation process, but it also gives
certain obligations that have to be fulfilled.

Standards Security standards (and others) can be used as guidelines but can
also, if used correctly, help to develop power by protecting the company from
liability claims.

Ethics Ethics is the manifestation of the social expectations. There are no direct
financial benefits in following ethics, but a nonchalance attitude may raise
resistance and boycott.

3.2 Environment

Everything that is not part of the system can be considered as a part of the
environment [Schoderbek et al., 1985].

It is possible to build an hierarchy of environments, which means that an
environment can be part of an higher level environment. We are now going
to look at the environments that are important for considering security on an
eCommerce system level.

Society The society is the environment under which the whole system is run-
ning. It might look like if a consideration of the society is unnecessary. This
is, however, not true. That is namely the source of moral obligations and the
customer´s expectations. This phenomenon develops to a very complex task
if the framework has to be built for an international acting corporation – as
it can be assumed in e/mCommerce.

Organization The organization is the environment where the security manage-
ment has to be implemented. As usual in system engineering, the restrictions
and constrains have their source in the organizational environment. An addi-
tional factor is that an organization´s culture and behavior is very important
for security management. To deal with that problem the framework methods
from organizational behavior science should be used. The effect´s source is
located out of the systems scope and therefore not entitled to be changed in
short terms5.

For the model, we want to establish, that the organization has a direct influence
on the security management activities. The reasons are that security manage-
ment focuses on the organization. The society on the other hand provides the
frame for the organization, and influences in that way the organization attitudes.

3.3 Relations

A relationship bonds the objects together. Each relationship can be seen as
unique [Schoderbek et al., 1985].

For the framework we will distinguish between flow dependent connections of
the objects which we will call workflow. Additionally we also see a type of relation
which is based on the timely order of the components. We have defined earlier,
as a characteristic of the framework, the iterative nature of it and therefore we
call these relation properties “iterations”.

Workflow

In a workflow, procedural rules about the order of tasks in a process, are formu-
lated (after [WMC, 1999]). In this framework the term workflow will be used in
a more relaxed way. An optimal flow of steps will be presented, which probably
will not be carried through in that way in reality. The definition of workflow
requires that each process step must be finished before the next starts, and that
all steps are conducted. Here, both of these requirements will be used in a more
“relaxed” way. The steps are likely to flow into each other – as figure 3 illus-
trates where the arrows moving into each other represents an overlap in time.
The second major difference to the conventional understanding is that it should
be possible to apply necessary components, and in that connection define the
size and/or complexity of the system under consideration.

5 Schoderbek et. all [Schoderbek et al., 1985] argues that environmental effects only
can be changed in the long run .

��

@@

��

@@Business
modelling

��

@@

��

@@Project
planning

��

@@

��

@@Security Analysis
and Design

��

@@

��

@@Security
implementation

��
@@

��
@@Business Foundation

��
@@

��
@@Humans and Organization

��
@@

��
@@Privacy

�
�
�
�
��

C
C
C
C
CC

�
�
�
�
��

C
C
C
C
CCMaint-

enance6 6 6? ? ?

?

Fig. 3. HSMF workflow - note that parallel tasks always interact

As seen in the overall framework, some components have the purpose of
support and others represent actual working steps. In general the steps should
be conducted as presented in the order in figure 3. The support process has to
be available during the whole development in the life cycle process.

It can be argued that the support processes should be integral parts of the
main workflow components. However, for the framework this is considered as
wrong because the ordering in the figure shows that the support processes have
to be conducted continuously whereas the main workflow elements are required
to end in finite time. The activities of the support process instead should be
conducted without a break during the whole workflow life cycle.

Commonly the construction project is finished when the system has been
launched. The activities in the workflow in the security management frame-
work also change shape. It is reasonable to assume that after a construction,
the support activities and the main activities are conducted together in the
maintenance component. When an improvement or a reconsideration of security
measurements becomes necessary, usually a new development life cycle is estab-
lished. However, if the problem is small enough, the support process will only
be conducted to the necessary extend.

Hence, this workflow gives a guidance and represents a kind of best practices.
However, it should not be seen as a limiting factor and the borders can be
considered as soft.

Iterations

We have argued earlier that the support of a state-of-the-art iterative devel-
opment should be a characteristic of the proposed framework. By combining
the life-cycle model of a project, and the knowledge of iterations-planning in
the “unified software development process“ in software engineering presented by
[Jacobson et al., 1999], we conclude that 5 big phases are required:

Inception Where the preparatory work is conducted and the business centric
preparation is carried out.

Elaboration Where the operative business conception is carried trough, as well
as where an analysis and a rudimentary design are conducted.

Construction Where a security analysis is finished and the security design and
implementation6 are conducted.

Transition Where the security implementation has been finished.
Operation Where the security is maintained.

Fig. 4. Workflow for iterations transition

Except for the first phase – that means the inception phase where only one iter-
ation is proposed – a number of iterations7 can be performed in each phase. For
each iteration the flow of activities can be see in figure 4. The block symbolizes
that after each iteration the result transits to a limited maintenance, whereas
the core maintenance activity starts when the developments are finished.

The effort for the conducted workflow activities depends on the phase. Table
1 lists the expected work amount8 of activities in the different phases on a 5
steps scale (from ++ to −− – see in the description of the table). Unfortunately
the expected amount cannot be determined (mostly due to lack of data) for all
activities. These activities are marked with a question mark (?).

We have the feeling that some of presented efforts are not immediately un-
derstandable, and would therefore like to clarify how they come about. We would
like to start with the inception phase where we see minor activities in analysis,
design and implementation. These activities are conducted to develop a proto-
type to improve the understanding of the business model. Additionally, it has
6 Note that this also includes documentation and quality assurance.
7 For estimates of the number of iterations we would like to refer to

[Jacobson et al., 1999] where, depending on the project size, such numbers are given.
8 Note that available data sample cannot be considered as statistically sufficient to

prove that distribution has been presented, but gives a good feeling and should
therefore be understood as qualitative.

Table 1. Work amount HSMF phases

Inception Elaboration Construction Transition Operation
1 Iter. n Iter. n Iter. n Iter. ?

Business
modelling

++ + − −− ?

Security
planning

+ ++ ∼ − −
Security
analysis/design

− ++ + ∼ ?

Security
implementation

− ∼ ++ + −
Maintenance − − − ∼ ++

Privacy ∼ ∼ ∼ ∼ ?

Humans and
organization

++ − + + +

Business
foundation

++ + − ∼ +
++ a lot of work; + some work; ∼ normal work; − less work; −− almost no work; ? unknown

turned out that a prototype supports the argumentation for necessity and sense
of security, especially when seeking approval for the security enhanced business
model. In the elaboration phase we see that analysis and design incorporates a
lot of effort. This is due to the fact that at a later iteration in elaboration an
analysis and design is used to investigate promising solutions and to generate a
security centric software architecture.

The table also demonstrates the permanent presence of the support processes.

4 Experiences

In the introduction we mentioned that the framework development was con-
ducted according to action research methods. For each iteration a security man-
agement project was launched. Two iterations of the three planned ones have
already been finished and the results were introduced in the framework. The
third project is ongoing and current experiences are described as well.

Due to space restrictions we will not present the whole project specification,
but only a short description, some key data and the results will be presented.
All of the cases were conducted in an Austrian Internet-banking.

4.1 Case 1 - Authentication redesign

The first case dealt with the redesign of authentication mechanisms. Due to the
redesign purpose the business model was left unchanged. The project was of

medium size with 1 security architect, 2 developers, 1 quality assurance person
and 2 external reviewers9.

The following results followed and were introduced into the framework:

– The security design should have a sub-activity for considering external se-
curity products.

– Management support for implementing information security is crucial.
– The efficiency of security review methods for quality assurance is important.
– A broader support from top- and middle management is necessary and the

internal control (revision) is well allied.

4.2 Case 2 - Security policy

The second case dealt with the formulation of security policies for e-banking.
The main tasks were focused on the first components (business modelling and
security planning) in the framework. For this case only one part-time assigned
security architect was assigned. However, during the realization a lot of people
from all over the organization (bank) worked with the project.

Following insights were gained:

– Use of security enhanced business modelling to motivate security is crucial.
– The scalability of the framework is an important feature.
– The support from business people is a crucial criteria for the first phases.
– The results from the first case were manifested.

4.3 Case 3 - Security management re-conception

This case is currently conducted. The status at the moment is that the case is
in the middle of the elaboration phase.

The current insight is the importance of awareness building measures. The
framework does already incorporate such activities into the support process con-
cerning “humans and organizations”, but the methods are now further evaluated.

5 Review

In the last section we mentioned that the proposed framework can be successfully
applied in an eBanking environment. We consider this experience transferable to
other electronic commerce areas, which, from our point of view should all have
similar properties.

However, from a scientific viewpoint we also want to objectively review the
framework. It seems therefore suitable to apply quality assurance methods from
software engineering - namely review against requirements.

9 Note that the role definition is not a part of the framework. However, given role
names are deliberately chosen to improve the understanding.

We should therefore start with the question in how far every component
contributes to one of our requirements. We will use a matrix for this purpose
where we put the requirements and the components that have to be verified.
To be able to distinguish between different support rates of a requirement we
will use the same scale as in table 2 except for one thing: an empty field means
that the requirement can not be linked to an activity. These values represent our
personal opinion and are supported only by the practical experience presented
in the last section.

Table 2. Requirement evaluation of framework and components

Speed
Business
centric

People
centric

Technology
oriented

Software
development

Business
modelling

+ ++ +

Project
planning

++ ++

Security
analysis/design

+ ∼ + ++ ++

Security
implementation

+ − ++ ++

Maintenance
+ +

Privacy ∼
Business
foundation

∼ ++ +

Humans and
organization

∼ ++ +

++ very well supported; + well supported; ∼ supported; − reduced effect; −− eliminated effect

By analyzing the framework we can see that every requirement is well sup-
ported by one or more components. We therefore conclude that the overall frame-
work supports our requirements.

6 Conclusion

Given the requirement´s evaluation and the experience of application we believe
that this framework can make its contribution to enhance a security management
process in e/mCommerce.

In an ongoing research study we describe the detailed activities, workflows
and artifacts for each component. Additionally we proposed techniques and tools
to conduct the activities which should be suitable to further support the defined
requirements.

Acknowledgments
Part of this work has been funded by the HumanIT research programm at Karlstad
University. We therefore want to thank HumanIT for their support. We also want to

thank Prof. Simone Fischer-Hübner for her helpful comments and Linda Martinson for
her support.

References

[WMC, 1999] (1999). Terminology and Glossary, Document Number WFMC-TC-1011,
Document Status - Issue 3.0. Workflow Management Coalition.

[Backhouse and Dhilon, 1996] Backhouse, J. and Dhilon, G. (1996). Structures of re-
sponsibilities and security of information system. European Journal of Information
Systems.

[Badenhorst and Eloff, 1989] Badenhorst, K. P. and Eloff, J. H. P. (1989). Framework
of a methodology for the life cycle of computer security in organization. Computer
& Security, 8:433–442.

[Boehm, 1986] Boehm, B. (1986). A spiral model of software development and enhanc-
ment. ACM SIGSOFT, Software Engineering Notes, 4(11).

[Booysen and Eloff, 1995] Booysen, H. and Eloff, J. (1995). A methodology for the
development of secure application systems.

[Fischer-Hübner, 2001] Fischer-Hübner, S. (2001). IT-Security and Privacy: design and
use of privacy-enhancing security mechanims. Lecture Notes in Computer Science.
Springer.

[Hammer and Champy, 1994] Hammer, M. and Champy, J. (1994). Reengineering the
corparation: A manifesto for business revolution. HarperBusiness.

[Hitchings, 1995] Hitchings, J. (1995). Achieving an integrated design: the way forward
for information security.

[Jacobson et al., 1999] Jacobson, I., Booch, G., and Rumbaugh, J. (1999). The Unified
Software Development Process. Object technology series. Addison Wesley Longman.

[Schoderbek et al., 1985] Schoderbek, P., Schoderbek, C., and Kefalas, A. (1985).
Management Systems: Conceptual Considerations. Business Publications Inc., 3rd
edition.

[Siponen, 2001] Siponen, M. (2001). An Analysis of the Recent IS Security Develope-
ment Approaches, volume Information Security Management: Global Challenges in
the New Millennium, chapter VIII, pages 101 – 124. Idea Group Publishing.

[Vetschera, 2000] Vetschera, R. (2000). BBWL - Organisation und Plannung 2. Uni-
versität Wien, http://www.bwl.univie.ac.at/bwl/org/Service/Skripten/Orga2.pdf.

[von Bertalanffy, 1969] von Bertalanffy, L. (1969). General System Theory. George
Braziller.

[Yngström, 1996] Yngström, L. (1996). A systemic-holistic approach to academic pro-
grammes in IT security. PhD thesis, Stockholm University.

[Zuccato, 2002] Zuccato, A. (2002). A modified mean value approach to assess security
risks. In ISSA-2 Proceedings. Sout African Computer society.

���������	��

����������
����	������������������������
������� !�"
�#��%$'&
(*) ��+,+"� (.-�- ���/���0#1
��324���,���5
��6�7�98:�<;=��������������
��

>@?BABCEDGFIH7J�K0LBMNFIAGOQPRDBS CEABS H7TUK0S HWV�LGFIABMXT,SYV�Z

[]\E^Y_7`ba6c�dbe _W\NfIg�h�iE`be d]j<k0`b_WimlGnmo0_pjIc7qGr�_Wq q _ps�c�jNt5_Wq q g�uWgWn
v�\me wxgy`bz{e d]j/_7^}|G_W\@~E_W\Gn@�}uW�@c7a<n�fIiE`{`bgyjXnE�5���7���W�}��nmv��
�7���x�X�W�E�W���5�]�7�E�R�%���]�I�7�I�p�E���E���m�x���E���W�W�x�E
�¡�X�R�¢�W�

£6¤�¥�¦�§�¨@©W¦Wª¬« iE`be \muNdb�mg�`be z{­�a6c7\@c7uWg�a�g�\Xd®lE`b_Xh�g�z{z�n¯c7\@c7q jEz¡dbz¬_7`�a6c7\@c7uWgy°
a�g�\Xd	z{�m_Wimq ~�z{g�q g�hyd0db�mg,a�_Wz¡d0c7lmlE`b_WlE`be c�dbg�h�_Wim\Xdbgy`ba�gpc7z{iE`bg�z�db�@c�d	a�g�gyd0z{gy°
h�iE`be d]j�`bgp±Xime `bg�a�g�\Xdbz®im\@~Egy`¬uWe wxg�\Qh�_W\mz¡d{`²c7e \Xdbz�z{imh²�³c7z¬´mi@~EuWgyd�c7\@~Q_7db�mgy`
^µc7hydb_7`bz�¶Er�_ps�g�wxgy`pnXz{imh²�6~Eg�h�e z{e _W\E°·a6c7­Ie \mu�_7^ dbg�\6´�g�h�_Wa�g�z�±Xime dbg0~Ee ¸�h�imq d�~Eimg
db_/c¬q c7h²­<_7^¯lE`bg�h�e z{e _W\%e \%~Eg�h�e z{e _W\%wWc�`be c7´mq g�z�¶B���me z�l@c7l�gy`"´E`be gy¹mj�_�wxgy`bwIe gys	z
´@c7z{e h�c7lmlE`b_xc7h²�mg�z�db_®db�mg"h�_Wim\Xdbgy`ba�gpc7z{iE`bg"z{g�q g�hydbe _W\<lE`b_W´mq g�aºc7\@~/lE`b_Wl�_Wz{g�z
c=q e \mgpc�`�lE`b_Wu7`²c7a�a�e \mu�c7lmlE`b_xc7h²�³db�@c�d/a6c�»Ee a�e z{g�z¬db�mg<gy»El�g�hydbgp~³´�g�\mgy¼mdbz
_7^	h�_Wim\Xdbgy`ba�gpc7z{iE`bg�z�im\@~Egy`®c�´mi@~EuWgyd�h�_W\mz¡d{`²c7e \Xdp¶����me z®c7lmlE`b_xc7h²��e z�´@c7z{gp~
_W\<^Yim½�½yj�db�mg�_7`{j�z{_�db�@c�d�e d�hpc7\N´�g,imz{gp~<e \%c¬z{e dbi@c�dbe _W\Ns	�mgy`bg�e \E^Y_7`ba6c�dbe _W\
`bgp±Xime `bgp~6^Y_7`"~Eg�h�e z{e _W\E°·a6c7­Ie \mu®e z0e \mh�_Wa�lmq gydbgW¶

¾ ¿mÀ0Á�ÂBÃ,Ä�Å�ÆRÁBÇbÃ0À

È SYÉ²J®ÊNFIAGFICEH7Ê<H7AmË¯SYÉ¯MEABH	MIÌ@ËyLBH0Ê<MmÉbË5S Ê<ÍRMEÎ²Ë�FIAmË¯ÍBÎyM�V�HWÉyÉ²HWÉ�S A6ÊNFIAGFICES ABC,ÏbÐÑÉ²HWV�?BÎyS ËbÒ
T,S ËyLBS A<MEÎyCmFIABSYÉyFXËyS MEAGÉ7ÓWÏ¡Ë�É�MED�ÔbHWVpËyS ÕEH"SYÉ5ËyM¬ÍBÎyMIËyHWVpË�ÏbÐ�FEÉyÉ²H�Ë�É�É²?GV�L<FEÉ�OBFXË�FBÖXLGFIÎ�O�T"FIÎyHEÖ
É²MIÌµËbT"FIÎyHEÖ�ÍRH7Î�É²MEABABH7×0FIAGOØÌ·FEV�S × S ËyS HWÉ�Ì¢ÎyMEÊÙFI× ×0H�Ú@ËyH7ÎyAGFI×�Û¢HEÓ CGÓ}AGFXËy?BÎ�FI×0O�SYÉyFEÉbËyH7Î�É�Ü¬FIAGO
S AmËyH7ÎyAGFI×�Û¢HEÓ CGÓ�ËyHWV�LBABSYV7FI×�Ì·FIS × ?BÎyHWÉ7Ö}ÉyFIDRMIË�FICEHEÖ�?BAGFI?�ËyLBMEÎySYÉ²HWOØFEV7V�HWÉyÉ�Ü�ËyLBÎyHWFXË�É�É²M�ËyLGFXË
ËyLBH�V�MmÉbË0MIÌ�× MmÉyÉ²HWÉ�ÎyHWÉ²?B× ËyS ABC�Ì¢ÎyMEÊºËyLBH�ÎyHWFI× SYÉyFXËyS MEA�MIÌ}É²?GV�L�ËyLBÎyHWFXË�É0FIÎyH,Ê<S ABS Ê<SYÉ²HWO�Ý ÞXß¡Ó
à MXT�H7ÕEH7ÎWÖIS Ë,É²LBME?B×YO<DRH®ÍRH7Î²Ì¢MEÎyÊ<HWONV�MmÉbË�H�á
HWVpËyS ÕEH7× ÒNFEÉ0V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ�Û·FI×YÉ²M/V7FI× × HWO
ÉyFXÌ¢H7CE?GFIÎ�OBÉ�Ü�ÎyHWâm?BS ÎyH�MEÎyCmFIABSYÉyFXËyS MEAGFI×5ÎyHWÉ²ME?BÎ�V�HWÉ�H7ÕEH7AØS Ì�ËyLBH7Ò³FIÎyH<Ê<H7ÎyH7× Ò�S AØÌ¢MEÎyÊãMIÌ
ËyLBH�ÊNFIAGFICEH7Ê<H7AmË�äxMEÍRH7Î�FXËyS MEAGFI×�ÍBÎyM�V�HWO�?BÎyHWÉ7ÓRåBMEÎ®H7ÕEH7ÎyÒ=MEÎyCmFIABSYÉyFXËyS MEA}Ö�ËyLBH7ÎyH/SYÉ¬É²MEÊ<H
V�MEÊ/DBS AGFXËyS MEA�MIÌ5H�á
HWVpËyS ÕEH¬× MmÉyÉ"ÍBÎyH7ÕEH7AmËyS MEA�FIAGO=F�ÎyHWFEÉ²MEAGFIDB× H®V�MmÉbË�FIAGONËyLBH7ÎyH�Ì¢MEÎyH®ËyLBH
ÍB?BÎyÍRMmÉ²H¬MIÌ�ÎySYÉ²JNÊNFIAGFICEH7Ê<H7AmË,SYÉ"ËyM�æGAGO�É²?GV�L�F�DGFI×YFIAGV�HWO=V�MEÊ/DBS AGFXËyS MEAçÝ èXéWß¡Ó
à MXT�H7ÕEH7ÎWÖGS AØCEH7ABH7Î�FI×]ÖRËyLBH<ÎySYÉ²J�ÊNFIAGFICEH7Ê<H7AmË®ÍBÎyM�V�HWÉyÉ¬É²?�á
H7Î�É�Ì¢ÎyMEÊêËyLBHNFIDGÉ²H7AGV�H

MIÌ�FIÍBÍBÎyMEÍBÎySYFXËyH�Ê<H�ËyLBM�O�ME× MECES HWÉ0ËyLGFXË�FISYO�FIAGFI× Ò�ÉbË�É0ËyMNÉ²H7× HWVpË�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ0?BAGO�H7Î
CES ÕEH7A<V�MEAGÉbËyÎ�FIS AmË�É�É²?GV�L<FEÉ�DB?GO�CEH�Ë0FIAGO/MIËyLBH7Î�Ì·FEVpËyMEÎ�É7ÓXë�?�ËyMEÊNFXËyHWO�ÎySYÉ²J6ÊNFIAGFICEH7Ê<H7AmË
ËyM@ME×YÉ5FIÎyH	MED@Õ@S ME?GÉ²× Ò�ÕEH7ÎyÒ®LBH7× Í�Ì¢?B×�FIAGO6É²MEÊ<H	MIÌ�ËyLBH7Ê:ÍBÎyMXÕ@SYO�H0F�É²ME?BAGO6FIAGO�ÉbËyÎy?GVpËy?BÎyHWO
FIÍBÍBÎyMmFEV�L%ËyMNÎySYÉ²J%ÊNFIAGFICEH7Ê<H7AmËWÓ à MXT�H7ÕEH7ÎWÖmËyLBH6O�HWV�SYÉ²S MEAGÉ"MEA�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH¬É²H7× HWVpì
ËyS MEA=FIÎyH�× H�ÌµË"ËyM�ÊNFIAGFICEH7Ê<H7AmË,FIAGORäxMEÎ�FIAGFI× Ò�ÉbË�É�É²S AGV�H®MEÎyCmFIABSYÉyFXËyS MEAGFI×]ÖIËyHWV�LBABME× MECESYV7FI×]Ö
V�?B× Ëy?BÎ�FI×@FIAGO�æGAGFIAGV�SYFI×@V�MEAGÉbËyÎ�FIS AmË�É}ËyLBH7Ò�H7AGV�ME?BAmËyH7Î5ÊNFxÒ¬ÕXFIÎyÒ®Ì¢ÎyMEÊ:MEABH0MEÎyCmFIABSYÉyFXËyS MEA
ËyM%FIABMIËyLBH7ÎWÓ
ë�× ËyLBME?BCELíËyLBH7ÎyHØFIÎyH³F'A@?BÊ/DRH7Î=MIÌ6MIËyLBH7Î=S Ê<ÍRMEÎ²Ë�FIAmË=V�MEAGÉbËyÎ�FIS AmË�É7Ö	ËyLBHØDB?GO�CEH�Ë

V�MEAGÉbËyÎ�FIS AmË0SYÉ0ÍGFIÎ²ËySYV�?B×YFIÎy× Ò�S Ê<ÍRMEÎ²Ë�FIAmËWÓ@ë�V7V�MEÎ�O�S ABC�ËyM=Ý îXß¡ÖmMEAB× ÒNïméEðºMIÌ}MEÎyCmFIABSYÉyFXËyS MEAGÉ
Û·îEÞ@ðíÌ¢MEÎ5×YFIÎyCEH0DB?GÉ²S ABHWÉyÉ²HWÉ�Ü}É²ÍRH7AGO6Ê<MEÎyH	ËyLGFIA�èXðñMIÌBËyLBH7S Î�ÏbÐçDB?GO�CEH�Ë�MEA/S A�Ì¢MEÎyÊNFXËyS MEA

É²HWV�?BÎyS ËbÒ%FIAGO%ËyLBH¬H�Ú�ÍRH7AGO�S Ëy?BÎyH¬MEA�S Ë�SYÉ"ÉbËyS × ×¯É²H7H7A=FEÉ"FIA=MXÕEH7ÎyLBHWFEO<Î�FXËyLBH7Î�ËyLGFIA�FEÉ"FIA
S A@ÕEHWÉbËyÊ<H7AmËWÓ¯Ð"LBH7ÎyH�Ì¢MEÎyHEÖ�ËyLBH7ÎyH%FIÎyH%É²ÍRHWV�S æRVNABH7HWOBÉ�Ì¢MEÎ6Ê<H�ËyLBM�O�ME× MECES HWÉ®ËyLGFXË�FEOBO�ÎyHWÉyÉ
ËyLBH%SYÉyÉ²?BHNMIÌ,FEV�LBS H7Õ@S ABC�ÊNFXÚ�S Ê/?BÊÙÉ²HWV�?BÎyS ËbÒQ?BAGO�H7Î6CES ÕEH7AçDB?GO�CEH�Ë/V�MEAGÉbËyÎ�FIS AmË�É7ò
ËyLGFXË
SYÉ�ËyLBH<FIS ÊêMIÌ	ËyLBSYÉ®ÍGFIÍRH7ÎWÓ�Ð"LBSYÉ®ÍGFIÍRH7Î¬MXÕEH7ÎyÕ@S H7T�É,DGFEÉ²SYV/ÍBÎyS AGV�S ÍB× HWÉ®FIAGO³FIÍBÍBÎyMmFEV�LBHWÉ
ËyM<CEH7ABH7Î�FI×}V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH®É²H7× HWVpËyS MEA=ÍBÎyMEDB× H7ÊNÉ,FIAGO�ËyLBH7A�ÍBÎyMEÍRMmÉ²HWÉ"F<É²S Ê<ÍB× H¬Ì¢?BZ7Z7Ò
× S ABHWFIÎ�ÍBÎyMECEÎ�FIÊ<Ê<S ABC®Ê<M�O�H7×BËyM�ÍBÎyMXÕ@SYO�H"F�O�HWV�SYÉ²S MEANFISYO�MEA<V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH"É²H7× HWVpËyS MEA
?BAGO�H7Î,DB?GO�CEH�Ë�V�MEAGÉbËyÎ�FIS AmË�É7Ó

ó ôÑõ0ö}Â�õ�Çbö�÷9Ã	ø�ùØÃ0Å�À0Á�ö}ÂGúûö}ü�ý@Å�ÂBöºþ"ö¯ÿbö¯ÆRÁBÇbÃ0À

����������	�

������������������������	�����	
È SYÉ²J�FIAGFI× Ò�É²SYÉ<FIAGO�ÊNFIAGFICEH7Ê<H7AmËQÛ·É²H7HÑÝ Iß,Ì¢MEÎ%O�H�Ë�FIS ×YÉ�Ü�ÉbË�FIÎ²Ë�É<T,S ËyL ËyLBH�SYO�H7AmËyS æRV7FXì
ËyS MEA=MIÌ¯ÎySYÉ²J�É	ËyLGFXË,ÊNFxÒ%FXá
HWVpË,MEÎyCmFIABSYÉyFXËyS MEAGÉ7ÓIÏ¡Ë,SYÉ,FEV�LBS H7ÕEHWOND@ÒNÎySYÉ²J%FIAGFI× Ò�É²SYÉ7ÖmT,LBSYV�L
S AGV�× ?GO�HWÉ	ËyLBH�SYO�H7AmËyS æRV7FXËyS MEA�FIAGONFEÉyÉ²HWÉyÉ²Ê<H7AmË0MIÌ�ËyÎyS ÍB× H�Ë�É0MIÌ}FEÉyÉ²H�ËWÖEËyLBÎyHWFXË�FIAGONÕ@?B× ABH7Î²ì
FIDBS × S ËbÒEÓGÐ"LBSYÉ�FEÉyÉ²HWÉyÉ²Ê<H7AmË�V7FIA�DRH�H7S ËyLBH7Î�âm?GFI× S Ë�FXËyS ÕEH�MEÎ�âm?GFIAmËyS Ë�FXËyS ÕEHEÓ�Ï{AQâm?GFI× S Ë�FXËyS ÕEH
FEÉyÉ²HWÉyÉ²Ê<H7AmËWÖ¯ËyLBH=ÕXFI× ?BH�MIÌ®FEÉyÉ²H�ËWÖ¯Ì¢ÎyHWâm?BH7AGV�ÒçMIÌ�ËyLBÎyHWFXË<FIAGO�É²H7ÕEH7ÎyS ËbÒØMIÌ�Õ@?B× ABH7Î�FIDBS × ì
S ËbÒNFIÎyH�H�Ú�ÍBÎyHWÉyÉ²HWO<S ANËyH7ÎyÊNÉ0MIÌ5âm?GFI× S Ë�FXËyS ÕEH�Ê<HWFEÉ²?BÎyHWÉ�Û¢?GÉ²?GFI× × Ò<× S ABCE?BSYÉbËySYV�H�Ú�ÍBÎyHWÉyÉ²S MEAGÉ
É²?GV�LNFEÉ"! LBS CEL$# Ö%! Ê<HWO�S ?BÊ&#mFIAGO�! × MXT'# ÜpÓIÏ{ANV�MEAmËyÎ�FEÉbËWÖXS ANâm?GFIAmËyS Ë�FXËyS ÕEH,FEÉyÉ²HWÉyÉ²Ê<H7AmËWÖxËyLBH7Ò
FIÎyH�H�Ú�ÍBÎyHWÉyÉ²HWO=S A�A@?BÊ<H7ÎySYV¬ËyH7ÎyÊNÉ�É²?GV�LQFEÉ,Ê<MEABH�Ë�FIÎyÒ�ÕXFI× ?BHWÉ7ÖBÌ¢ÎyHWâm?BH7AGV�S HWÉ�FIAGO�ÍBÎyMED�ì
FIDBS × S ËyS HWÉ7Ó
ë,ÌµËyH7Î�Ê<HWFEÉ²?BÎyHWÉ%Û¢MEÎ/× H7ÕEH7×YÉ�Ü�MIÌ,ÎySYÉ²J³Ì¢MEÎ�HWFEV�LçËyÎyS ÍB× H�Ë�LGFxÕEHNDRH7H7A'SYO�H7AmËyS æGHWO�Ö5ËyLBH

SYO�H7AmËyS æRV7FXËyS MEA6FIAGO6É²H7× HWVpËyS MEA�MIÌBFIÍBÍBÎyMEÍBÎySYFXËyH	V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ�V7FIA�DRH0ÊNFEO�HEÓ È SYÉ²J®ÎyH�ì
O�?GVpËyS MEA%V7FIA<DRH�FEV�LBS H7ÕEHWO/S A<ÕXFIÎyS ME?GÉ�T"FxÒ�É�É²?GV�L%FEÉ�FxÕEMESYO�S ABC¬ÎySYÉ²J�É7ÖxËyÎ�FIAGÉbÌ¢H7ÎyÎyS ABC¬ÎySYÉ²J�É
Û¢HEÓ CGÓ�S AGÉ²?BÎ�FIAGV�HxÜpÖ5ÎyHWO�?GV�S ABCQËyLBÎyHWFXË�É7Ö5Õ@?B× ABH7Î�FIDBS × S ËyS HWÉ�MEÎ/ÍRMmÉyÉ²S DB× H=S Ê<ÍGFEVpË�É7Ö�FIAGO'O�H�ì
ËyHWVpËyS ABC�äxÎyHWFEVpËyS ABC�äxÎyHWV�MXÕEH7ÎyS ABC6Ì¢ÎyMEÊ ÎySYÉ²J�É/Ý Iß¡Ó
Ð"LBH7ÎyH�Ì¢MEÎyHEÖGMEÎyCmFIABSYÉyFXËyS MEAGÉ�É²LBME?B×YO�Ë�FIJEH
S AmËyM³FEV7V�ME?BAmË6ÕXFIÎyS ME?GÉ�T"FxÒ�É�MIÌ�FEV�LBS H7Õ@S ABC�ÎySYÉ²J³ÎyHWO�?GVpËyS MEAçËyMQH7AGÉ²?BÎyHNËyLBH%SYO�H7AmËyS æRV7FXì
ËyS MEA
äXÉ²H7× HWVpËyS MEA=MIÌ5ËyLBH6Ê<MmÉbË�FIÍBÍBÎyMEÍBÎySYFXËyH�É²H�Ë�MIÌ�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ7ÓmÏ{AQFEOBO�S ËyS MEA}ÖBS Ë�SYÉ
S Ê<ÍRMEÎ²Ë�FIAmË�ËyM%ABMIËyH6ËyLGFXË�ËyLBH7ÎyH�FIÎyH/FNA@?BÊ/DRH7Î�MIÌ0V�MEAGÉbËyÎ�FIS AmË�É�T,LBSYV�L�Ê/?GÉbË®DRH/Ë�FIJEH7A
S AmËyM�V�MEAGÉ²SYO�H7Î�FXËyS MEA}ÖmÉ²?GV�L�FEÉ�ËyS Ê<HEÖmæGAGFIAGV�SYFI×]ÖEËyHWV�LBABSYV7FI×]ÖmÉ²M�V�S ME× MECESYV7FI×]ÖIH7A@Õ@S ÎyMEABÊ<H7AmË�FI×
FIAGO�× H7CmFI×}V�MEAGÉbËyÎ�FIS AmË�É¬Ý Iß¡Ó(�ABH³S Ê<ÍRMEÎ²Ë�FIAmË�V�ÎyS ËyH7ÎyS MEA Ì¢MEÎ�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH³É²H7× HWVpËyS MEAñSYÉ=V�MmÉbË�H�á
HWVpËyS ÕEH7ABHWÉyÉ
É²S AGV�H¬S Ë�T�ME?B×YO%DRH�S AGFIÍBÍBÎyMEÍBÎySYFXËyH�ËyM<ÎyHWV�MEÊ<Ê<H7AGO�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ0T,LBSYV�L�FIÎyH®Ê<MEÎyH
H�Ú�ÍRH7AGÉ²S ÕEH�ËyM/S Ê<ÍB× H7Ê<H7AmË,FIAGONÊNFIS AmË�FIS A<ËyLGFIA%ËyLBH�ÕXFI× ?BH�MIÌ5FEÉyÉ²H�Ë�É�ËyLBH7ÒNFIÎyH�O�HWÉ²S CEABHWO
ËyM�ÍBÎyMIËyHWVpË�Ý Iß¡Ó)(�AGV�H%FIÍBÍBÎyMEÍBÎySYFXËyH<FIAGOçV�MmÉbË6H�á
HWVpËyS ÕEH%V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ¬LGFxÕEH<DRH7H7A
SYO�H7AmËyS æGHWO=FIAGO�É²H7× HWVpËyHWO�ÖmËyLBH7Ò<ËyLBH7A=ABH7HWONËyM�DRH®H�ÚBFIÊ<S ABHWO%T,LBH�ËyLBH7Î�ËyLBH7ÒNÍBÎyMXÕ@SYO�H®FIA
FEV7V�H7Í�Ë�FIDB× H�× H7ÕEH7×}MIÌ	É²HWV�?BÎyS ËbÒEÓGë�É�ABM�É²Ò�ÉbËyH7Ê V7FIA�DRH/ÊNFEO�H6FIDGÉ²ME× ?�ËyH7× Ò=É²HWV�?BÎyHEÖ�ËyLBH7ÎyH
FIÎyH�FI× T"FxÒ�É,ÎyHWÉ²SYO�?GFI×5ÎySYÉ²J�É�H7ÕEH7AQS Ì�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ�FIÎyH6S A³ÍB×YFEV�HEÓRÏ¡Ì	ËyLBHWÉ²H�ÎyHWÉ²SYO�?GFI×
ÎySYÉ²J�É�V7FIABABMIË�DRH�ËyME× H7Î�FXËyHWO�Ö@FEOBO�S ËyS MEAGFI×�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ�ÊNFxÒ<DRH¬V�MEAGÉ²SYO�H7ÎyHWO%FIAGO%S A
ËyLBSYÉ/V7FEÉ²H<æGAGFIAGV�SYFI×0V�MEAGÉbËyÎ�FIS AmË�É�É²?GV�L'FEÉ�DB?GO�CEH�Ë/× S Ê<S Ë�É6ÊNFxÒ³ABH7HWOØËyMQDRH�FEOxÔb?GÉbËyHWO�Ó
Ï{Ê<ÍB× H7Ê<H7AmË�FXËyS MEA�MIÌ�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ"FIAGO=MIËyLBH7Î,ÎyH7× H7ÕXFIAmË,Ì¢ME× × MXT"ì¡?BÍ�FEVpËyS Õ@S ËyS HWÉ"Ë�FIJEH
ÍB×YFEV�H¬FXÌµËyH7Î�ËyLBH®æGAGFI×}O�HWV�SYÉ²S MEA�MEA=V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH®É²H7× HWVpËyS MEA=FIAGO�ÎySYÉ²JNFEV7V�H7Í�Ë�FIAGV�H®SYÉ
V�MEÊ<ÍB× H�ËyHWO�Ó

���*�,+.-�	��0/��������21���3�����465$	���	
ë87:9 Û·ë�ABA@?GFI× SYÉ²HWO�7}MmÉyÉ"9�Ú�ÍRHWVpË�FIAGV�ÒBÜ	SYÉ�MEABH®MIÌ}ËyLBH¬Ê<MmÉbË"ÍRMEÍB?B×YFIÎ�ÎySYÉ²JNÊ<HWFEÉ²?BÎyHWÉ0S A
âm?GFIAmËyS Ë�FXËyS ÕEH�ÎySYÉ²J®FIAGFI× Ò�É²SYÉpäxÊNFIAGFICEH7Ê<H7AmËRÊ<H�ËyLBM�OBÉ7Ó7Ï{A6ë87:9�ì¡DGFEÉ²HWO¬FIÍBÍBÎyMmFEV�LBHWÉ7Ö�ÎySYÉ²J�É
FIÎyH,H�Ú�ÍBÎyHWÉyÉ²HWO�S A<ËyH7ÎyÊNÉ	MIÌ�FIANH�Ú�ÍRHWVpËyHWO<Ê<MEABH�Ë�FIÎyÒ/× MmÉyÉ7ÖIT,LBSYV�L%V7FIANDRH�V7FI×YV�?B×YFXËyHWO�D@Ò
Ê/?B× ËyS ÍB× Ò@S ABC=F%Ê<MEABH�Ë�FIÎyÒ=× MmÉyÉ�D@Ò�FIAQFIABA@?GFI×5Î�FXËyH6MIÌ	M�V7V�?BÎyÎyH7AGV�HEÓRë�É�ËyLBH/Ê<MEABH�Ë�FIÎyÒ
ÎySYÉ²JQH�Ú�ÍBÎyHWÉyÉ²S MEA³SYÉ®Ì¢M�V�?GÉ�MIÌ0ËyLBH%ë87:9�ì¡DGFEÉ²HWO³FIÍBÍBÎyMmFEV�LBHWÉ7Ö
MIËyLBH7Î�ÕXFIÎySYFIDB× HWÉ®ÎyHWâm?BS ÎyHWO
Ì¢MEÎ/ÊNFIJ@S ABCØV�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH%É²H7× HWVpËyS MEA'O�HWV�SYÉ²S MEAGÉ/FIÎyH�FI×YÉ²MQH�Ú�ÍBÎyHWÉyÉ²HWOçS A'Ê<MEABH�Ë�FIÎyÒ
ËyH7ÎyÊNÉ7Ó(�AGV�H"V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH"FI× ËyH7ÎyAGFXËyS ÕEHWÉ}ËyLGFXË	Ê<H7H�Ë	É²HWV�?BÎyS ËbÒ6ÎyHWâm?BS ÎyH7Ê<H7AmË�É5LGFxÕEH�DRH7H7A
SYO�H7AmËyS æGHWO�ÖBËyLBH7S Î®V�MmÉbË�H�á
HWVpËyS ÕEH7ABHWÉyÉ�É²LBME?B×YO=DRH/FEÉyÉ²HWÉyÉ²HWO�ÓGÐ"LBSYÉ,SYÉ�ABMEÎyÊNFI× × Ò�FEV�LBS H7ÕEHWO
D@ÒÑV�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH%V�MmÉbË�äxDRH7ABH�æBË<FIAGFI× Ò�É²SYÉ7Ó}Ï{A�MEÎ�O�H7Î�ËyM³ÍRH7Î²Ì¢MEÎyÊÙËyLBH=V�MmÉbË�äxDRH7ABH�æBË
FIAGFI× Ò�É²SYÉ7Ö}FI× ×�ËyLBH%ÎyH7× H7ÕXFIAmË�Ê<MEABH�Ë�FIÎyÒ³OBFXË�F=Ì¢MEÎ/F�É²ÍRHWV�S æRVNV�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH�Û¢HEÓ CGÓ}S Ë�É
V�MmÉbË�FIAGO=Ê<MEABH�Ë�FIÎyÒN× MmÉyÉ"ÎyHWO�?GVpËyS MEARÜ0Ê/?GÉbË�DRH�ÍBÎyMXÕ@SYO�HWO�Ó
Ï{A�CEH7ABH7Î�FI×]Ö5ËyLBH�V�MmÉbË<MIÌ¬FIA@Ò'V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH=V7FIA�DRH�V�×YFEÉyÉ²S æGHWO'S AmËyMØËbT�MçV7FXË²ì

H7CEMEÎyS HWÉ7ò,S Ê<ÍB× H7Ê<H7AmË�FXËyS MEAUV�MmÉbË�Û¢S AGV�× ?GO�S ABCñÍB?BÎ�V�LGFEÉ²HÑV�MmÉbËpÜ�FIAGO Îy?BABABS ABCñV�MmÉbËWÓ�Ï{A
ËyLBH<V�MmÉbË�äxDRH7ABH�æBË¬FIAGFI× Ò�É²SYÉ7ÖBËyLBH�S Ê<ÍB× H7Ê<H7AmË�FXËyS MEA³V�MmÉbË®SYÉ®T,ÎyS Ë²ËyH7AQMIá'O�?BÎyS ABC%ËyLBH�H�Ú@ì
ÍRHWVpËyHWO³× S Ì¢H�ËyS Ê<H<MIÌ0ËyLBHNV�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHEÓRÐ"LBH<Îy?BABABS ABC�V�MmÉbË¬SYÉ�FIAØFIABA@?GFI×�FxÕEH7Î�FICEH
MIÌ®V�MmÉbË�É�ÎyHWâm?BS ÎyHWOçÌ¢MEÎ<Îy?BABABS ABC�äxMEÍRH7Î�FXËyS ABC�äxÊNFIS AmË�FIS ABS ABC�ËyLBH�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHEÓ5Ð"LBH
DRH7ABH�æBË=MIÌ¬ËyLBH³V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH�SYÉ%?GÉ²?GFI× × Ò�H�Ú�ÍBÎyHWÉyÉ²HWO FEÉ%FÑÊ<MEABH�Ë�FIÎyÒ FIÊ<ME?BAmË%MIÌ
× MmÉyÉ6ÎyHWO�?GVpËyS MEA}Ö5T,LBSYV�L�V7FIAÑDRH�MED�Ë�FIS ABHWOÑD@ÒØË�FIJ@S ABC�ËyLBH=ë87:9ºDRH�Ì¢MEÎyH=V�ME?BAmËyH7ÎyÊ<HWFXì
É²?BÎyHNS Ê<ÍB× H7Ê<H7AmË�FXËyS MEAÑFIAGOçÉ²?BD�ËyÎ�FEVpËyS ABC�Ì¢ÎyMEÊãËyLBSYÉ¬ËyLBH�ë87:9UFXÌµËyH7Î/V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH
S Ê<ÍB× H7Ê<H7AmË�FXËyS MEA}Ó	Ð"LBH7A}Ö�ËyLBH�ABH�ËNDRH7ABH�æBËWÖ	T,LBSYV�L SYÉNFØV�MmÉbËNH�á
HWVpËyS ÕEH7ABHWÉyÉ�Ê<HWFEÉ²?BÎyHEÖ
SYÉ%É²S Ê<ÍB× Ò V7FI×YV�?B×YFXËyHWO�Ì¢ÎyMEÊ ËyLBHQDRH7ABH�æBË�× HWÉyÉ�ËyLBH³V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH�V�MmÉbË%FIAGO�ËyLBMmÉ²H
V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ"Ì¢MEÎ®T,LBSYV�LQABH�Ë¬DRH7ABH�æBË�É¬FIÎyH6ÍRMmÉ²S ËyS ÕEH�FIÎyH/ÎyH7CmFIÎ�O�HWO�V�MmÉbË®H�á
HWVpËyS ÕEHEÓ; HWÉ²SYO�HWÉ%ËyLBH³ABH�Ë�DRH7ABH�æBËWÖ�ËyLBHØÎyH�Ëy?BÎyAñMEAñS A@ÕEHWÉbËyÊ<H7AmËçÛ È (�Ï²ÜNSYÉ=FI×YÉ²M�T,SYO�H7× Ò ?GÉ²HWO
Ì¢MEÎNÊ<HWFEÉ²?BÎyS ABC³ËyLBHQV�MmÉbË%H�á
HWVpËyS ÕEH7ABHWÉyÉ7Ó�Ï{A È SYÉ²J�<çFXË�V�LUÝ =Xß¡Ö�ËyLBH È (�Ï/SYÉ%O�H�æGABHWO FEÉ
È (�Ï?>�Û·ë�ÕEMESYO�HWO
7}MmÉyÉ�Ü?@�Û È HWV�MXÕEH7ÎyHWO'ë�Ê<ME?BAmËpÜ?A�Û¡K0MmÉbËNMIÌ6K0ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHxÜpÖ�T,LBH7ÎyH
Û·ë�ÕEMESYO�HWOB7}MmÉyÉ�Ü?>�Û�7}MmÉyÉ�DRH�Ì¢MEÎyH/K0ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHxÜDC6Û�7}MmÉyÉ�FXÌµËyH7Î®K0ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHxÜpÓ
Ï{A%CEH7ABH7Î�FI×BS A@ÕEHWÉbËyÊ<H7AmË0ÍBÎyMIÔbHWVpË�FIAGFI× Ò�É²HWÉ7ÖIËyLBH�Îy?BABABS ABC/V�MmÉbË�FIAGONDRH7ABH�æBË�Ì¢MEÎ0HWFEV�L

ÒEHWFIÎ,MIÌ�ËyLBH/ÍBÎyMIÔbHWVpË�# É,× S Ì¢H6ABH7HWO=ËyM%DRH6HWÉbËyS ÊNFXËyHWO�É²H7ÍGFIÎ�FXËyH7× Ò=É²S AGV�H¬ËyLBH7Ò=T�ME?B×YO�ÕXFIÎyÒ
Ì¢ÎyMEÊ MEABH®ÒEHWFIÎ�ËyM�ËyLBH¬ABH�Ú@ËWÓBÏ{A�FEOBO�S ËyS MEA}Ö@ËyLBHWÉ²H¬ÕXFI× ?BHWÉ,É²LBME?B×YO%DRH6O�SYÉyV�ME?BAmËyHWO�D@Ò%FIA
FIÍBÍBÎyMEÍBÎySYFXËyH�O�SYÉyV�ME?BAmË�Î�FXËyHEÖxT,LBSYV�L�ÎyHFEGHWVpË�É5DRMIËyL�S AmËyH7ÎyHWÉbË�Î�FXËyHWÉ�FIAGO/?BAGV�H7Î²Ë�FIS AmËyS HWÉ7ÖWËyM
Ê<HWFEÉ²?BÎyH�MXÕEH7Î�FI× ×�ÍRH7Î²Ì¢MEÎyÊNFIAGV�H�FEÉ�F<ABH�Ë�ÍBÎyHWÉ²H7AmË�ÕXFI× ?BHEÓ à MXT�H7ÕEH7ÎWÖBF%É²S ABCE× H�HWÉbËyS ÊNFXËyH
Î�FXËyLBH7Î6ËyLGFIA O�S á
H7ÎyH7AmË�HWÉbËyS ÊNFXËyHWÉ6Ì¢MEÎ�HWFEV�L'ÒEHWFIÎ/SYÉ/MIÌµËyH7A�ÍBÎyH�Ì¢H7ÎyÎyHWOçS A�S A�Ì¢MEÎyÊNFXËyS MEA
É²HWV�?BÎyS ËbÒ%ÎySYÉ²J%ÊNFIAGFICEH7Ê<H7AmË,O�?BH¬ËyMNO�S G%V�?B× ËyS HWÉ�S A=ÊNFIJ@S ABCNO�H�Ë�FIS × HWO=HWÉbËyS ÊNFXËyHWÉ7Ó
Ð"LBH�ÍBÎyMEDB× H7ÊûT,S ËyL=FIÍBÍB× Ò@S ABC�ËyLBH®âm?GFIAmËyS Ë�FXËyS ÕEH®FIÍBÍBÎyMmFEV�L�ËyM�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH�É²H�ì

× HWVpËyS MEAºÛ¢S]Ó HEÓ	ËyLBH³V�MmÉbË�äxDRH7ABH�æBË=FIAGFI× Ò�É²SYÉ�Ü/SYÉNËyLGFXË%ËyLBHQÊ<MEABH�Ë�FIÎyÒ�HWÉbËyS ÊNFXËyHWÉ�O�MÑABMIË
ABMEÎyÊNFI× × Ò%LGFxÕEH�F<ÎyHWFEÉ²MEAGFIDB× H¬× H7ÕEH7×�MIÌ	FEV7V�?BÎ�FEV�ÒEÓBÐ"LBH7ÎyH�Ì¢MEÎyHEÖ@ËyLBH�HWÉbËyS ÊNFXËyS MEA�SYÉ,MIÌµËyH7A
DGFEÉ²HWO³MEAçÉ²?BD�ÔbHWVpËyS ÕEH<MEÍBS ABS MEAGÉ®LBH7×YOØD@Ò³FIAGFI× Ò�ÉbË�É7Ó�åBMEÎ�H�ÚBFIÊ<ÍB× HEÖ�S A È SYÉ²J�<çFXË�V�L Ý =Xß¡Ö
ËyLBH�FxÕEMESYO�HWO=× MmÉyÉ�SYÉ®V7FI×YV�?B×YFXËyHWO=Ì¢ÎyMEÊ ËyLBHH! ÍRH7Î�V�H7S ÕEHWO�#R× MmÉyÉ�ÎyHWO�?GVpËyS MEA'Û·FEÉ�F%ÍRH7Î�V�H7AmË²ì
FICEHxÜpÓI<íLBH7A�ËyLBH7ÎyH"FIÎyHKJGì]ËyMIìLJNÊNFIÍBÍBS ABCmÉ5DRH�ËbT�H7H7A<V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ5FIAGO�ËyLBH"ËyLBÎyHWFXË�É
ËyLBH7Ò�FEVpË¬FICmFIS AGÉbËWÖBHWÉbËyS ÊNFXËyS MEA�DRHWV�MEÊ<HWÉ�Ê/?GV�L�Ê<MEÎyH6O�S G%V�?B× Ë¬É²S AGV�H/FIAGFI× Ò�ÉbË�É�É²LBME?B×YO
HWÉbËyS ÊNFXËyHNABMIË6MEAB× Ò³S AGO�S Õ@SYO�?GFI×0DRH7ABH�æBË�É�DB?�Ë�FI×YÉ²M�V�ME× × HWVpËyS ÕEHNDRH7ABH�æBË�É7Ó�K0MmÉbË6HWÉbËyS ÊNFXì
ËyS MEA=S Ë�É²H7× Ì�SYÉ"FI×YÉ²M�ÕEH7ÎyÒ%O�S G%V�?B× Ë�FI× ËyLBME?BCEL�S Ë�É²H7H7ÊNÉ�ËyM<DRH¬ÎyH7×YFXËyS ÕEH7× ÒNHWFEÉ²S H7Î�ËyLGFIA�ËyLBH
DRH7ABH�æBË/HWÉbËyS ÊNFXËyS MEA}Ó�<íLBH7AçS Ë6SYÉ6O�S G%V�?B× Ë�ËyM�ÍBÎyMXÕ@SYO�H/ËyLBH�V�MmÉbË�HWÉbËyS ÊNFXËyHWÉ¬T,S ËyLçÎyHWFXì

É²MEAGFIDB× H�FEV7V�?BÎ�FEV�ÒEÖGS Ë¬SYÉ�DRH�Ë²ËyH7Î®ËyM�MXÕEH7Î�ÉbË�FXËyH�ËyLBH<V�MmÉbË�É�S A³MEÎ�O�H7Î�ËyM=H7AGÉ²?BÎyH6ËyLGFXË®ËyLBH
ABH�Ë�DRH7ABH�æBË�É,MIÌ�É²ÍRHWV�S æRV¬V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ"FIÎyH®ABMIË�MXÕEH7Î�ÉbË�FXËyHWO³Ý è�MXß¡Ó
���ONQPSR���4��6���%���6T��U3HV�V�W0-����IXY����Z[����	���4������&\]W0-^�����_����-��
Ð"LBH<DGFEÉ²H7× S ABH<FIÍBÍBÎyMmFEV�L�Ý Iß�SYÉ¬MEABH�MIÌ0ËyLBHNÉ²S Ê<ÍB× HWÉbË�T"FxÒ�É�MIÌ�É²H7× HWVpËyS ABC�V�ME?BAmËyH7ÎyÊ<HWFXì
É²?BÎyHWÉ7Ó5Ï{AÑËyLBH=DGFEÉ²H7× S ABH=FIÍBÍBÎyMmFEV�L}Ö¯ÉbË�FIAGOBFIÎ�O'V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ%ÛµËyLBMmÉ²H�S A ÉbË�FIAGOBFIÎ�O
ÊNFXËyH7ÎySYFI×YÉ	É²?GV�LNFEÉ ; >GéEéXÞEÞ<Ý è�ß¡Ö�`]a�ÏbÐ�>mìb %Ý cxß
FIAGO/ËyLBH�ÏbÐ�ì ; FEÉ²H7× S ABHed	ÎyMIËyHWVpËyS MEASaQFIA�ì
?GFI×�Ý MXß¢Ü	FIÎyH®FIÍBÍB× S HWO<ËyM/HWFEV�LNSYO�H7AmËyS æGHWONËyÎyS ÍB× H�Ë"MIÌ¯FEÉyÉ²H�ËWÖEËyLBÎyHWFXË"FIAGONÕ@?B× ABH7Î�FIDBS × S ËbÒ/ËyM
FEV�LBS H7ÕEH/F%DGFEÉ²H7× S ABH/× H7ÕEH7×5MIÌ	ÍBÎyMIËyHWVpËyS MEA}ÓRÏ{A³CEH7ABH7Î�FI×]ÖRV�MmÉbË�äxDRH7ABH�æBË¬FIAGFI× Ò�É²SYÉ�MEÎ®MIËyLBH7Î
É²S Ê<S ×YFIÎ�H7ÕXFI× ?GFXËyS MEAGÉ�FIÎyH�ABMIË<ÍRH7Î²Ì¢MEÎyÊ<HWO'S A'ËyLBSYÉ<FIÍBÍBÎyMmFEV�L'É²S AGV�H�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ
SYO�H7AmËyS æGHWO/S A/ËyLBSYÉ�FIÍBÍBÎyMmFEV�L/FIÎyH�ÎyH7CmFIÎ�O�HWO6É²M®HWÉyÉ²H7AmËySYFI×�FIAGORäxMEÎ5ÊNFIAGOBFXËyMEÎyÒ®ËyLGFXË�Ê<MmÉbË
Û¢S ÌRABMIË�FI× ×µÜ}MIÌBËyLBH7ÊºÉ²LBME?B×YO6DRH�S A/ÍB×YFEV�HEÓXÐ"LBH�DGFEÉ²H7× S ABH�FIÍBÍBÎyMmFEV�L6ÍBÎyMXÕ@SYO�HWÉ}ÎyHWFEÉ²MEAGFIDB× H
ÍBÎyMIËyHWVpËyS MEA�FXË�F<Ê<S ABS Ê/?BÊ V�MmÉbË,× H7ÕEH7×]Ó
à MXT�H7ÕEH7ÎWÖ@S Ë�SYÉ�O�S G%V�?B× Ë�ËyM%ÉyFxÒ%ËyLGFXË�S Ë®FI× T"FxÒ�É"ÍBÎyMXÕ@SYO�HWÉ,V�MmÉbË�H�á
HWVpËyS ÕEH7ABHWÉyÉ�É²S AGV�H

S Ë,O�M@HWÉ	ABMIË"S AGV�× ?GO�H®F/O�H�Ë�FIS × HWO%FIAGFI× Ò�É²SYÉ	MIÌ¯É²HWV�?BÎyS ËbÒ�ÎyHWâm?BS ÎyH7Ê<H7AmË�É7ÓmÐ"LBH7ÎyH�Ì¢MEÎyHEÖES Ì}ËyLBH
× H7ÕEH7×�MIÌ0DGFEÉ²H7× S ABH/ÍBÎyMIËyHWVpËyS MEAQSYÉ¬É²H�Ë®ËyM@M=LBS CEL³MEÎ�ËyM@M=× MXTUT,LBH7AØV�MEÊ<ÍGFIÎyHWO�T,S ËyL³ËyLBH
FEVpËy?GFI×0É²HWV�?BÎyS ËbÒQÎyHWâm?BS ÎyH7Ê<H7AmË�ÉpäxÎySYÉ²J�É7ÖRS Ë6T,S × ×0ÎyHWÉ²?B× Ë�S AÑS AGFEO�HWâm?GFXËyHNV�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH
É²H7× HWVpËyS MEA}ÓWëÑÊ<HWO�S ?BÊ:MEÎ}LBS CEL�× H7ÕEH7×IDGFEÉ²H7× S ABH	ÊNFxÒ�DRH0É²H7AGÉ²S DB× H�Ì¢MEÎ}ÊNFIA@Ò®MEÎyCmFIABSYÉyFXËyS MEAGÉ
S A�MEÎ�O�H7Î	ËyM�FEV�LBS H7ÕEH�É²?%G%V�S H7AmË"ÍBÎyMIËyHWVpËyS MEA}ÖEÎyH7× SYFIDB× H®É²HWV�?BÎyS ËbÒ�ËyLBÎyME?BCELBME?�Ë	ËyLBH®MEÎyCmFIABS ì
ÉyFXËyS MEA}ÖxFIAGO6ÎyHWO�?GVpËyS MEA/MIÌBMEÎyCmFIABSYÉyFXËyS MEAGFI×IMXÕEH7ÎyLBHWFEONÝ cxß¡òWÌ¢MEÎ5S AGÉbË�FIAGV�HEÖWËyLBH�ÏbÐ�ì ; FEÉ²H7× S ABHd	ÎyMIËyHWVpËyS MEABaQFIA@?GFI×	Ý MXß}SYÉ,S AmËyH7AGO�HWO�ËyM<ÍBÎyMXÕ@SYO�H�F�Ê<HWO�S ?BÊ × H7ÕEH7×�MIÌ�ÍBÎyMIËyHWVpËyS MEA}Ó
��� fgPSR���4��6���%���6T��U3HV�V�W0-����IXih"+.��3����
Ð"LBHQO�S G%V�?B× ËbÒ�T,S ËyL Ê<MEABH�Ë�FIÎyÒÑHWÉbËyS ÊNFXËyHWÉ%FEV7V�ME?BAmË�É/Ì¢MEÎ<ËyLBH�Ê<MXÕEH=ËyMXT"FIÎ�OBÉ<âm?GFI× S ì
Ë�FXËyS ÕEH�ÎySYÉ²JçÊNFIAGFICEH7Ê<H7AmËWÓ5Ð"LBH�âm?GFI× S Ë�FXËyS ÕEH=FIÍBÍBÎyMmFEV�Lç× M@MEJ�É/Ê<MEÎyH=FXË²ËyÎ�FEVpËyS ÕEHNËyLGFIA
ËyLBH�âm?GFIAmËyS Ë�FXËyS ÕEH"MEABH,S A�ËyLGFXË0Ê<MEABH�Ë�FIÎyÒ6HWÉbËyS ÊNFXËyHWÉ�FIÎyH,MEAB× Ò6ÎyHWâm?BS ÎyHWO<FXË0F®Ê<S ABS Ê/?BÊ
× H7ÕEH7×]ÓIë�ABMIËyLBH7Î0FEO�ÕXFIAmË�FICEH�MIÌRËyLBH�âm?GFI× S Ë�FXËyS ÕEH,FIÍBÍBÎyMmFEV�L/SYÉ�ËyLGFXË	S Ë	ÊNFxÒ6ÍBÎyMXÕ@SYO�H"Ê<MEÎyHEGH�Ú�S DBS × S ËbÒ�S A�HWÉbË�FIDB× SYÉ²LBS ABCNÉ²H7× HWVpËyS MEA�V�ÎyS ËyH7ÎySYF/ËyLGFIA�ËyLBH6âm?GFIAmËyS Ë�FXËyS ÕEH6FIÍBÍBÎyMmFEV�L=É²S AGV�H
ËyLBH�×YFXË²ËyH7Î�FIÍBÍBÎyMmFEV�LØMIÌµËyH7AÑËyH7AGOBÉ�ËyMQÌ¢M�V�?GÉ6MEAÑÊ<MEABH�Ë�FIÎyÒ³ÕXFI× ?BHWÉ6MEAB× ÒEÓ�j�?BÎyS ABCQËyLBH
V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH6SYO�H7AmËyS æRV7FXËyS MEA
äXÉ²H7× HWVpËyS MEA�ÍBÎyM�V�HWÉyÉ7ÖRS Ë¬SYÉ®MIÌµËyH7A³ÎyHWâm?BS ÎyHWO=ËyM�V�MEAGÉ²SYO�H7Î
ABMIË6MEAB× ÒØV�MmÉbË6H�á
HWVpËyS ÕEH7ABHWÉyÉ¬DB?�Ë�FI×YÉ²M=Ì·FEVpËyMEÎ�É6É²?GV�LçFEÉ%ÛbèxÜ®HWFEÉ²HNMIÌ"?GÉ²HNMIÌ�ËyLBH�ÉyFXÌ¢H�ì
CE?GFIÎ�O�Ö@Û]ïEÜ�ËyÎ�FIAGÉ²ÍGFIÎyH7AGV�Ò®ËyM�ËyLBH�?GÉ²H7ÎWÖ�Û·îmÜ�ËyLBH"LBH7× Í/ÍBÎyMXÕ@SYO�HWO�ËyM�ËyLBH�?GÉ²H7Î�É}ËyM¬ÍRH7Î²Ì¢MEÎyÊ
ËyLBH7S Î6Ì¢?BAGVpËyS MEA}Ö�Û6 @Ü�ËyLBH%ÎyH7×YFXËyS ÕEH%ÉbËyÎyH7ABCIËyLçMIÌ�ËyLBH�ÉyFXÌ¢H7CE?GFIÎ�O�Ö}FIAGOíÛ6 @Ü®ËyLBHNËbÒ@ÍRHWÉ�MIÌ
Ì¢?BAGVpËyS MEAGÉ0ÍRH7Î²Ì¢MEÎyÊ<HWO�Û¢HEÓ CGÓEÍBÎyH7ÕEH7AmËyS MEA}ÖEO�H�ËyH7ÎyÎyH7AGV�HEÖmO�H�ËyHWVpËyS MEA}ÖEÎyHWV�MXÕEH7ÎyÒEÖIV�MEÎyÎyHWVpËyS MEA}Ö
Ê<MEABS ËyMEÎyS ABCNFIAGO=FxT"FIÎyH7ABHWÉyÉ�Ü�Ý Iß¡Ó7}H�Ë�?GÉ�DBÎyS HFEGÒ�MXÕEH7ÎyÕ@S H7TíËyLBH6ÎySYÉ²J�ÊNFIAGFICEH7Ê<H7AmË�ÉbË�FICEH�S A³K È ë8aka Ý ïxß¡ÖGT,LBSYV�L�SYÉ
MEABH%MIÌ"ËyLBH%Ê<MmÉbË/ÎyS CEMEÎyME?GÉ¬âm?GFI× S Ë�FXËyS ÕEH%Ê<H�ËyLBM�OBÉ/FIAGOçMIÌµËyH7AÑÎyH7CmFIÎ�O�HWOØFEÉ/F�O�H�Ì·FEVpËyM
ÉbË�FIAGOBFIÎ�O�Ó�Ï¡Ë%LGFEÉNDRH7H7AíO�H7ÕEH7× MEÍRHWO�D@Ò'ËyLBHkl8m.CEMXÕEH7ÎyABÊ<H7AmËNFIAGO�ËyLBH7ÎyH�Ì¢MEÎyH�SYÉ<ËyLBH
ÍBÎyH�Ì¢H7ÎyÎyHWO�Ê<H�ËyLBM�O=T,S ËyLBS AUl8mºCEMXÕEH7ÎyABÊ<H7AmË,O�H7ÍGFIÎ²ËyÊ<H7AmË�É7Ó
+.-�R������2W0������	�R:W0�onFZ��������61)���%����-�� Ð"LBH®K È ë8aka É²MIÌµËbT"FIÎyH"V�MEAmË�FIS AGÉ�F®ÕEH7ÎyÒ�×YFIÎyCEH
V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH0× S DBÎ�FIÎyÒEÖxÉ²M�ËyLGFXË�S Ë	V7FIA�FI?�ËyMEÊNFXËySYV7FI× × Ò¬SYO�H7AmËyS Ì¢Ò/FIAGO/ÎyHWV�MEÊ<Ê<H7AGO�ËyLBH
V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ�ËyLGFXË<Ê<H7H�Ë<ËyLBH�SYO�H7AmËyS æGHWO�É²HWV�?BÎyS ËbÒÑÎyHWâm?BS ÎyH7Ê<H7AmË�É=Û¢S]Ó HEÓ�Ê<HWFEÉ²?BÎyHWÉ

MIÌ�ÎySYÉ²J�É%V7FI×YV�?B×YFXËyHWO Ì¢ÎyMEÊ ËyLBH³ÎySYÉ²J FIAGFI× Ò�É²SYÉ%ÉbË�FICEHxÜpÓ�Ð"LBH³V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ<T,LBSYV�L
Ì¢?B× æG×�F�DBÎyMmFEO�× Ò<É²S Ê<S ×YFIÎ0ÍB?BÎyÍRMmÉ²H�FIÎyH�V�ME× × HWVpËyHWO�ËyMECEH�ËyLBH7Î0S A�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH,CEÎyME?BÍGÉ7Ó90FEV�LQCEÎyME?BÍQSYÉ�Ì¢?BÎ²ËyLBH7Î�O�S Õ@SYO�HWOQS AmËyM�É²?BD�ì¡CEÎyME?BÍGÉ�FIAGOQHWFEV�L³É²?BD�ì¡CEÎyME?BÍQLGFEÉ®F=É²H�Ë¬MIÌ
V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ0ËyLGFXË�ÍRH7Î²Ì¢MEÎyÊ FNV�MEÊ<Ê<MEA�Ì¢?BAGVpËyS MEA}ÓGÏ{A�FEOBO�S ËyS MEA}Ö
K È ë8aka4LGFEÉ,F
ÍBÎyH�ì{O�H�æGABHWO�ËyLBÎyHWFXË�äXV�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH�CEÎyME?BÍ�Ë�FIDB× H�FIAGO�ËyLBH7ÎyH�Ì¢MEÎyH6ËyLBSYÉ�Ë�FIDB× H/SYÉ®?GÉ²HWO
ËyM³SYO�H7AmËyS Ì¢Ò'FIÍBÍBÎyMEÍBÎySYFXËyH�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ7Ó�90FEV�L'V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHNSYÉ<FI×YÉ²MQÊNFIÎyJEHWO
T,S ËyL F³É²HWV�?BÎyS ËbÒç× H7ÕEH7×�Û¢MEÎ�Î�FIABCEH�MIÌ®É²HWV�?BÎyS ËbÒç× H7ÕEH7×YÉ�Ü/É²MQËyLGFXË=K È ë8aka V7FIA É²H7× HWVpË
FIÍBÍBÎyMEÍBÎySYFXËyH�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ�D@Ò V�MEÊ<ÍGFIÎyS ABCØËyLBHQÊ<HWFEÉ²?BÎyHWÉ<MIÌ�ÎySYÉ²J�ÉNFICmFIS AGÉbËNËyLBH
É²HWV�?BÎyS ËbÒQ× H7ÕEH7×YÉ�FEÉyÉ²S CEABHWOQËyM�S AGO�S Õ@SYO�?GFI×0V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ7ò�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ�S AçËyLBH
× S DBÎ�FIÎyÒ³T,S × ×0DRH�É²H7× HWVpËyHWOØÌ¢MEÎ/ÎyHWV�MEÊ<Ê<H7AGOBFXËyS MEAçS Ì"ËyLBH%Ê<HWFEÉ²?BÎyHNMIÌ,ÎySYÉ²JQÌ·FI× ×YÉ6T,S ËyLBS A
ËyLBH�Î�FIABCEH®MIÌ�É²HWV�?BÎyS ËbÒ%× H7ÕEH7×YÉ�ÍBÎyMXÕ@SYO�HWO�D@ÒNËyLBH6V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHEÓ

+.-�R������2W0������	�R:W0�S\]W0��-^W0�6����	��%����-�� Ð"LBH�ÎyHWV�MEÊ<Ê<H7AGO�HWONV�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ5ABH7HWO�ËyM
DRH�ÎyH7Õ@S H7T�HWOÑFIAGO'V�MEÊ<ÍGFIÎyHWOÑFICmFIS AGÉbË�ËyLBMmÉ²H%ËyLGFXË<FIÎyH�FI× ÎyHWFEO�Ò³S A'ÍB×YFEV�H%ËyMQSYO�H7AmËyS Ì¢Ò
T�HWFIJ@ABHWÉyÉ²HWÉ�MEÎ�FIÎyHWFEÉ�MIÌ0MXÕEH7Î²ì¡ÍBÎyMXÕ@SYÉ²S MEA}ÓGåBMEÎ®ËyLBSYÉ¬ÍB?BÎyÍRMmÉ²HEÖ�FIAGFI× Ò�ÉbË�É¬V7FIA³H7AmËyH7Î¬ËyLBH
ÉbË�FXËy?GÉ0MIÌ}HWFEV�LNÎyHWV�MEÊ<Ê<H7AGO�HWONV�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHEÓEåBMEÎ0H�ÚBFIÊ<ÍB× HEÖEËyLBH®ÉbË�FXËy?GÉe! S AGÉbË�FI× × HWO�#
SYÉ®?GÉ²HWO�ËyM=S AGO�SYV7FXËyH/ËyLGFXË6FIA³H�Ú�SYÉbËyS ABC�MEÎ®ÍB×YFIABABHWOØV�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH�Ì¢?B× × Ò�Ê<H7H�Ë�É®ËyLBH
ÎyHWâm?BS ÎyH7Ê<H7AmË�É<×YFISYO D@Ò FçÎyHWV�MEÊ<Ê<H7AGO�HWO V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHEÖ	FIAGO�ËyLBHQÉbË�FXËy?GÉ&! FEV7V�H7Í�Ë
× H7ÕEH7×}MIÌ�ÎySYÉ²J�#BSYÉ,?GÉ²HWO�ËyMNS AGO�SYV7FXËyH¬ËyLGFXË�ËyLBH6ÎyHWV�MEÊ<Ê<H7AGO�HWO=V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH¬T,S × ×}ABMIË
DRH%S Ê<ÍB× H7Ê<H7AmËyHWOÑFIAGOØËyLBH%ÎySYÉ²J³T,S × ×0DRH�FEV7V�H7Í�ËyHWO�Ó)(�AGV�HNËyLBH�FIAGFI× Ò�ÉbË�É¬LGFxÕEH%V�LBMmÉ²H7A
V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ�Ì¢MEÎ�S Ê<ÍB× H7Ê<H7AmË�FXËyS MEA=FXÌµËyH7Î"V�MEÊ<ÍGFIÎyS ABC6T,LGFXË�SYÉ0ÎyHWV�MEÊ<Ê<H7AGO�HWO%FIAGO
T,LGFXË6SYÉ6S AçÍB×YFEV�HEÖ�K È ë8aka ËyLBH7AÑCEH7ABH7Î�FXËyHWÉ®ËyLBH%V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH<ÍBÎyS MEÎyS ËbÒQÎyH7ÍRMEÎ²ËWÖ
T,LBSYV�LQÍBÎyMXÕ@SYO�HWÉ�F&! æGÎ�ÉbË®ÍGFEÉyÉ�#
FXË®ÍBÎyS MEÎyS ËySYÉyFXËyS MEA}Ó^d	ÎyS MEÎyS ËySYÉyFXËyS MEA�MIÌ0V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ
SYÉ�ÎyHWâm?BS ÎyHWO%FEÉ0ËyLBH7ÎyH¬FIÎyH�S ABH7Õ@S Ë�FIDB× H¬V�MEAGÉbËyÎ�FIS AmË�É�É²?GV�L=FEÉ0DB?GO�CEH�Ë,FIAGONËyS Ê<HEÖ�S A=ÊNFIA@Ò
V7FEÉ²HWÉ7Ó
Ð¯M�V7FI×YV�?B×YFXËyH�ËyLBH%ÍBÎyS MEÎyS ËbÒQÉyV�MEÎyH<MIÌ"HWFEV�LçV�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHEÖ¯K È ë8aka V�MEAGÉ²SYO�H7Î�É

ËyLBH"Ì¢ME× × MXT,S ABC®Ì·FEVpËyMEÎ�É�p�ÛbèxÜ�V�MmÉbË�Î�FXËyS ABCGÖBÛ]ïEÜ5H�á
HWVpËyS ÕEH7ABHWÉyÉ�Î�FXËyS ABCGÖBÛ·îmÜ5FEOBO�S ËyS MEAGFI×BÉyV�MEÎyH
Ì¢MEÎ	HWFEV�L/ËyLBÎyHWFXË�ËyLGFXË�ËyLBH�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH"V�MEÊ/DGFXË�É,Û6 @Ü¯ËbÒ@ÍRH�MIÌ
ÍBÎyMIËyHWVpËyS MEA�ÍBÎyMXÕ@SYO�HWO
D@ÒçËyLBH�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHEÖ�ÛqcEÜ�ËyLBH�LBS CELBHWÉbË<Ê<HWFEÉ²?BÎyH�MIÌ�ÎySYÉ²JØËyLGFXË<× HWOÑËyM³ËyLBH�V�ME?BA�ì
ËyH7ÎyÊ<HWFEÉ²?BÎyH�DRH7S ABC'ÎyHWV�MEÊ<Ê<H7AGO�HWO�Ì¢MEÎNËyLGFXË=FEÉyÉ²H�ËWÖ0FIAGO:Û�MmÜ<T,LBH�ËyLBH7ÎNËyLBH7ÎyH³FIÎyH�ABM
FI× ËyH7ÎyAGFXËyS ÕEHQV�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉNFI× ÎyHWFEO�Ò'S AGÉbË�FI× × HWO�Ó"Ð¯M'O�H�ËyH7ÎyÊ<S ABHQÎ�FXËyS ABCmÉ<Ì¢MEÎ%ËyLBHWÉ²H
Ì·FEVpËyMEÎ�É7Ö0K È ë8aka3?GÉ²HWÉ<ÍBÎyH�ì¡HWÉbË�FIDB× SYÉ²LBHWO'S A�Ì¢MEÎyÊNFXËyS MEA ÍBÎyMXÕ@SYO�HWOÑÌ¢MEÎNHWFEV�L V�ME?BAmËyH7Î²ì
Ê<HWFEÉ²?BÎyHEÓ�Ð"LGFXË<SYÉ7Ö�O�H7ÕEH7× MEÍRH7Î�É/MIÌ¬K È ë8aka LGFxÕEH%ÍBÎyMXÕ@SYO�HWOÑHWFEV�L�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH
T,S ËyL�ÎyHWâm?BS ÎyHWO=S A�Ì¢MEÎyÊNFXËyS MEAQÉ²?GV�L�FEÉ�S Ë�É�V�MmÉbËWÖGÉ²?BÍBÍRMEÎ²ËyS ÕEH¬ËbÒ@ÍRHEÖRH�á
HWVpËyS ÕEH7ABHWÉyÉ7ÖGFI× ËyH7Î²ì
AGFXËyS ÕEH�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHmÛ·É�ÜpÖ�FIAGO�FIÍBÍB× SYV7FIDB× H�FEÉyÉ²H�ËxÛ·É�ÜpÓ
Ð"LBH�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH'V�MmÉbË³ÊNFxÒ O�S á
H7ÎØDRH�ËbT�H7H7AºO�S á
H7ÎyH7AmËØH7A@Õ@S ÎyMEABÊ<H7AmË�ÉQFIAGO

ËyLBH7ÎyH�Ì¢MEÎyHØËyLBHÑÍBÎyH�ì¡HWÉbË�FIDB× SYÉ²LBHWOñÎ�FXËyS ABCmÉ�Ì¢MEÎ�ËyLBH'V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHçV�MmÉbË�SYÉ�F ÎyME?BCEL
HWÉbËyS ÊNFXËyH�DGFEÉ²HWO MEA CEH7ABH7Î�FI×"æRVpËyS ËyS ME?GÉ�É²Ò�ÉbËyH7ÊNÉ7Óia�MEÎyH7MXÕEH7ÎWÖ5HWÉbËyS ÊNFXËyHWOíV7FIÍBS Ë�FI×�H�Ú@ì
ÍRH7AGO�S Ëy?BÎyHNMEA³ËyLBH%V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH�S Ê<ÍB× H7Ê<H7AmË�FXËyS MEAØSYÉ6FEÉyÉ²?BÊ<HWOQËyM�DRHNT,ÎyS Ë²ËyH7AçMIá
MXÕEH7Î¬æGÕEH%ÒEHWFIÎ�É6FIAGOçÎy?BABABS ABC³V�MmÉbË/T"FEÉ�HWÉbËyS ÊNFXËyHWOÑFXË�Fsr	ï�c_t�ÍRH7Î�O�S H7ÊÙÎ�FXËyHEÓ5Ð"LBH
ËyMIË�FI×�V�MmÉbËWÖ}H�Ú�ÍBÎyHWÉyÉ²HWOØS AÑÊ<MEABH�Ë�FIÎyÒQËyH7ÎyÊNÉ7Ö}SYÉ�ËyLBH7A'V�MEA@ÕEH7Î²ËyHWO³ËyM³F�V�MEÎyÎyHWÉ²ÍRMEAGO�S ABC
× S ABCE?BSYÉbËySYV®Î�FXËyS ABC�Ûu! × MXT'#�S Ìwv]rxc_t�tBÖ^! Ê<HWO�S ?BÊ&#BS Ìwy�rxc_t�t/FIAGOzv]r	ï�Ö t�t�t/FIAGOk! LBS CEL$#�S Ìy]r	ï�Ö t�t�tmÜpÓXÐ"LBH"H�á
HWVpËyS ÕEH7ABHWÉyÉ�Ì·FEVpËyMEÎ�S A�K È ë8aka SYÉ	O�H�æGABHWO<FEÉ"! ËyLBH�O�H7CEÎyH7H0ËyM�T,LBSYV�L
FNV�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH¬Ê<H7H�Ë�É,ËyLBH6MED�ÔbHWVpËyS ÕEHWÉ,MIÌ�ËyLBH/É²?BD�ì¡CEÎyME?BÍ=ËyLGFXË�S Ë�SYÉ�V�MEAmË�FIS ABHWO=S A$#
FIAGONËyLBH¬ÍRMmÉyÉ²S DB× H�Î�FXËyS ABCmÉ�FIÎyH.! × MXT'# Ö^! Ê<HWO�S ?BÊ&#�MEÎ8! LBS CEL$# ÓBë�É0Ì¢MEÎ�ËyLBH®Î�FXËyS ABCmÉ�FICmFIS AGÉbË

{@c7hydb_7` |
_Wz{z{e ´mq ge}5c7q img]~Eo�c�dbe \muWz
t5_Wz¡d0o�c�dbe \mu |:�¢|G_ps"��~^�p�In��B����gp~Ee ima.��~2�In@rK�µr�e uW�%��~@�
���Bg�hydbe wxg�\mg�z{z	o�c�dbe \mu |:�¢|G_ps"��~��Xn��B����gp~Ee ima.��~2�InmrK�µr�e uW�%��~^�p���_E¶m_7^}���E`bgpc�dbz"�x�Bg�hydbgp~ ��~m~<�K|
gy`0�¯c7h²�
�}jEl�g"_7^5t5_Wim\Xdbgy`ba�gpc7z{iE`bg o¯�w�µo0gp~Eimh�g"���E`bgpc�d?��~��p�Inmo�}K�µo0gp~Eimh�gw}¯imq \mgy`²c7´me q e d]j���~2�

o0[?�µo0gp~Eimh�g�[]a�l@c7hyd?��~2�In « � « gydbg�hyd?��~��Enmo8�µo0g�h�_�wxgy`?��~@�
r�e uW�mg�z¡d0o0e z{­���gpc7z{iE`bg8�0z{z{_Xh�e c�dbgp~S��~��XnB�0~2�En��_~%�In2��~��In��0~^�p�In%�_~^���Xn��0~^�L�� ¨m¤�� �&�@ª t5o"�w�S��|�`be _7`be d]jNfIh�_7`be \mu/fXjEz¡dbg�a�� �D�

ËyLBHNËbÒ@ÍRH%MIÌ"ÍBÎyMIËyHWVpËyS MEA}Ö�K È ë8aka CES ÕEHWÉ�LBS CELBH7Î6Î�FXËyS ABCmÉ®ËyMQV�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ®ËyLGFXË
ÍBÎyH7ÕEH7AmË�FIA�S AGV�SYO�H7AmË,Ì¢ÎyMEÊ M�V7V�?BÎyÎyS ABC/ËyLGFIA=ËyLBMmÉ²H¬ËyLGFXË�O�H�ËyHWVpË�MEÎ"Ì·FEV�S × S Ë�FXËyH�ÎyHWV�MXÕEH7ÎyÒ
Ì¢ÎyMEÊºFIA/S AGV�SYO�H7AmË,Û¢LBMXT�H7ÕEH7ÎWÖWS Ë�SYÉ5S Ê<ÍRMEÎ²Ë�FIAmË5ËyM®S Ê<ÍB× H7Ê<H7AmË	F�DGFI×YFIAGV�HWO6É²H�Ë�MIÌGÕXFIÎyS ME?GÉ
ËbÒ@ÍRHWÉ�MIÌ5V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ�ÜpÓmÐ"LBH®MXÕEH7Î�FI× ×BÍBÎyS MEÎyS ËbÒ<Î�FXËyS ABC/SYÉ0ËyLBH7A�ÎyHWO�?GV�HWO%D@ÒHc_t@ðºS Ì
FIA%FI× ËyH7ÎyAGFXËyS ÕEH�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH"SYÉ0FI× ÎyHWFEO�Ò/S ANÍB×YFEV�HEÓmÐ5FIDB× H6è�É²LBMXT�É�LBMXT ËyLBH�MXÕEH7Î�FI× ×
ÍBÎyS MEÎyS ËbÒ%ÉyV�MEÎyHWÉ"FIÎyH�V7FI×YV�?B×YFXËyHWO�Ó

+.-�R������2W0������	�R:W0�s�$��4����_����-�� ; FEÉ²HWO�MEA}ÖRDB?�Ë®ABMIË®DRME?BAGOQD@ÒEÖGËyLBH/ÍBÎyS MEÎyS ËbÒ�ÉyV�MEÎyHWÉ
MIÌ�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ7Ö�ËyLBH�É²H7× HWVpËyS MEAÑMIÌ�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ�SYÉ6ËyM³DRH=ÊNFEO�HEÓ�Ð¯M³ÊNFIJEH
O�HWV�SYÉ²S MEAGÉ�MEA%ËyLBH�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH�É²H7× HWVpËyS MEA}ÖmËyLBH�FIAGFI× Ò�ÉbË�É�FIÎyH�ÎyHWâm?BS ÎyHWONËyM�HWÉbËyS ÊNFXËyH
ËyLBH�V�MmÉbË�MIÌ�HWFEV�L�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH<ËyMØDRH=S Ê<ÍB× H7Ê<H7AmËyHWO�Ó	>@S AGV�H�S Ë<SYÉ/MIÌµËyH7A O�S G%V�?B× Ë
ËyMNHWÉbËyS ÊNFXËyH¬ËyLBH/V�MmÉbË�FEV7V�?BÎ�FXËyH7× ÒEÖ�DGFIAGOBÉ6Û¢Î�FIABCEHWÉ�Ü�FIÎyH�ABMEÎyÊNFI× × Ò%?GÉ²HWO�ËyMNÎyHWV�MEÎ�O%ËyLBH
V�MmÉbË�É5S A%K È ë8akaÑÓEë�× ËyLBME?BCEL<FI× ×mËyLBH,ÎySYÉ²J�ÊNFIAGFICEH7Ê<H7AmË�ÍBÎyM�V�HWÉyÉ²HWÉ¯LGFxÕEH�DRH7H7A�CE?BSYO�HWO
D@Ò<ËyLBH6K È ë8aka.Ê<H�ËyLBM�O�ME× MECEÒ�Û·FIAGO�É²MIÌµËbT"FIÎyHxÜ�É²M/Ì·FIÎWÖEËyLBH�O�HWV�SYÉ²S MEA�ì¡ÊNFIJ@S ABC6MEA%ËyLBH
FEVpËy?GFI×�É²H7× HWVpËyS MEA³FIAGOQÍBÎyS MEÎyS ËySYÉyFXËyS MEA�MIÌ�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ�SYÉ®ÊNFEO�H�D@Ò�ËyLBH<FIAGFI× Ò�ÉbË�É7Ó
ë�É0É²LBMXT,ANS A<ËyLBH®V7FEÉ²H,MIÌ5K È ë8akaÑÖmS A<ËyLBH®âm?GFI× S Ë�FXËyS ÕEH,ÎySYÉ²J�ÊNFIAGFICEH7Ê<H7AmË0FIÍBÍBÎyMmFEV�L}Ö
MEAB× Ò�V�MmÉbË�Ì·FEVpËyMEÎ�É	FIÎyH,HWÉbËyS ÊNFXËyHWO�S ANÊ<MEABH�Ë�FIÎyÒ6ËyH7ÎyÊNÉ	FIAGO/ËyLBH7ÎyH�Ì¢MEÎyH"ËyLBH�V�MmÉbË�äxDRH7ABH�æBË
FIAGFI× Ò�É²SYÉ¯SYÉ5ABMIË�ÍRH7Î²Ì¢MEÎyÊ<HWO6H�Ú�ÍB× SYV�S Ëy× ÒEÓ à MXT�H7ÕEH7ÎWÖWV�MmÉbË²ì¡H�á
HWVpËyS ÕEH7ABHWÉyÉ¯SYÉ�ÉbËyS × ×BV�MEAGÉ²SYO�H7ÎyHWO
S A=ËyLBH6âm?GFI× S Ë�FXËyS ÕEH�FIÍBÍBÎyMmFEV�L}Ó

� � ö:�"Å�ÇbÂBö¯úûö¯À0ÁBýÑÇ²ÀãùØÃ0Å�À0Á�ö}ÂGúûö}ü�ý@Å�ÂBö þ"ö¯ÿbö¯ÆRÁBÇbÃ0À

N$����\]W0-^�)4������B�21)���6����-��
Ï{AíCEH7ABH7Î�FI×]Ö�ËyLBH�ËyH7ÎyÊ�Öe! V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH�É²H7× HWVpËyS MEA$#	LGFEÉ%FÑDBÎyMmFEO�Ê<HWFIABS ABCGÖ	T,LBSYV�L
ÕXFIÎyS HWÉ¯Ì¢ÎyMEÊ:ËyLBH"ÍBÎyS MEÎyS ËySYÉyFXËyS MEA6MIÌRS Ê<ÍB× H7Ê<H7AmË�FXËyS MEA�ÍB×YFIAGÉ"ÛµËyLBH"AGFIÎyÎyMXT�HWÉbË5V�MEAGV�H7Í�ËpÜ}ËyM
ËyLBH0SYO�H7AmËyS æRV7FXËyS MEA6FIAGO6É²H7× HWVpËyS MEA�MIÌ�ÎyHWâm?BS ÎyHWO�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ�ÛµËyLBH0T,SYO�HWÉbË�V�MEAGV�H7Í�ËpÜpÓ
Ð"LBH7ÎyH�Ì¢MEÎyHEÖBDRH�Ì¢MEÎyH/T�H6CEMNÌ¢?BÎ²ËyLBH7ÎWÖGT�H�O�H�æGABH�ËyLBH�ÉyV�MEÍRH/MIÌ�ME?BÎ®FIÍBÍBÎyMmFEV�L�ÍBÎyHWÉ²H7AmËyHWO
S A=ËyLBSYÉ,ÍGFIÍRH7ÎWÓ
ë�É¯Ê<H7AmËyS MEABHWO6HWFIÎy× S H7ÎWÖ�ËyLBH�ÍBÎyMEÍRMmÉ²HWO6FIÍBÍBÎyMmFEV�L�SYÉ¯ËyM®É²?BÍBÍRMEÎ²Ë�O�HWV�SYÉ²S MEA�ì¡ÊNFIJ@S ABC�S A

V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH"É²H7× HWVpËyS MEA<?BAGO�H7Î	DB?GO�CEH�Ë0V�MEAGÉbËyÎ�FIS AmË�É7Ó à MXT�H7ÕEH7ÎWÖxS Ë�O�M@HWÉ�ABMIË	S AGV�× ?GO�H
ËyLBH0SYO�H7AmËyS æRV7FXËyS MEA�MIÌBV�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ�FIAGO¬H7ÕXFI× ?GFXËyS MEA�MIÌ�H�Ú�SYÉbËyS ABC�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ7Ó
Ð"LBH7ÎyH�Ì¢MEÎyHEÖ@ËyLBH6V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ"O�HWFI× Ë,T,S ËyL�S A�ME?BÎ�FIÍBÍBÎyMmFEV�L=FIÎyH¬× S Ê<S ËyHWO=ËyM�ËyLBMmÉ²H
V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ"ËyLGFXË¬LGFxÕEH6DRH7H7A³ÉyV�ÎyH7H7ABHWO�S ABS ËySYFI× × ÒEÓ
Ð"LBH�S ABS ËySYFI× × Ò�ÉyV�ÎyH7H7ABHWOQV�ME?BA�ì
ËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ�S Ê<ÍB× Ò�ËyLGFXËNÛbèxÜ�ËyLBH7Ò�Ê<H7H�Ë¬ËyLBHNÉ²HWV�?BÎyS ËbÒ�ÎyHWâm?BS ÎyH7Ê<H7AmË�É7Ö�Û]ïEÜ,ËyLBH<ABH7HWOBÉ

Ì¢MEÎ5ËyLBH7ÊULGFxÕEH0DRH7H7A<É²MEÊ<H7LBMXTÑÕEH7ÎyS æGHWO�ÖxFIAGO�Û·îmÜ�ËyLBH7S Î5Ì¢HWFEÉ²S DBS × S ËbÒGäXV�MEÊ<ÍGFXËyS DBS × S ËbÒ¬T,S ËyL
ËyLBH�MEÎyCmFIABSYÉyFXËyS MEA$# É�V�?B× Ëy?BÎyHXäXÉ²J@S × ×�LGFxÕEH®DRH7H7A�FEÉyÉ²HWÉyÉ²HWO�Ó
Ð"LBH7A}ÖEËyLBH�ÎyH7ÊNFIS ABS ABC6ÍBÎyMEDB× H7Ê�SYÉ	ËyM�É²H7× HWVpË0ËyLBH7ÊûÌ¢MEÎ�S Ê<ÍB× H7Ê<H7AmË�FXËyS MEA�FEV7V�MEÎ�O�S ABC

ËyM�ËyLBH�FxÕXFIS ×YFIDB× H<DB?GO�CEH�ËWÓ¯Ï¡Ì"ËyLBH7ÎyH%SYÉ�ABMQDB?GO�CEH�Ë6× S Ê<S ËWÖ¯ËyLBH�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHNÉ²H7× HWVpì
ËyS MEA³ÍBÎyMEDB× H7Ê DRHWV�MEÊ<HWÉ®FNËbÒ@ÍBSYV7FI×5ÍBÎyS MEÎyS ËySYÉyFXËyS MEA�ÍBÎyMEDB× H7Ê�ÖRT,LBSYV�L³V7FIAQDRH<É²ME× ÕEHWO�D@Ò
K È ë8aka�# É�ÍBÎyS MEÎyS ËbÒ�ÉyV�MEÎyS ABC�É²Ò�ÉbËyH7ÊêMEÎ�MIËyLBH7Î�É²S Ê<S ×YFIÎ�FIÍBÍBÎyMmFEV�LBHWÉ7ÓRÏbO�HWFI× × ÒEÖ}FI× ×�ËyLBH
V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ
T,S ËyL6LBS CEL�ÍBÎyS MEÎyS ËyS HWÉ}É²LBME?B×YO�DRH	S Ê<ÍB× H7Ê<H7AmËyHWO�S Ê<Ê<HWO�SYFXËyH7× ÒEÓxÐ"LBH7ÎyH�ì
Ì¢MEÎyHEÖBËyLBH6S AGV�ÎyHWFEÉ²H6S A�ËyLBH/DB?GO�CEH�Ë®É²LBME?B×YO�DRH/ÍBÎyMXÕ@SYO�HWO=S Ì�ËyLBH6ËyMIË�FI×¯S Ê<ÍB× H7Ê<H7AmË�FXËyS MEA
V�MmÉbË�H�ÚBV�H7HWOBÉ�ËyLBH®H�Ú�SYÉbËyS ABC6DB?GO�CEH�ËWÓ à MXT�H7ÕEH7ÎWÖIS Ë"ÊNFxÒ�ABMIË�DRH¬FI× T"FxÒ�É�ÍRMmÉyÉ²S DB× H®FIAGO%FEÉ
F�ÎyHWÉ²?B× ËWÖmMEAB× Ò<É²MEÊ<H�MIÌ�ËyLBH7Ê�Ö@T,S ËyLBS ANËyLBH�DB?GO�CEH�Ë�× S Ê<S ËWÖ@ÊNFxÒ�DRH®FIÍBÍBÎyMXÕEHWO�D@Ò<É²H7ABS MEÎ
ÊNFIAGFICEH7Ê<H7AmË¬ÛµËyLBH¬ÎyHWÉbË�MIÌ}ËyLBH7Ê FIÎyH�ËyLBH7A�ËyM�DRH¬V�MEAGÉ²SYO�H7ÎyHWONS A�ABH�Ú@Ë"ÒEHWFIÎ�# É0DB?GO�CEH�ËpÜpÓ
Ð"LBH®ÍBÎyMEÍRMmÉ²HWO%FIÍBÍBÎyMmFEV�LNS A%ËyLBSYÉ�ÍGFIÍRH7Î,FIS ÊNÉ�FXË"ÍBÎyMXÕ@SYO�S ABC�F/O�HWV�SYÉ²S MEA�FISYO%ÎyH7CmFIÎ�O�S ABC
ËyLBSYÉ,ÍBÎyMEDB× H7Ê�Ó

N$�*���%���z�$��4����_����-�� \]W0-^�)4����
Ð"LBH�ÍBÎyMEDB× H7Ê ËyM=DRH�LGFIAGO�× HWOQD@Ò�ME?BÎ¬FIÍBÍBÎyMmFEV�L�SYÉ¬FNËbÒ@ÍBSYV7FI×5DBS AGFIÎyÒÑÛ�tXì�èxÜ�É²H7× HWVpËyS MEA
ÍBÎyMEDB× H7Ê Û¢S]Ó HEÓxËyM¬É²H7× HWVpË�MEÎ5ABMIË�ËyM¬É²H7× HWVpË�?BAGO�H7Î5ËyLBH"DB?GO�CEH�Ë�V�MEAGÉbËyÎ�FIS AmËpÜpÖWT,LBSYV�L<V7FIA/DRH
Ê<M�O�H7× × HWO³D@Ò�ËyÎ�FEO�S ËyS MEAGFI×5× S ABHWFIÎ®ÍBÎyMECEÎ�FIÊ<Ê<S ABCØÛ�7:d�Ü,ËyHWV�LBABSYâm?BHWÉ7Ö
Ê<MEÎyH�É²ÍRHWV�S æRV7FI× × Ò
S AmËyH7CEH7Î}ÍBÎyMECEÎ�FIÊ<Ê<S ABC�Û¢Ï¡d�Ü
T,S ËyL�DBS AGFIÎyÒ�ÕXFIÎySYFIDB× HWÉ7Ó7Ð"LBH	S AmËyH7CEH7Î}ÍBÎyMECEÎ�FIÊ<Ê<S ABC"Ê<M�O�H7×
S Az90âm?GFXËyS MEA'ÛbèxÜ,SYÉ�Ì¢MEÎ�MEÍ�ËyS ÊNFI×�É²H7× HWVpËyS MEA�MIÌ0V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ�ËyLGFXË®ÊNFXÚ�S Ê<SYÉ²HWÉ�ËyLBH
ÍRMIËyH7AmËySYFI×}DRH7ABH�æBË�É,?BAGO�H7Î�F�CES ÕEH7A=DB?GO�CEH�ËWÓ

aQFXÚ�S Ê<SYÉ²H�¢�£¥¤ £�¦�£ É²?BD�ÔbHWVpË,ËyMY¢�£[§ £�¦�£ v©¨�FIAGO ¦�£ SYÉªt<MEÎ¬è®Ì¢MEÎ�FI× ×�«L¬ ÛbèxÜ

T,LBH7ÎyH
¦�£
SYÉ/FQO�HWV�SYÉ²S MEAÑÕXFIÎySYFIDB× HQÛbè%S Ì�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHo«®SYÉ/É²H7× HWVpËyHWOÑFIAGO�t�MIËyLBH7Î²ì

T,SYÉ²HxÜpÖ�¤ £ SYÉ�ËyLBH/DRH7ABH�æBËNÛ¢MEÎ®× MmÉyÉ�ÎyHWO�?GVpËyS MEARÜ,MIÌ0V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH'«�Ö�§ £ SYÉ�ËyLBH�V�MmÉbË®MIÌ
V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHK«�ÖBFIAGOB¨5SYÉ"ËyLBH�DB?GO�CEH�Ë�× S Ê<S Ë�MEA�V7FIÍBS Ë�FI×�H�Ú�ÍRH7AGO�S Ëy?BÎyHWÉ7Ó
Ï¡ÌBËyLBH7ÎyH�FIÎyH0MIËyLBH7Î�V�MEAGÉbËyÎ�FIS AmË�É�ËyM®DRH"V�MEAGÉ²SYO�H7ÎyHWO�Ö7ËyLBH7Ò�V7FIA/DRH"FEOBO�HWO¬ËyM]90âm?GFXËyS MEA

ÛbèxÜ/S A'Ì¢MEÎyÊ MIÌ¬FEOBO�S ËyS MEAGFI×"V�MEAGÉbËyÎ�FIS AmË�É7Ó�åBMEÎ�H�ÚBFIÊ<ÍB× HEÖ�É²H7ABS MEÎ<ÊNFIAGFICEH7Ê<H7AmË�Ê<S CELmË
LGFxÕEH�S Ê<ÍRMmÉ²HWONF6× S Ê<S Ë¬Û�¨*­xÜ�MEA<ËyLBH�ËyMIË�FI×RFIABA@?GFI×GÎy?BABABS ABC�V�MmÉbËWòIËyLBSYÉ�V7FIA%DRH�Ê<M�O�H7× × HWO
FEÉ.® £�¦�£ v¯¨*­IÖ5T,LBH7ÎyH�® £ SYÉ6ËyLBH=FIABA@?GFI×0Îy?BABABS ABCØV�MmÉbË�MIÌ�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHS«�Óx(�ËyLBH7Î
H�ÚBFIÊ<ÍB× HWÉ,FIÎyH<ÛbèxÜ

¦�° @ ¦^± @ ¦�² >:è¬S Ì	V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH/èEÖ% NFIAGO&M<FIÎyH®H�ÚBV�× ?GÉ²S ÕEH¬MIÌ
HWFEV�L=MIËyLBH7ÎWÖGFIAGOçÛ]ïEÜ

¦�° @ ¦ ­w@ ¦�²´³ è¬S Ì	FXË�× HWFEÉbË�MEABH�MIÌ5ËyLBH6V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH<èEÖGï�Ö
FIAGOBM<Ê/?GÉbË,DRH6É²H7× HWVpËyHWO�Ó
Ï{A³ËyLBHNë87:9�ì¡MEÎyS H7AmËyHWOQFIÍBÍBÎyMmFEV�LBHWÉ7ÖGËyLBH<DRH7ABH�æBË�Ì·FEVpËyMEÎ´¤ £ T�ME?B×YO³?GÉ²?GFI× × Ò�DRHNH�Ú@ì

ÍBÎyHWÉyÉ²HWO�FEÉ�ËyLBH¬Ê<MEABH�Ë�FIÎyÒ%FIÊ<ME?BAmË"MIÌ5× MmÉyÉ"ÎyHWO�?GVpËyS MEA}Ó^(�A�ËyLBH�MIËyLBH7Î"LGFIAGO�Ö^¤ £ T�ME?B×YO
DRH®ËyLBH®ÍBÎyS MEÎyS ËbÒ<Î�FXËyS ABC/MEÎ�MIËyLBH7Î,É²S Ê<S ×YFIÎ�Ê<HWFEÉ²?BÎyHWÉ0S A�âm?GFI× S Ë�FXËyS ÕEH®FIÍBÍBÎyMmFEV�LBHWÉ7Ó à MXT"ì
H7ÕEH7ÎWÖxS Ë�Ê/?GÉbË�DRH"ABMIËySYV�HWO6ËyLGFXËµ90âm?GFXËyS MEA=ÛbèxÜ¯ÊNFxÒ¬ABMIË�DRH,V�MEÊ<ÍGFXËyS DB× H�T,S ËyL�Ê<MEABH�Ë�FIÎyÒ
DRH7ABH�æBË®Ê<M�O�H7×YÉ7Ó
Ð"LBH�FIDRMXÕEH´7:díÊ<M�O�H7×5SYÉ�ÕXFI× SYO�MEAB× Ò=T,LBH7A�ËyLBH/MXÕEH7Î�FI× ×�DRH7ABH�æBË¬V7FIA
DRH�H�Ú�ÍBÎyHWÉyÉ²HWO�FEÉ,F<× S ABHWFIÎ,É²?BÊ MIÌ�DRH7ABH�æBË�É,MIÌ5HWFEV�L�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHEÓ<íLBH7A³É²H7ÕEH7Î�FI×¯V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ,FIÎyH6?GÉ²HWO�ËyM�V�MEÊ/DGFXË®MEABH/V�MEÊ<Ê<MEA�ËyLBÎyHWFXËWÖGËyLBH
MXÕEH7Î�FI× ×BDRH7ABH�æBË"ÊNFxÒ�DRH¬O�S á
H7ÎyH7AmË0Ì¢ÎyMEÊûËyLBH�× S ABHWFIÎ�É²?BÊ MIÌ}ÊNFIÎyCES AGFI×BDRH7ABH�æBË�É�MIÌ}S AGO�S ì
Õ@SYO�?GFI×mV�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ7Ó7åBMEÎ¯H�ÚBFIÊ<ÍB× HEÖWÉ²?BÍBÍRMmÉ²H�ËyLGFXË¯ËyLBH�FIABA@?GFI×EÊ<MEABH�Ë�FIÎyÒ�DRH7ABH�æBË�É

MIÌ�ËyLBH�É²Ò�ÉbËyH7Ê�ì¡CEH7ABH7Î�FXËyHWO¬ÍGFEÉyÉ²T�MEÎ�O¬É²Ò�ÉbËyH7Ê:FIAGO¬ËyMEJEH7A�ì¡DGFEÉ²HWO�FI?�ËyLBH7AmËySYV7FXËyS MEA6É²Ò�ÉbËyH7Ê
FICmFIS AGÉbË�ËyLBH�ÊNFEÉyâm?BH7Î�FEO�S ABC=ËyLBÎyHWFXË�FIÎyH%HWÉbËyS ÊNFXËyHWOØËyMQDRHz¶,î�t�t�FIAGO©¶ec_t�tBÖ}ÎyHWÉ²ÍRHWVpì
ËyS ÕEH7× ÒEÓ à MXT�H7ÕEH7ÎWÖIS Ë"O�M@HWÉ0ABMIË�S Ê<ÍB× Ò�ËyLGFXË0ËyLBH�ËyMIË�FI×RDRH7ABH�æBË"T,S × ×RDRH.¶ª=�t�t¬T,LBH7A�DRMIËyL
FIÎyH�S Ê<ÍB× H7Ê<H7AmËyHWO�ÓIÐ"LBSYÉ�V7FIA/DRH,O�?BH�ËyM�ËyLBH�Ì·FEVpË�ËyLGFXË�ËyLBHWÉ²H�ËbT�M¬V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ¯FIÎyH
S AmËyH7ÎyÎyH7×YFXËyHWO�Ó�Ð"LBH7ÎyH�Ì¢MEÎyHEÖEËyLBH�DRH7ABH�æBË�É"MIÌ5H7ÕEH7ÎyÒNFIÍBÍB× SYV7FIDB× H�V�MEÊ/DBS AGFXËyS MEA%MIÌ�V�ME?BAmËyH7Î²ì
Ê<HWFEÉ²?BÎyHWÉ�É²LBME?B×YO/DRH,HWÉbËyS ÊNFXËyHWO�ÖIDB?�Ë	S Ë	T,S × ×BV�H7Î²Ë�FIS AB× Ò/FEOBO/L@?BCEH,FIÊ<ME?BAmË�É�MIÌRDB?BÎ�O�H7AGÉ
ËyM�FIAGFI× Ò�ÉbË�É�H7ÕEH7AQS Ì0S Ë�SYÉ®ÍRMmÉyÉ²S DB× H6ËyM=HWÉbËyS ÊNFXËyH/ËyLBHWÉ²H�DRH7ABH�æBË�É7Ó�j�?BH�ËyM%ËyLBSYÉ¬ÎyHWFEÉ²MEA}Ö
T�H�FIÎyH¬S A=Ì·FxÕEME?BÎ"MIÌ�âm?GFI× S Ë�FXËyS ÕEH¬DRH7ABH�æBË�Ê<HWFEÉ²?BÎyHWÉ7Ó

N$�ON��������21��H�$��-^W0�����
��5$	������
Ð¯MÑMED�Ë�FIS Aíâm?GFI× S Ë�FXËyS ÕEH�Ê<HWFEÉ²?BÎyHWÉ<MIÌ�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH=DRH7ABH�æBË�É7Ö�FÑÉ²S Ê<ÍB× HQFEOBO�S ËyS ÕEH
ÉyV�MEÎyS ABC<É²Ò�ÉbËyH7Ê SYÉ,?GÉ²HWO�S A=ËyLBH�ÍBÎyMEÍRMmÉ²HWO=FIÍBÍBÎyMmFEV�L=FIAGO�S Ë�V7FIA=DRH�H�Ú�ÍBÎyHWÉyÉ²HWO=FEÉ�p

; H7ABH�æBË®>�V�MEÎyH¬MIÌ	K0ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHK«�Ûq¤ £ Üx>·¢I¸º¹ £ ¸�»i¸ ¬ Û]ïEÜ

T,LBH7ÎyHH¹ £ ¸ SYÉ6ËyLBH�Î�FXËyS ABC�MIÌ�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHS«®T,S ËyL'ÎyHWÉ²ÍRHWVpË6ËyMQDRH7ABH�æBË<H7ÕXFI× ?GFXËyS MEA
V�ÎyS ËyH7ÎyS MEAS¼NFIAGO »i¸ SYÉ�ËyLBH�T�H7S CELmË,MIÌ�V�ÎyS ËyH7ÎyS MEAo¼GÓ
Ð"LBSYÉ�DRH7ABH�æBË6ÉyV�MEÎyS ABC�É²Ò�ÉbËyH7ÊêSYÉ�ÕEH7ÎyÒ�É²S Ê<S ×YFIÎ�ËyM�ËyLBH%K È ë8aka ÍBÎyS MEÎyS ËbÒ�ÉyV�MEÎyS ABC

É²Ò�ÉbËyH7Ê Û·É²LBMXT,AØS AØÐ5FIDB× H�èxÜpÓ à MXT�H7ÕEH7ÎWÖRS Ë�É¬ÊNFXÔbMEÎ¬O�S á
H7ÎyH7AGV�H�ËyM�ËyLBH�K È ë8aka ÍBÎyS ì
MEÎyS ËbÒØÉyV�MEÎyH<SYÉ�ËyLGFXË6ËyLBH�V�MmÉbË6Ì·FEVpËyMEÎ6SYÉ�ABMIË�V�MEAGÉ²SYO�H7ÎyHWOçÉ²S AGV�H%S Ë/T,S × ×0DRH�V�MEAGÉ²SYO�H7ÎyHWO
FEÉ�F<V�MEAGÉbËyÎ�FIS AmË,S A�ËyLBH.7:d Ê<M�O�H7×]ÓRë�× ËyLBME?BCEL�FI× ×�ËyLBH6V�ÎyS ËyH7ÎySYF<FIAGO�T�H7S CELmË�É"S A�Ð5FIDB× H
èEÖGH�ÚBV�H7Í�Ë�ËyLBH�V�MmÉbË�Î�FXËyS ABCGÖRV�ME?B×YO�DRH/?GÉ²HWO�ÖGT�H6T,S × ×�V�MEAGÉ²SYO�H7Î�MEAB× Ò�ËyLBÎyH7H6MIÌ�ËyLBH7Ê S A
ËyLBSYÉ6ÍGFIÍRH7Î6Ì¢MEÎ�O�H7Ê<MEAGÉbËyÎ�FXËyS MEAçÍB?BÎyÍRMmÉ²HWÉ7Ó¯Ð"LBH7ÒçFIÎyH³ÛbèxÜ/K È

° p¯A@?BÊ/DRH7Î/MIÌ"ËyLBÎyHWFXË�É7Ö
Û]ïEÜ�K È ­�pmH�á
HWVpËyS ÕEH7ABHWÉyÉ�FIAGOQÛ·îmÜ�K Èe½ pmLBS CELBHWÉbË�ÎySYÉ²J
Ó@Ð"LBH�ÍB?BÎyÍRMmÉ²H�MIÌ�ËyLBSYÉ0ÍGFIÍRH7Î�SYÉ	ËyM
ÍBÎyMEÍRMmÉ²H<F�O�HWV�SYÉ²S MEAÑFISYOQÌ¢Î�FIÊ<H7T�MEÎyJ
ÖRÎ�FXËyLBH7Î¬ËyLGFIAÑF�V�MEÊ<ÍB× H�ËyHNÉ²ME× ?�ËyS MEA}Ó}Ð"LBH7ÎyH�Ì¢MEÎyHEÖ
ËyLBHWÉ²H6V�ÎyS ËyH7ÎySYF<FIÎyH¬ABMIË�S AmËyH7AGO�HWO=ËyMNDRH6V�MEÊ<ÍB× H�ËyHEÓ^a�MEÎyH7MXÕEH7ÎWÖ@F<ÕXFIÎyS H�ËbÒ%MIÌ�MIËyLBH7Î�V�ÎyS ì
ËyH7ÎySYF�ÊNFxÒQDRH�FEOBO�HWOØMEÎ/É²?BDGÉbËyS Ëy?�ËyHWOÑFEÉ¬ËyLBH7ÎyHNSYÉ�ABMQFIDGÉ²ME× ?�ËyH%FIAGÉ²T�H7Î¬ËyLGFXË�V7FIAçDRH
?BABS Ì¢MEÎyÊ<× ÒNFIÍBÍB× S HWO<ËyM�FI× ×RÉ²S Ëy?GFXËyS MEAGÉ7ÓmÏ¡Ì¯O�SYÉyV�ME?BAmËyS ABC6SYÉ0ÎyHWâm?BS ÎyHWO�ËyM/CES ÕEH�× MXT�H7Î0ÍBÎyS MEÎ²ì
S ËyS HWÉ�ËyM�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ,Ì¢MEÎ®T,LBSYV�LØFI× ËyH7ÎyAGFXËyS ÕEHWÉ�FIÎyH/S A³ÍB×YFEV�HEÖ
S Ë�V7FIA³DRH<FEV�LBS H7ÕEHWO
D@Ò<Ê/?B× ËyS ÍB× Ò@S ABC<FIA�FIÍBÍBÎyMEÍBÎySYFXËyH�O�SYÉyV�ME?BAmË�Î�FXËyHEÖ@FEÉ0S ANËyLBH6K È ë8akaãÍBÎyS MEÎyS ËbÒNÉyV�MEÎyS ABC
É²Ò�ÉbËyH7Ê�Ó
Ð"LBHNæGÎ�ÉbË<V�ÎyS ËyH7ÎyS MEA}Ö}ËyLBHk! A@?BÊ/DRH7Î�MIÌ"ËyLBÎyHWFXË�É�# Ö�V�MEÎyÎyHWÉ²ÍRMEAGOBÉ¬ËyMÑK È ë8aka�# É�V�ÎyS ì

ËyH7ÎyS MEA ! A@?BÊ/DRH7Î6MIÌ"ËyLBÎyHWFXË�É6FXá
HWVpËyHWO�# Ó¯Ï¡Ì�FIAÑFI?�ËyMEÊNFXËyHWOØÎySYÉ²JØFIAGFI× Ò�É²SYÉ®ËyM@ME×0É²?GV�L'FEÉ
K È ë8aka SYÉ�?GÉ²HWO�ÖRS Ë®SYÉ�ÎyH7×YFXËyS ÕEH7× Ò=HWFEÉ²Ò�ËyM�MED�Ë�FIS A�ËyLBH/A@?BÊ/DRH7Î®MIÌ�ËyLBÎyHWFXË�É,ËyLGFXË®ËyLBH
V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH�V�MEÊ/DGFXË�É7Ó à MXT�H7ÕEH7ÎWÖIS Ë"V�ME?B×YONDRH®O�S G%V�?B× Ë�ËyM6MED�Ë�FIS ANËyLGFXË�A@?BÊ/DRH7Î0S Ì
É²?GV�L=ËyM@ME×YÉ�FIÎyH�ABMIË�FxÕXFIS ×YFIDB× H�MEÎ�O�S á
H7ÎyH7AmË�Ê<H�ËyLBM�O�ME× MECES HWÉ�FIÎyH¬?GÉ²HWO�Ó È H7CmFIÎ�O�S ABC�ËyLBSYÉ
É²S Ëy?GFXËyS MEA}ÖRÎ�FXËyS ABCmÉ®FICmFIS AGÉbË�ËyLBSYÉ¬V�ÎyS ËyH7ÎyS MEA³V7FIAQDRH<âm?GFI× S Ë�FXËyS ÕEH/Î�FXËyS ABCmÉ�Î�FIABCES ABCNÌ¢ÎyMEÊtçÛ¢× MXT�HWÉbËpÜ�ËyMçè�tØÛ¢LBS CELBHWÉbËpÜpÓ¯Ð"LBHNÉyFIÊ<HNFEÉyÉ²?BÊ<Í�ËyS MEAGÉ¬FIÎyH�CES ÕEH7A³ËyM=ËyLBH%É²HWV�MEAGO³FIAGO
ËyLBS Î�O�V�ÎyS ËyH7ÎySYFBÓ
Ï¡Ì,V�ÎyS ËyH7ÎySYF=LGFxÕEHNO�S á
H7ÎyH7AmË6Î�FXËyS ABC�ÉyV7FI× HWÉ7Ö}F=ËyÎ�FIAGÉbÌ¢MEÎyÊNFXËyS MEA³MIÌ,ÉyV7FI× HWÉ�É²LBME?B×YOØDRH

FIÍBÍB× S HWO�ÓGÐ"LBH�× S ABHWFIÎ�ÉyV7FI× H®ËyÎ�FIAGÉbÌ¢MEÎyÊNFXËyS MEA=SYÉ,MEABH�MIÌ5ËyLBH�Ê<MmÉbË�ÍRMEÍB?B×YFIÎ�ÉyV7FI× H®ËyÎ�FIAGÉbì
Ì¢MEÎyÊNFXËyS MEAñÊ<H�ËyLBM�OBÉ=FIAGOíSYÉ�O�H�æGABHWOñFEÉ�¹0¾£ ¸ >¿¹ £ ¸ AI¹�À¸ Ì¢MEÎ=DRH7ABH�æRV�SYFI×¬V�ÎyS ËyH7ÎySYF'FIAGO¹0¾£ ¸ >[¹2Á¸ AI¹ £ ¸ Ì¢MEÎ0V�MmÉbË	V�ÎyS ËyH7ÎySYFBÖIT,LBH7ÎyHw¹�À¸ >íÊNFXÚ £ ¹ £ ¸ FIAGO�¹2Á¸ > Ê<S A £ ¹ £ ¸ ÓEÐ"LBH7ÎyH�Ì¢MEÎyHEÖ
S Ì0O�S á
H7ÎyH7AmË®Î�FXËyS ABC�ÉyV7FI× HWÉ�FIÎyH6?GÉ²HWO�Ö�¹0¾£ ¸ É²LBME?B×YO�DRH/?GÉ²HWO�S AGÉbËyHWFEO�MIÌµ¹ £ ¸ S Az90âm?GFXËyS MEA
Û]ïEÜpÓ

N$� f,ÂU����Z©Ãb-^W�Ä:R�Å�Å_5©3HV�V�W0-����IX
È SYÉ²JQFIAGFI× Ò�É²SYÉpäxÊNFIAGFICEH7Ê<H7AmË�Ê/?GÉbË�MIÌµËyH7A³ÎyH7× Ò�MEA³?BAGV�H7Î²Ë�FIS AØS ABÍB?�Ë�ÉpäxHWÉbËyS ÊNFXËyHWÉ�ËyLGFXË
LGFxÕEH�DRH7H7AQMED�Ë�FIS ABHWO=Ì¢ÎyMEÊ É²ÍRHWV�?B×YFXËyS MEA}ÖGDRHWÉbË®CE?BHWÉyÉ²HWÉ7ÖBS AGV�MEÊ<ÍB× H�ËyH�OBFXË�FBÖGFIAGO�ÊNFIA@Ò
?BABÍBÎyMXÕEH7A�FEÉyÉ²?BÊ<Í�ËyS MEAGÉ¬Ý éWß¡ÓBÐ"LBHWÉ²H®?BAGV�H7Î²Ë�FIS A=ÕXFI× ?BHWÉ"É²LBME?B×YO%DRH6FEOBO�ÎyHWÉyÉ²HWONÍBÎyMEÍRH7Îy× Ò
S AQÎySYÉ²J=FIAGFI× Ò�É²SYÉpäxÊNFIAGFICEH7Ê<H7AmË�É²S AGV�H�ËyLBH7Ò=T,S × ×5DRH6ÎyH7CmFIÎ�O�HWO�FEÉ�O�H�æGABS ËyH6ÕXFI× ?BHWÉ�MIËyL�ì
H7ÎyT,SYÉ²HEÓ5Ï{A
90âm?GFXËyS MEAñÛ]ïEÜpÖ�Î�FXËyS ABCmÉ/FICmFIS AGÉbË�É²MEÊ<H=V�ÎyS ËyH7ÎySYF�ÊNFxÒçABMIË�DRH�O�H�ËyH7ÎyÊ<S ABHWO
O�H�æGABS ËyS ÕEH7× ÒØO�?BH�ËyM�?BAGV�H7Î²Ë�FIS AmËyS HWÉ�FIAGOØFEÉ�F=ÎyHWÉ²?B× ËWÖ¯FIAGFI× Ò�ÉbË�É®ÊNFxÒQÍBÎyH�Ì¢H7Î¬ËyM�FEÉyÉ²S CEA
DGFIAGOBÉ0MIÌ�Î�FXËyS ABCmÉ	Î�FXËyLBH7Î	ËyLGFIA�É²S ABCE× H�MEABHWÉ7ÓmåBMEÎ0H�ÚBFIÊ<ÍB× HEÖEËyLBH�H�á
HWVpËyS ÕEH7ABHWÉyÉ	Î�FXËyS ABC6MIÌ
F<É²ÍRHWV�S æRV�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH®ÊNFxÒNDRH�H�Ú�ÍBÎyHWÉyÉ²HWO=FEÉK!µÝ GÖ MXßb#�Î�FXËyLBH7Î�ËyLGFIAÆ! c%# Ó
Ð¯M³FEOBO�ÎyHWÉyÉ�ËyLBH�?BAGV�H7Î²Ë�FIS AmËyS HWÉ�Ì¢ME?BAGOÑS A�O�HWV�SYÉ²S MEA�ì¡ÊNFIJ@S ABCQÍBÎyMEDB× H7ÊNÉ7Ö¯H�Ú@ËyH7AGÉ²S ÕEH

ÎyHWÉ²HWFIÎ�V�L LGFEÉ%DRH7H7A V�MEAGO�?GVpËyHWOñFIAGO ËyLBH³ÍBÎyMEDGFIDBS × SYÉbËySYV�FIÍBÍBÎyMmFEV�LBHWÉ%FIAGO Ì¢?BZ7Z7ÒíFIÍ�ì
ÍBÎyMmFEV�LBHWÉ®LGFxÕEH<DRH7H7AçËyLBH%Ê<MmÉbË6ÍRMEÍB?B×YFIÎ�MEABHWÉ¬Ì¢MEÎ6O�HWV7FEO�HWÉ7Ó}Ï{AçCEH7ABH7Î�FI×]Ö
ËyLBHNÌ¢MEÎyÊ<H7Î
FIÍBÍBÎyMmFEV�L³SYÉ6ÎyH7CmFIÎ�O�HWOQDRH�Ë²ËyH7Î/S Ì"ËyLBH7ÎyHNSYÉ6É²?%G%V�S H7AmË/S A�Ì¢MEÎyÊNFXËyS MEA³ËyM�DB?BS ×YOÑFEV7V�?BÎ�FXËyH
ÍBÎyMEDGFIDBS × SYÉbËySYV¬Ê<M�O�H7×YÉ,MIÌ�?BAGV�H7Î²Ë�FIS AmËyS HWÉ�FIAGO�ËyLBH6×YFXË²ËyH7Î�FIÍBÍBÎyMmFEV�L=SYÉ,ÎyH7CmFIÎ�O�HWO�DRH�Ë²ËyH7Î
S Ì�× S Ë²Ëy× H�S A�Ì¢MEÎyÊNFXËyS MEA=SYÉ�FxÕXFIS ×YFIDB× H<Ý èEè�ß¡Ó
Ï{A�ÎySYÉ²J=FIAGFI× Ò�É²SYÉpäxÊNFIAGFICEH7Ê<H7AmËWÖ@É²?%G%V�S H7AmË�S A�Ì¢MEÎyÊNFXËyS MEA=Ì¢MEÎ�ÍBÎyMEDGFIDBS × SYÉbËySYV®Ê<M�O�H7×YÉ

SYÉ�ABMIË�ABMEÎyÊNFI× × Ò=FxÕXFIS ×YFIDB× H6FIAGO=ËyLBH7ÎyH�Ì¢MEÎyHEÖ�ËyLBH6Ì¢?BZ7Z7Ò�FIÍBÍBÎyMmFEV�L�× M@MEJ�É,Ê<MEÎyH�ÍBÎyMEÊ<SYÉbì
S ABCGò5Ì¢MEÎ�H�ÚBFIÊ<ÍB× HEÖ"Ý è�=Xß"LGFEÉ/ÍBÎyMEÍRMmÉ²HWO'FQÎySYÉ²JÑFIAGFI× Ò�É²SYÉ6DGFEÉ²HWOÑMEA'Ì¢?BZ7Z7Òç× MECESYV7É�FXË<F
V�MEAGV�H7Í�Ëy?GFI×}× H7ÕEH7×]ÓGÐ¯M%O�HWFI×}T,S ËyL�É²S Ëy?GFXËyS MEAGÉ,T,LBH7ÎyH6FIAGFI× Ò�ÉbË�É"ÍBÎyH�Ì¢H7Î,ËyM%É²ÍRHWV�S Ì¢Ò=ÕXFICE?BH
ÕXFI× ?BHWÉ/Î�FXËyLBH7Î/ËyLGFIA�ÍBÎyHWV�SYÉ²H�MEABHWÉ�O�?BH�ËyMØ?BAGV�H7Î²Ë�FIS AmËyS HWÉ7Ö5T�H�LGFxÕEH=FIÍBÍB× S HWO'FQÌ¢?BZ7Z7Ò
A@?BÊ/DRH7Î�FIÍBÍBÎyMmFEV�L%ËyM<ËyLBH6V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH®É²H7× HWVpËyS MEA=ÍBÎyMEDB× H7Ê�Ó

Ç È�ÅeÉ�É�ÊÌËÑÇ²À�ü�Â%Êêþ"ö¯ÿbö¯ÆRÁBÇbÃ0À¯Í Ã,Ä�ö¯ÿ

f:�����B�21)���6����-���	�����Z[ÂU-^���%����-���	
Ï{A�ËyLBH6Ì¢ME× × MXT,S ABCGÖBT�H6DBÎyS HFEGÒ=ÎyH7Õ@S H7T:É²MEÊ<H6DGFEÉ²SYV6O�H�æGABS ËyS MEAGÉ�FIAGO�ABMIË�FXËyS MEAGÉ�?GÉ²HWO�S A
Ì¢?BZ7Z7Ò=É²H�Ë"ËyLBH7MEÎyÒ�FEÉ�Ì¢ME?BAGO=S AÑÝ èIc�Öyï_tXß¡Ó
Î�Ï2ÐLÐFÑ�Ò�ÓFÔ ë Ì¢?BZ7Z7Ò=É²H�ËYÕÖ MIÌ5ËyLBH�?BABS ÕEH7Î�É²H¬O�SYÉyV�ME?BÎ�É²H]× Û¢S]Ó HEÓ�ËyLBH�Î�FIABCEH®MIÌ�FI× ×}ÍRMmÉyÉ²S ì
DB× H�ÕXFI× ?BHWÉ�Ü5SYÉ0F�É²H�Ë	MIÌ�MEÎ�O�H7ÎyHWO/ÍGFIS Î�É"Ø@Û ¦�° ¬�ÙSÚÛ Û ¦�° Ü²ÜpÖYÛ ¦ ­2¬�ÙSÚÛ Û ¦ ­xÜ²ÜD¬ Ü�Ü�Ü7ÖYÛ ¦�Ý ¬�ÙSÚÛ Û ¦�Ý Ü²ÜLÞmÖT,LBH7ÎyH'ÙSÚÛ Û)ÙHÚÛ p�×àß Ý t�¬7è�ß¢Ü�SYÉ�ËyLBH6Ê<H7Ê/DRH7Î�É²LBS Í=Ì¢?BAGVpËyS MEA�MIÌ ÕÖ ÖGFIAGOBÙSÚÛ S AGO�SYV7FXËyHWÉËyLBH�CEÎ�FEO�H®MIÌ�Ê<H7Ê/DRH7Î�É²LBS Í

°
MIÌ
¦�£
S A ÕÖ Ó

ë Ì¢?BZ7Z7Ò É²H�Ë ÕÖ MIÌ®ËyLBH�?BABS ÕEH7Î�É²H�O�SYÉyV�ME?BÎ�É²HB×3SYÉ%V7FI× × HWO V�MEA@ÕEH�Ú'S Ì6FIAGO�MEAB× Ò'S ÌÙSÚÛ Ûqá ¦�° @'ÛbèµCUáRÜ ¦ ­WÜ ³[â «bã	Û6ÙSÚÛ Û ¦�° ÜD¬�ÙHÚÛ Û ¦ ­xÜ²Ü�Ì¢MEÎ�FI× × ¦�° Ö ¦ ­�S AH×êT,LBH7ÎyHKá&äÑÝ t�¬7è�ß¡Ö
FIAGO�S Ë�SYÉ�V7FI× × HWO�ABMEÎyÊNFI×�S Ê<ÍB× Ò@S ABC�ËyLGFXËKå ¦�£ äB×'Ö%ÙSÚÛ Û ¦�£ Üi>:èEÓ
Î�Ï2ÐLÐFÑ]æ'Ï%çSèLÓFé ëñÌ¢?BZ7Z7Ò<A@?BÊ/DRH7Î Õã�SYÉ�O�H�æGABHWO�FEÉ0F¬Ì¢?BZ7Z7Ò%É²?BDGÉ²H�Ë0ËyLGFXË�SYÉ�V�MEA@ÕEH�Ú<FIAGO
ABMEÎyÊNFI×]Ö�V�LGFIÎ�FEVpËyH7ÎySYÉ²HWOND@Ò�FIA=S AmËyH7ÎyÕXFI×�MIÌ5ÎyHWFI×�A@?BÊ/DRH7Î�É7Ö�HWFEV�L�MIÌ5T,LBSYV�L�LGFEÉ"F�CEÎ�FEO�H
MIÌ�Ê<H7Ê/DRH7Î�É²LBS Í=DRH�ËbT�H7H7AUt<FIAGO³èEÓ
ê �0z®c7\�e q q imz¡d{`²c�dbe _W\Gn}q gyd¬imz�h�_W\mz{e ~Egy`®db�mg6z¡d²c�dbg�a�g�\Xd'ë ìW_W�m\Qe z�_Wq ~�í ¶���g6a�e uW�Xd�db�me \m­�_7^
c7z{z{e uW\me \mu³c�wWc7q img<`²c7\muWe \mu�^ `b_WaÙ�s�¢c7´mz{_Wq iEdbg�q j³^µc7q z{gF��db_s�k�¢c7´mz{_Wq iEdbg�q jØd{`bimgF�®db_=db�mg
z¡d²c�dbg�a�g�\Xd"db_/e \@~Ee hpc�dbg®db_/s	�@c�d�gy»Idbg�\Xd�s�g¬z{imlml�_7`{d,e dp¶�{m_7`�e \mz¡d²c7\mh�gWnBs�g¬a�e uW�Xd�c7z{z{e uW\
�I¶ �o�Oî^ï�ð ñ_�qò�ó�ô2õ��:öÑ�_÷ �0�5e ^�s�g,­I\m_psÑdb�@c�d"ìW_W�m\^í z0c7uWg�e z"���X¶

|G_ps ��gp~Ee ima r�e uW�
t5_Wim\Xdbgy`ba�gpc7z{iE`bg"o�c�dbe \muø�¢�In �Xn �0� �*�En �In ��� ���Xn ùIn �p�I�
t¯`be dbgy`be _W\<��g�e uW�Xd �¢�In �I¶ �Xn �I¶ �0�w�¢�I¶ �En �I¶ �In �I¶ ���ª�¢�I¶ �Xn �I¶ ùIn �I¶ �F�� ¨m¤�� ��úBª |Ge \muWime z¡dbe h���»ElE`bg�z{z{e _W\Nc7\@~�{mim½�½yj.��ima®´�gy`bz

û%éDü�ý J�þ Ï%ÿ ý0é&Î�Ï2ÐLÐFÑkæ'Ï%çSèLÓFé ë ËyÎySYFIABCE?B×YFIÎ�Ì¢?BZ7Z7Ò A@?BÊ/DRH7Î Õã SYÉNËyLBH�Ì¢?BZ7Z7Ò A@?BÊ/DRH7Î
ËyLGFXË�V7FIAñDRHØO�H�æGABHWOñD@Ò ËyLBÎyH7H³ÍGFIÎ�FIÊ<H�ËyH7Î�É7Ö0H�Ú�ÍBÎyHWÉyÉ²HWOíFEÉØÛ6ã ° ¬�ã$­0¬�ã ½ ÜpÓ,Ð"LBH7A S Ë�É
Ê<H7Ê/DRH7Î�É²LBS Í<Ì¢?BAGVpËyS MEAHÙ ÚÝ Û ¦ Ü	SYÉ0O�H�æGABHWO%FEÉµÙ ÚÝ Û ¦ Üi>ºÛ ¦ C�ã ° Ü?A�Û6ã$­�C�ã ° Ü�S Ì$ã ° v ¦ vã$­IÖ�Ù ÚÝ Û ¦ Üi>ºÛ ¦ CÆã ½ Ü?A�Û6ã$­ªCÆã ½ Ü�S Ì)ã$­]v ¦ v ã ½ ÖGFIAGO�Ù ÚÝ Û ¦ Üi>¥t�MIËyLBH7ÎyT,SYÉ²HEÓ
����� Ï%Ô Ð"LBH � ì{V�?�Ë�MIÌRF,Ì¢?BZ7Z7Ò�A@?BÊ/DRH7Î Õã%SYÉ�O�H�æGABHWO/FEÉ Õã��H> Ø ¦�£ p_Ù ÚÝ Û ¦ Ü ³ � ¬ ¦�£ äB×�Þ
T,LBH7ÎyH � äÑÝ t�¬7è�ß¡Ó Õã���SYÉ"F/ABMEA�ì¡H7Ê<Í�ËbÒ<DRME?BAGO�HWO=V�× MmÉ²HWO%S AmËyH7ÎyÕXFI×
V�MEAmË�FIS ABHWO%S AB×.FIAGO
S Ë0V7FIA�DRH�O�H7ABMIËyHWO�D@Ò Õã��H>ºÝ ã��� ¬�ã��� ßGT,LBH7ÎyHwã��� ¬�ã��� FIÎyH�ËyLBH,× MXT�H7Î�FIAGO/?BÍBÍRH7Î	DRME?BAGOBÉMIÌ5ËyLBH6V�× MmÉ²HWO%S AmËyH7ÎyÕXFI×}ÎyHWÉ²ÍRHWVpËyS ÕEH7× ÒEÓ
Ï¡Ì ÕãíSYÉ�F�Ì¢?BZ7Z7ÒçA@?BÊ/DRH7Î<FIAGO�ã��� y t�Ì¢MEÎ � ä Ý t�¬7è�ß¡Ö ÕãíSYÉ6ËyLBH7A�V7FI× × HWO'FQÍRMmÉ²S ìËyS ÕEH�Ì¢?BZ7Z7ÒQA@?BÊ/DRH7ÎWÓ$`®S ÕEH7AçFIA@Ò�ËbT�M=ÍRMmÉ²S ËyS ÕEH/Ì¢?BZ7Z7ÒQA@?BÊ/DRH7Î�É Õ	 Ö Õã FIAGO³F�ÍRMmÉ²S ËyS ÕEH

ÎyHWFI×�A@?BÊ/DRH7Î´¹@Ö}ËyLBH � ì{V�?�Ë6MIÌ�ËbT�M=Ì¢?BZ7Z7ÒØA@?BÊ/DRH7Î�É�FIÎyH�Ý 	 �� ¬ 	 �� ß¡Ö0Ý ã��� ¬�ã��� ß¡Ö}ÎyHWÉ²ÍRHWVpìËyS ÕEH7× ÒEÓ@Ð"LBH7A}Ö@É²MEÊ<H�S Ê<ÍRMEÎ²Ë�FIAmË0MEÍRH7Î�FXËyS MEAGÉ	MEA<ËyLBHWÉ²H�ÍRMmÉ²S ËyS ÕEH,Ì¢?BZ7Z7Ò<A@?BÊ/DRH7Î�É0V7FIA%DRH
H�Ú�ÍBÎyHWÉyÉ²HWO�FEÉ�Ì¢ME× × MXT�É�p

 Û Õ	 @ Õã¯Ü � >ºÝ 	 �� @�ã �� ¬ 	 �� @�ã �� ß¡Ö}Û Õ	 C Õã¯Ü � >UÝ 	 �� CÆã �� ¬ 	 �� CÆã �� ß¡Ö
 Û Õ	 Û�� Ü Õã5Ü��H>ºÝ 	 �� �Fã��� ¬ 	 �� ��ã��� ß¡Ö}Û Õ	 Û¡p Ü Õã¯Ü���>UÝ 	 �� AIã��� ¬ 	 �� AIã��� ß¡Ö
 Û Õ	 �RÜ Á ° >ºÝ è0A 	 �� ¬7è0A 	 �� ß¡Ö¯Û Õ	 Û�� Üu¹IÜ��B>ºÝ 	 �� �F¹0¬ 	 �� �F¹Wß¡Ó
f:�*� Ä:R�Å�Å_5©ÂUR��z�i�2W0	����©�������21����$��-^W0��	
Ï{AmËy?BS ËyS ÕEH7× ÒEÖBËyÎySYFIABCE?B×YFIÎ�Ì¢?BZ7Z7Ò=A@?BÊ/DRH7Î�É�FIÎyH¬ÎyH7×YFXËyS ÕEH7× Ò�HWFEÉ²ÒNËyMN?GÉ²H6S A�H�Ú�ÍBÎyHWÉyÉ²S ABCNFIA
FICEH7AmË�# É	É²?BD�ÔbHWVpËyS ÕEH�FEÉyÉ²HWÉyÉ²Ê<H7AmË�Û·FEÉ�MEAB× Ò/ËyLBÎyH7H,A@?BÊ/DRH7Î�É0FIÎyH"ÎyHWâm?BS ÎyHWO/ËyM6H�Ú�ÍBÎyHWÉyÉ�ËyLBH
ÕXFICE?BH7ABHWÉyÉ0MIÌ5É²ÍRHWV�S æRV®OBFXË�FmÜ0FIAGONËyLBH7ÎyH�Ì¢MEÎyH�ËyLBH7Ò%LGFxÕEH�DRH7H7A=FIÍBÍB× S HWONËyM<F/A@?BÊ/DRH7Î"MIÌ
FIÍBÍB× SYV7FXËyS MEAGÉ7ÓGÏ{AQME?BÎ¬V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH�É²H7× HWVpËyS MEA³FIÍBÍBÎyMmFEV�L}Ö�ËyLBH/Î�FXËyS ABCmÉ�MIÌ0V�ME?BAmËyH7Î²ì
Ê<HWFEÉ²?BÎyHWÉ�FICmFIS AGÉbË"ËyLBÎyH7H/V�ÎyS ËyH7ÎySYFBÖ�! A@?BÊ/DRH7Î�MIÌ�ËyLBÎyHWFXË�É�# Ö�! H�á
HWVpËyS ÕEH7ABHWÉyÉ�#GFIAGOÆ! LBS CELBHWÉbË
ÎySYÉ²J�#BFIAGO�T�H7S CELmË�É"MIÌ5ËyLBH6V�ÎyS ËyH7ÎySYF�FIÎyH�O�H�æGABHWO�FEÉ0ËyÎySYFIABCE?B×YFIÎ�Ì¢?BZ7Z7Ò�A@?BÊ/DRH7Î�É7Ó
ë�É�Ê<H7AmËyS MEABHWO�HWFIÎy× S H7ÎWÖ�ËyLBH/Î�FIABCEH�MIÌ	Î�FXËyS ABCmÉ"Ì¢MEÎ�HWFEV�LQV�ÎyS ËyH7ÎyS MEA�SYÉ/Ý t�¬7è�tXß¡ÓGÏ¡Ì�ËyLBH

FIAGFI× Ò�ÉbË�É0J@ABMXTñH�ÚBFEVpË"ÕXFI× ?BHWÉ®Û¢HEÓ CGÓ�T,LBH7A�MED�ÔbHWVpËyS ÕEH¬V�ÎyS ËyH7ÎySYF/FIÎyH�?GÉ²HWOGÜpÖ@ËyLBH7ÒNÊNFxÒ%FEÉbì
É²S CEA�O�H�æGABS ËyH¬Î�FXËyS ABCmÉ¬Û¢S]Ó HEÓGV�ÎySYÉ²Í=ÕXFI× ?BHWÉ�Ü	ËyM<HWFEV�L=V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH®FICmFIS AGÉbË,F<É²ÍRHWV�S æRV
V�ÎyS ËyH7ÎyS MEA}Ó à MXT�H7ÕEH7ÎWÖ�S Ë®SYÉ�ABMIË®FI× T"FxÒ�É"ÍRMmÉyÉ²S DB× H�Ì¢MEÎ�ËyLBH7Ê ËyM%ÍBÎyMXÕ@SYO�H6É²?GV�L�V�ÎySYÉ²Í�Î�FXË²ì
S ABC�ÕXFI× ?BHWÉ�FIAGOQËyLBH7ÎyH�Ì¢MEÎyH�DGFIAGOBÉ¬MIÌ�Î�FXËyS ABCmÉ®MEÎ¬× S ABCE?BSYÉbËySYV�H�Ú�ÍBÎyHWÉyÉ²S MEAGÉ<Û¢HEÓ CGÓ Ö)! LBS CEL$# Ö! Ê<HWO�S ?BÊ&#}FIAGO�! × MXT'# Ü�ÊNFxÒ�MIÌµËyH7AØDRH�ÍBÎyH�Ì¢H7ÎyÎyHWO�Ó�<ØHNFEÉyÉ²?BÊ<H6ËyLGFXË¬ËyLBHNFIAGFI× Ò�ÉbË�É�T,S × ×
ÍBÎyMXÕ@SYO�H�× S ABCE?BSYÉbËySYV�H�Ú�ÍBÎyHWÉyÉ²S MEAGÉ"Ì¢MEÎ,ËyLBH/Î�FXËyS ABCmÉ7ÓGÐ"LBH7A}ÖBËyLBHWÉ²H/× S ABCE?BSYÉbËySYV�H�Ú�ÍBÎyHWÉyÉ²S MEAGÉ
V7FIANDRH�H�Ú�ÍBÎyHWÉyÉ²HWONFEÉ�ËyÎySYFIABCE?B×YFIÎ�Ì¢?BZ7Z7Ò<A@?BÊ/DRH7Î�É0FEÉ0É²LBMXT,ANS A�Ð5FIDB× H®ï�ÓmåBMEÎ0H�ÚBFIÊ<ÍB× HEÖ
S Ì�FIAçFIAGFI× Ò�ÉbË�ÍBÎyMXÕ@SYO�HWÉ®ËyLBHN× S ABCE?BSYÉbËySYV<H�Ú�ÍBÎyHWÉyÉ²S MEA
! × MXT'#
Ì¢MEÎ/F�É²ÍRHWV�S æRV<Î�FXËyS ABCGÖ
ËyLBH7A
S Ë�T,S × ×}DRH�S AmËyH7ÎyÍBÎyH�ËyHWO�FEÉ]# ËyLBH�Î�FXËyS ABC<T,S × ×}DRH6É²MEÊ<H7T,LBH7ÎyH®DRH�ËbT�H7H7AUt<FIAGOB NFIAGO�ËyLBH
Ê<MmÉbË�× S JEH7× Ò�ÕXFI× ?BH�SYÉ®ï%# ÓRÐ"LBH�T�H7S CELmË�É,MIÌ	V�ÎyS ËyH7ÎySYF�T,S × ×¯DRH/O�H�ËyH7ÎyÊ<S ABHWO�É²S Ê<S ×YFIÎy× ÒEÖBDB?�Ë
MEA�FNÉ²ÊNFI× × H7Î,ÉyV7FI× H�FEÉ,É²LBMXT,A=S A�Ð5FIDB× H6ï�Ó

Ð"LBH<FIAGFI× Ò�ÉbË¬V7FIA³FI×YÉ²M�ÍBÎyMXÕ@SYO�H/Î�FXËyS ABC�DGFIAGOBÉ®S AGÉbËyHWFEOQMIÌ0× S ABCE?BSYÉbËySYV/H�Ú�ÍBÎyHWÉyÉ²S MEAGÉ7Ó
åBMEÎ�H�ÚBFIÊ<ÍB× HEÖxS ÌGËyLBH"Î�FXËyS ABC®DGFIAGO=Ý ®�¬?§�ß�SYÉ�ÍBÎyMXÕ@SYO�HWO�ÖWS Ë�T,S × ×�DRH"S AmËyH7ÎyÍBÎyH�ËyHWO/FEÉ"Û�®�¬L¤I¬?§7ÜpÖ
T,LBH7ÎyHw¤5SYÉ}ËyLBH0Ê<HWFIA6MIÌ^®¬FIAGO´§ ­ ÓIa�MEÎyH7MXÕEH7ÎWÖ7V�ÎySYÉ²Í�ÕXFI× ?BHWÉ5V7FIA�DRH�?GÉ²HWO�S ÌBS Ë5SYÉ¯ÍRMmÉyÉ²S DB× H
Ì¢MEÎ®ËyLBH%FIAGFI× Ò�ÉbË�É�ËyM�ÍBÎyMXÕ@SYO�H/ËyLBHWÉ²H<ÕXFI× ?BHWÉ<Û¢HEÓ CGÓ
ËyLBH<H�ÚBFEVpË�A@?BÊ/DRH7Î�MIÌ	ËyLBÎyHWFXË�É®ËyLGFXË
ËyLBHçV�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH³V�MEÊ/DGFXË�É=SYÉ�J@ABMXT,ARÜpò"LBMXT�H7ÕEH7ÎWÖ0S AñËyLBSYÉ�V7FEÉ²HEÖ"F�× S ABHWFIÎ�ÉyV7FI× H
ËyÎ�FIAGÉbÌ¢MEÎyÊNFXËyS MEA É²LBME?B×YOíDRHÑFIÍBÍB× S HWOíËyM FI× ×®ËyLBHçÎ�FXËyS ABCmÉ7Ó"ëÙV�ÎySYÉ²Í ÕXFI× ?BHs®íV7FIA DRH
S AmËyH7ÎyÍBÎyH�ËyHWO%FEÉ¬Û�®�¬?®�¬?®�ÜpÓ�Ð"LBH7A}ÖmËyLBH®DRH7ABH�æBË�ÉyV�MEÎyH�S A&90âm?GFXËyS MEA³Û]ïEÜ0V7FIA%DRH®ÎyH7T,ÎyS Ë²ËyH7A
FEÉ�p ; H7ABH�æBË®>�V�MEÎyH®MIÌ0K0ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHK«�Û Õ¤ £ Üi>Y¢0¸ Õ¹ £ ¸ Õ»i¸ Û·îmÜ

Ð"LBH�DRH7ABH�æBË	ÉyV�MEÎyH	MIÌRV�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHx«�Ö Õ¤ £ V7FIA6DRH"MED�Ë�FIS ABHWO�ËyLBÎyME?BCEL�Ì¢?BZ7Z7Ò�A@?BÊ�ì
DRH7Î¯FEOBO�S ËyS MEA6FIAGO®Ê/?B× ËyS ÍB× SYV7FXËyS MEA¬MEÍRH7Î�FXËyS MEAGÉ7ÖpT,LBSYV�L6FIÎyH�O�H�æGABHWO�FEÉ	Û�® ° ¬?®�­_¬?® ½ Ü�
 Ûq¤ ° ¬¤D­_¬L¤ ½ Ü?>�Û�® ° @¥¤ ° ¬?®�­e@¥¤D­_¬?® ½ @¥¤ ½ Ü¬FIAGO Û�® ° ¬?®�­_¬?® ½ Ü�� Ûq¤ ° ¬L¤D­_¬L¤ ½ Ü´>êÛ�® ° � ¤ ° ¬?®�­ �¤D­_¬?® ½ � ¤ ½ ÜpÖBÎyHWÉ²ÍRHWVpËyS ÕEH7× ÒEÓ
ë�É,Ê<H7AmËyS MEABHWO�FIDRMXÕEHEÖ�ËyLBH6× S ABHWFIÎ�ÉyV7FI× H¬ËyÎ�FIAGÉbÌ¢MEÎyÊNFXËyS MEA�É²LBME?B×YO�DRH6ÍRH7Î²Ì¢MEÎyÊ<HWO=S Ì

O�S á
H7ÎyH7AmË�Î�FXËyS ABC�ÉyV7FI× HWÉ®FIÎyH�?GÉ²HWO�Ó�Ï{A³ËyLBSYÉ�V7FEÉ²HEÖRËyLBH Õ¹ £ ¸ S AÆ90âm?GFXËyS MEA Û·îmÜ®É²LBME?B×YO³DRH
ÎyH7ÍB×YFEV�HWO�D@Ò Õ¹0¾£ ¸ ÓGÐ"LBH�× S ABHWFIÎ�ÉyV7FI× H®ËyÎ�FIAGÉbÌ¢MEÎyÊNFXËyS MEA%Ì¢MEÎ"ËyÎySYFIABCE?B×YFIÎ"Ì¢?BZ7Z7Ò�A@?BÊ/DRH7Î�É"SYÉ
O�H�æGABHWO�FEÉ0Ì¢ME× × MXT�É�Ý è�tXßbp Õ¹0¾£ ¸ >UÛ6¹ £ ¸D° AI¹�À¸ ¬�¹ £ ¸ ­_AI¹�À¸ ¬�¹ £ ¸ ½ AI¹�À¸ Ü�Ì¢MEÎ�DRH7ABH�æRV�SYFI×�V�ÎyS ËyH7ÎySYFBÖ@FIAGOÕ¹0¾£ ¸ > Û6¹ Á¸ AI¹ £ ¸ ½ ¬�¹ Á¸ AI¹ £ ¸ ­�¬�¹ Á¸ AI¹ £ ¸D° Ü/Ì¢MEÎNV�MmÉbËNV�ÎyS ËyH7ÎySYFBÖ�T,LBH7ÎyH Õ¹ £ ¸ > Û6¹ £ ¸D° ¬�¹ £ ¸ ­2¬�¹ £ ¸ ½ ÜpÖ¹�À¸ >íÊNFXÚ £ ¹ £ ¸ ½ FIAGOB¹ Á¸ >íÊ<S A £ ¹ £ ¸D° Ó
f:�ON�Ä:R�Å�Å_5[�%���z�$��4����_����-��©��-$Z���4
Ï{A'ME?BÎ�ÍBÎyMEÍRMmÉ²HWOÑFIÍBÍBÎyMmFEV�L}Ö�ËyLBH=DRH7ABH�æBËNÉyV�MEÎyHWÉ�MIÌ�HWFEV�L�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ�FIÎyH�H�Ú@ì
ÍBÎyHWÉyÉ²HWO%D@Ò%ËyÎySYFIABCE?B×YFIÎ0Ì¢?BZ7Z7Ò�A@?BÊ/DRH7Î�É7Ó@Ï{A�V�MEAmËyÎ�FEÉbËWÖ@T�H¬S ABS ËySYFI× × Ò�FEÉyÉ²?BÊ<H®ËyLGFXË�V�ÎySYÉ²Í
ÕXFI× ?BHWÉ5FIÎyH0?GÉ²HWO¬Ì¢MEÎ�V�MmÉbË�É5FIAGO6MIËyLBH7Î�V�MEAGÉbËyÎ�FIS AmË�É7ÓWÐ"LBH7A}Ö090âm?GFXËyS MEA%ÛbèxÜ¯V7FIA6DRH�ÎyH7T,ÎyS Ë²ì
ËyH7A�FEÉ�Ì¢ME× × MXT�É�p

aQFXÚ�S Ê<SYÉ²H ¢�£ Õ¤ £6¦�£ É²?BD�ÔbHWVpË"ËyMY¢�£[§ £�¦�£ v©¨�FIAGO ¦�£ SYÉet�MEÎ¬è¬Ì¢MEÎ�FI× ×�« Û6 @Ü
ëûÉ²ME× ?�ËyS MEAQËyM&90âm?GFXËyS MEA�Û6 @ÜpÖ ¦ ¾µ> Ý ¦ ¾ ° ¬ ¦ ¾q¬ ­µ¬�Ü�Ü�Ü�¬ ¦ ¾Ý ß��0Ö
SYÉ¬V7FI× × HWOQMEÍ�ËyS ÊNFI×�S Ì0ËyLBH

Ì¢?BZ7Z7Ò�A@?BÊ/DRH7Î���Û ¦ ¾µÜ,SYÉ�ËyLBH�CEÎyHWFXËyHWÉbË�S AQËyLBH<É²H�Ë Ö >�Ø���Û ¦ Ü�� ¦ äÆ×�ÞEÖ
T,LBH7ÎyH���Û ¦ Üe>� £ Õ¤ £6¦�£ Û·FIDBDBÎyH7Õ@SYFXËyHWO¬ËyM Õ¤ ¦ ¬ Ü¯FIAGO´× SYÉ¯ËyLBH"É²H�Ë�MIÌBÌ¢HWFEÉ²S DB× H�É²ME× ?�ËyS MEAGÉ7Ó à MXT�H7ÕEH7ÎWÖ�ËyLBH7ÎyH
SYÉ�ABMNFIDGÉ²ME× ?�ËyH®T"FxÒ<MIÌ5V�MEÊ<ÍGFIÎyS ABC6ËyLBH®Ì¢?BZ7Z7Ò%A@?BÊ/DRH7Î�É"FIAGO�SYO�H7AmËyS Ì¢Ò@S ABC/ËyLBH¬CEÎyHWFXËyHWÉbË
MEABHEÓ

�����:
$�����·Ä:R����_����-�� Ð"LBH7ÎyH=FIÎyHNËbT�MQÊNFIS A�FIÍBÍBÎyMmFEV�LBHWÉ®Ì¢MEÎ<V�MEÊ<ÍGFIÎyS ABCQFQÍGFIS Î/MIÌ
Ì¢?BZ7Z7Ò'A@?BÊ/DRH7Î�É7Ó"(�ABH=SYÉ<DGFEÉ²HWO�MEA�ÍRMmÉyÉ²S DBS × S ËbÒÑËyLBH7MEÎyÒ'FIAGO'ËyLBH�MIËyLBH7Î<SYÉ<DGFEÉ²HWO'MEA
Î�FIABJ@S ABC�Ì¢?BAGVpËyS MEAGÉNÝ è� Iß¡Ó�Ð"LBH<ÍRMmÉyÉ²S DBS × S ËbÒ�ËyLBH7MEÎyÒmì¡DGFEÉ²HWOQV�MEÊ<ÍGFIÎySYÉ²MEAQS A Ý èWîXß	FIAGO³S Ë�É
ÕXFIÎySYFXËyS MEAGÉ7ÖRV�MEÊ<ÍGFIÎyH¬Ì¢?BZ7Z7Ò�A@?BÊ/DRH7Î�É�?GÉ²S ABCNÌ¢ME?BÎ¬O�MEÊ<S AGFIAGV�H6S AGO�SYV�HWÉ�Û¢ÍRMmÉyÉ²S DBS × S ËbÒ�MIÌ� {m_7`0a�_7`bg"~Egyd²c7e q gp~�g�wWc7q i@c�dbe _W\Gnmd{`²c7l�g�½�_We ~mc7qB^Yim½�½yj�\Iima®´�gy`bz5_7`0a�_7`bg"uWg�\mgy`²c7q
|B°·oÑ^Yim½�½yj
\Iima®´�gy`bz	a6c�j�´�g,`bgp±Xime `bgp~B¶@r�_ps�g�wxgy`pn@s�g�imz{g,d{`be c7\muWimq c�`�^Yim½�½yjN\Iima®´�gy`bz�e \<db�me z�l@c7l�gy`
^Y_7`0db�mg"zbc7­xg,_7^�z{e a�lmq e h�e d]jX¶

��
� � �� !#"$&%'!#"() �) �+*-,

.�/!+0 ,21

354 6 ªI�@ª �	`bgpc « gy¼@\mgp~/´Xj�{mim½�½yj´��ima®´�gy`
O�MEÊ<S AGFIAGV�HEÖ¯ÍRMmÉyÉ²S DBS × S ËbÒçMIÌ�ÉbËyÎySYVpË<O�MEÊ<S AGFIAGV�HEÖ¯ABHWV�HWÉyÉ²S ËbÒØMIÌ�O�MEÊ<S AGFIAGV�H�FIAGOÑABHWV�HWÉbì
É²S ËbÒ�MIÌ"ÉbËyÎySYVpË�O�MEÊ<S AGFIAGV�HxÜpÓ à MXT�H7ÕEH7ÎWÖBËyLBH<ÊNFIS AçO�Î�FxT,DGFEV�J=SYÉ®ËyLGFXË�S Ë�ÊNFxÒ�ÍBÎyM�O�?GV�H
ABMEA�ì{V�MEAGÉ²SYÉbËyH7AGV�Ò'S AñO�MEÊ<S AGFIAGV�H�S AGO�SYV�HWÉ�FIAGOíV�ME?BAmËyH7Î²ì¡S AmËy?BS ËyS ÕEH�ÎyHWÉ²?B× Ë�É%V7FIABABMIË�DRH
ÍBÎyH7ÕEH7AmËyHWOØÝ è� Iß¡Ó
Ï{A�MEÎ�O�H7Î6ËyM³æGAGO FIA'MEÍ�ËyS ÊNFI×,É²ME× ?�ËyS MEA'Ì¢MEÎo90âm?GFXËyS MEA Û6 @ÜpÖ�T�H=?GÉ²H�ËyLBH=Î�FIABJ@S ABC

Ì¢?BAGVpËyS MEA FIÍBÍBÎyMmFEV�L}Ö5FEÉ�É²LBMXT,A'S A 90âm?GFXËyS MEA ÛqcEÜpÓ�Ð"LBH=Î�FIABJ@S ABCQÌ¢?BAGVpËyS MEA FIÍBÍBÎyMmFEV�L
?GÉ²HWÉ0ËyLBH¬Î�FIABJ@S ABC/Ì¢?BAGVpËyS MEA87�ËyM�ÊNFIÍ�F6Ì¢?BZ7Z7Ò%A@?BÊ/DRH7Î,MEAmËyM�F�ÎyHWFI×
A@?BÊ/DRH7Î,É²M<FEÉ0ËyM
Î�FIABJNÌ¢?BZ7Z7Ò%A@?BÊ/DRH7Î�É�FEV7V�MEÎ�O�S ABC6ËyM%FIA=MEÎ�O�H7ÎyS ABC�MEA�V�MEÎyÎyHWÉ²ÍRMEAGO�S ABC�ÎyHWFI×�A@?BÊ/DRH7Î�É7Ó

7�Û Õ¤ £ Üi>:9 °; è
ï Ûq¤
£ �� @
¤ £ �� Ü�< � ÛqcEÜ

Ð"LBH<FIDRMXÕEH�Î�FIABJ@S ABC�Ì¢?BAGVpËyS MEAØÍBÎyMXÕ@SYO�HWÉ�S AmËy?BS ËyS ÕEH<Î�FIABJ@S ABCmÉ®S A³ËyLGFXË�S Ë6V�MEAGÉ²SYO�H7Î�É
ËyLBH�É²S Z7HWÉ�MIÌ®FIÎyHWFEÉ/O�H�æGABHWO'D@ÒçÌ¢?BZ7Z7ÒÑA@?BÊ/DRH7Î�É�ÛµËyLBH�É²LGFEO�HWO�FIÎyHWFQS A å5S CGÓ"èxÜpò�S Ë<SYÉ
DGFEÉ²HWO'MEAÑËyLBH�V�MEAGV�H7Í�Ë<MIÌ®FIÎyHWFQV�MEÊ<ÍRH7AGÉyFXËyS MEA Ý è� Iß,FIAGO'SYÉ<FI×YÉ²M³HWâm?BS ÕXFI× H7AmË�ËyM³ËyLBH
ËyLBS Î�OQS AGO�H�Ú³MIÌ5=0FICEH7Î<Ý èWÞXß	FIÍBÍB× S HWO�ËyM=ABMEÎyÊNFI×¯Ì¢?BZ7Z7ÒQA@?BÊ/DRH7Î�É7Ó}>@S AGV�H Õ¤ £ SYÉ¬F%ËyÎySYFIA�ì
CE?B×YFIÎ�Ì¢?BZ7Z7Ò�A@?BÊ/DRH7ÎWÖ�S Ë�V7FIA�DRH�ÎyH7T,ÎyS Ë²ËyH7A�FEÉ>7�Û Õ¤ £ Üx>ºÛq¤ £*° @�ï�¤ £ ­i@
¤ £ ½ Ü?AI GÓBë�ABMIËyLBH7Î
ÎyHWFEÉ²MEAçÌ¢MEÎ�?GÉ²S ABC³ËyLBSYÉ�Î�FIABJ@S ABC�Ì¢?BAGVpËyS MEA SYÉ6ËyLGFXË<S Ë<ÍBÎyHWÉ²H7ÎyÕEHWÉ�ËyLBH=× S ABHWFIÎyS ËbÒçMIÌ�ËyLBH
MED�ÔbHWVpËyS ÕEH®Ì¢?BAGVpËyS MEA=T,LBH7ÎyHWFEÉ"É²MEÊ<H¬MIËyLBH7Î"Î�FIABJ@S ABC/Ì¢?BAGVpËyS MEAGÉ,ÎyHWÉ²?B× Ë,S A=ABMEAB× S ABHWFIÎ,MED�ì
ÔbHWVpËyS ÕEH=Ì¢?BAGVpËyS MEAGÉ7Ó	Ð"LBH�O�H�Ì¢?BZ7Z7S æGHWO ÕEH7Î�É²S MEA'MIÌ�ËyLBH�MED�ÔbHWVpËyS ÕEH�Ì¢?BAGVpËyS MEA?7�Û Õ¤ ¦ Ü�ABMXT
É²?BDGÉbËyS Ëy?�ËyHWÉ Õ¤ ¦ FIAGO%ËyLBH7ÎyH�Ì¢MEÎyH®ËyLBH�CEMmFI×
SYÉ"ËyM�æGAGO�F<É²ME× ?�ËyS MEA=ËyLGFXË,ÊNFXÚ�S Ê<SYÉ²HWÉ�p

7�Û Õ¤ ¦ Üi>·¢�£ è Ûq¤
£*° @�ï�¤ £ ­i@
¤ £ ½ Ü ¦�£ ÖGÉ²?BD�ÔbHWVpË"ËyMY¢�£¥§ £6¦�£ v©¨ Û�MmÜ

Ä:R�Å�Å_5 +.-$�A@�����������	B��� +.-���	���W0��������	 Ï¡Ë�SYÉ®ABMIË�FI× T"FxÒ�É�ÍRMmÉyÉ²S DB× H/Ì¢MEÎ¬FIAGFI× Ò�ÉbË�É�ËyM
ÍBÎyMXÕ@SYO�HNV�ÎySYÉ²ÍØÕXFI× ?BHWÉ®Ì¢MEÎ6V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH<V�MmÉbË�É�FI× ËyLBME?BCELØT�HNLGFxÕEH<FEÉyÉ²?BÊ<HWOçV�ÎySYÉ²Í
V�MEAGÉbËyÎ�FIS AmË�É�É²M/Ì·FIÎWÓGK0MmÉbËyS ABC�MIÌ5V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ	SYÉ,F/ÍGFIÎ²ËySYV�?B×YFIÎy× ÒNO�S G%V�?B× Ë,ÍBÎyM�V�HWÉyÉ7ò
V�MmÉbË�É6ÎyH7×YFXËyHWOØËyMØO�H7ÕEH7× MEÍBÊ<H7AmËWÖ¯S AGÉbË�FI× ×YFXËyS MEA'FIAGOçMEÍRH7Î�FXËyS ABC³FIÎyH�O�S G%V�?B× Ë/ËyMØO�H�ËyH7Î²ì
Ê<S ABHNH7ÕEH7A³S Ì�ËyLBHNLGFIÎ�O�T"FIÎyH�V�MmÉbË�SYÉ¬HWFEÉ²Ò�ËyM�HWÉbËyS ÊNFXËyHEÓ}åB?BÎ²ËyLBH7ÎyÊ<MEÎyHEÖ�V�MmÉbË�É¬ÎyH7×YFXËyHWO

ËyM�ÍBÎyM�V�HWO�?BÎ�FI×RV�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ0FIÎyH�O�S G%V�?B× Ë6Û¢S Ì5ABMIË�S Ê<ÍRMmÉyÉ²S DB× HxÜ�ËyM�HWÉbËyS ÊNFXËyH¬FEV7V�?�ì
Î�FXËyH7× Ò�Ý èxïxß¡Ó@Ð"LBH7ÎyH�Ì¢MEÎyHEÖES Ê<ÍBÎyHWV�SYÉ²S MEA%S A�V�MmÉbË�HWÉbËyS ÊNFXËyHWÉ�É²LBME?B×YO%FI×YÉ²M6DRH¬V�MEAGÉ²SYO�H7ÎyHWO<S A
ËyLBH6V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH¬É²H7× HWVpËyS MEA}Ó
åB?BZ7Z7Ò�V�MEAGÉbËyÎ�FIS AmË�É<V7FIA DRHQV�MEAGÉ²SYO�H7ÎyHWO'T,S ËyLBS A[90âm?GFXËyS MEA Û�MmÜpÖ	S AGÉbËyHWFEO�MIÌ�V�ÎySYÉ²Í

V�MEAGÉbËyÎ�FIS AmË�É7Ó�<íLBH7A'V�MEAGÉbËyÎ�FIS AmË�É®T,S ËyLØÌ¢?BZ7Z7ÒØV�M@HFG%V�S H7AmË�É�FIÎyHNV�MEAGÉ²SYO�H7ÎyHWO�Ö}F�É²ÍRHWV�S æRV
FIÍBÍBÎyMmFEV�L�SYÉ®ÎyHWâm?BS ÎyHWOQÉ²S AGV�H/ËyLBH<ÉyFXËySYÉbÌ·FEVpËyS MEAQMIÌ�F�ÍGFIÎ²ËySYV�?B×YFIÎ®V�MEAGÉbËyÎ�FIS AmË¬V7FIABABMIË¬DRH
O�H�ËyH7ÎyÊ<S ABHWO�S A%F�O�H�ËyH7ÎyÊ<S ABSYÉbËySYV"T"FxÒ/É²?GV�LNFEÉ"! ÒEHWÉ�#IMEÎw! ABM^# ÓEåBMEÎ�H�ÚBFIÊ<ÍB× HEÖILBMXT V7FIA�T�H
ËyH7× ×GËyLGFXË0ËyLBH®É²ME× ?�ËyS MEA

¦ ¾RÉyFXËySYÉbæGHWÉ�ËyLBH®V�MEAGÉbËyÎ�FIS AmË Õ§ ¦ ¾$v Õ¨CBEò@FEÉ�ËyLBH�Ì¢?BZ7Z7Ò<A@?BÊ/DRH7Î Õ§ ¦ ¾
ÕXFIÎyS HWÉ�Ì¢ÎyMEÊ S Ë�É,× MXT�H7Î,DRME?BAGO�ËyM<?BÍBÍRH7Î�DRME?BAGO�ÖGS Ë�É,ÕXFI× ?BH¬ÊNFxÒ�DRH�T,S ËyLBS A�MEÎ,ME?�Ë�É²SYO�H
ËyLBH�Î�FIABCEH=MIÌ�ËyLBH�DB?GO�CEH�ËN× S Ê<S ËWÓ	Ð"LBH�H�Ú@ËyH7AmË<ËyMçT,LBSYV�L'ËyLBH�Ì¢?BZ7Z7Ò�V�MEAGÉbËyÎ�FIS AmË�É�FIÎyH
ÉyFXËySYÉbæGHWOÑÉ²LBME?B×YOçËyLBH7ÎyH�Ì¢MEÎyH%DRH%Ë�FIJEH7AÑS AmËyM³FEV7V�ME?BAmË/Î�FXËyLBH7Î6ËyLGFIA�Ôb?GÉbË�! ÒEHWÉ�#¯MEÎH! ABM^# Ó
åBMEÎ"ËyLBSYÉ,ÍB?BÎyÍRMmÉ²HEÖ�T�H6FEO�MEÍ�Ë"ËyLBH6V�MEÊ<ÍGFIÎySYÉ²MEA�S AGO�H�Ú=S AÑÝ è� Iß¡Ö�T,LBSYV�L�V�MEÊ<HWÉ�Ì¢ÎyMEÊ ËyLBH
V�MEAGV�H7Í�Ë,MIÌ�FIÎyHWF�V�MEÊ<ÍRH7AGÉyFXËyS MEA}Ó D

Û Õ§ ¦ v Õ¨·Ü ³FEHGJI
Û¡éIÜ� £ Ý E+K ÀEÛ Õ§ £ Ü:@ñÛbèªC E Ü K À Û Õ§ £ Ü¡ß ¦�£ v E+K ÀEÛ Õ¨]Ü$@ñÛbèeC E Ü K À Û Õ¨·ÜD¬

T,LBH7ÎyH
K ÀIÛ Õ§ £ Ü�>ML °; § £ �� < � Ö K À Û Õ§ £ Ü�>ML °; § £ �� < � Ö K ÀIÛ Õ¨]Ü�>ML °; ¨C�� < � Ö0FIAGO K À Û Õ¨]Ü�>L °; ¨C�� < � ÖGÎyHWÉ²ÍRHWVpËyS ÕEH7× ÒEÓÐ"LBH=V�MEÊ<ÍGFIÎySYÉ²MEAÑS AGO�H�Ú

D
Û Õ§ ¦ v Õ¨·Ü6ÎyH7ÍBÎyHWÉ²H7AmË�É�ËyLBH�O�H7CEÎyH7HNËyMØT,LBSYV�L Õ§ ¦ v Õ¨�SYÉ

ÉyFXËySYÉbæGHWO³FIAGO
E
O�H7ABMIËyHWÉ�ËyLBH<ÉyFXËySYÉbÌ·FEVpËyS MEAQÎyHWâm?BS ÎyH7Ê<H7AmË<Û

E äñÝ t�¬7è�ß¢ÜpÓRÏ{AGÉbËyHWFEOQMIÌ	ËyLBH
V�MEAGÉbËyÎ�FIS AmË � £ § £6¦�£ v©¨bÖ�ËyLBH6O�H�Ì¢?BZ7Z7S æGHWO�ÕEH7Î�É²S MEA�MIÌ5ËyLBH¬Ì¢?BZ7Z7Ò=V�MEAGÉbËyÎ�FIS AmËWÖ�90âm?GFXËyS MEA
Û�=mÜpÖ�T,S × ×"DRH=?GÉ²HWO'T,LBH7A'Ì¢?BZ7Z7Ò'V�MmÉbË�É�FIÎyH�?GÉ²HWO�Ó�Ð"LBH�× H7ÕEH7×"MIÌ�ÉyFXËySYÉbÌ·FEVpËyS MEA'ÎyHWâm?BS ÎyH�ì
Ê<H7AmËWÖ

E
Ö�T,S × ×®DRHØO�H�ËyH7ÎyÊ<S ABHWOíD@Ò O�HWV�SYÉ²S MEAíÊNFIJEH7Î�ÉQÛ·FIAGFI× Ò�ÉbË�É%MEÎ=É²H7ABS MEÎ�ÊNFIAGFICEH�ì

Ê<H7AmËpÜpÓB>@H�Ë²ËyS ABC
E >:è�ÎyHWÉ²?B× Ë�É0S A%ÕEH7ÎyÒ<V�MEAGÉ²H7ÎyÕXFXËyS ÕEH�É²H7× HWVpËyS MEA%É²S AGV�H�ËyLBH®?BÍBÍRH7Î�Ê<HWFIA

ÕXFI× ?BH�MIÌ Õ§ ¦ SYÉ�V�MEAGÉbËyÎ�FIS ABHWO'ËyMÑDRH³É²ÊNFI× × H7Î<ËyLGFIA ËyLBHQ× MXT�H7ÎNÊ<HWFIA ÕXFI× ?BH�MIÌ Õ¨�FIAGO
É²H�Ë²ËyS ABC

E > è0AIïçSYÉNËbÒ@ÍBSYV7FI×�Ý è� Iß¡Ó�åBMEÎ%ËyÎySYFIABCE?B×YFIÎNÌ¢?BZ7Z7Ò V�MmÉbË�É�FIAGOíDB?GO�CEH�Ë�× S Ê<S ËWÖK ÀIÛ Õ§ £ ÜpÖ K À Û Õ§ £ ÜpÖ K ÀIÛ Õ¨]Ü¬FIAGO K À Û Õ¨·Ü®DRHWV�MEÊ<HQÛ�§ £ ­8@©§ £ ½ Ü?AIï�Ö	Û�§ £*° @©§ £ ­xÜ?AIï�Ö	Û�¨*­e@[¨ ½ Ü?AIïFIAGO�Û�¨ ° @&¨*­7Ü?AIï�ÖEÎyHWÉ²ÍRHWVpËyS ÕEH7× ÒEÓ_<íLBH7A E >:è0AIï�Ö�90âm?GFXËyS MEA�Û�=mÜ�DRHWV�MEÊ<HWÉ�7�Û Õ§ ¦ ÜwvN7�Û Õ¨]ÜpÖ
S]Ó HEÓ Ö � £ Ûbè0AI @Ü�Û�§ £*° @�ï_§ £ ­i@�§ £ ½ Ü ¦�£ v:Û�¨ ° @�ï_¨*­i@�¨ ½ Ü?AI GÓ
f:� fPO�Q$����V)4��
Ï{A�ËyLBSYÉ	É²HWVpËyS MEA}ÖXT�H"ÍBÎyMXÕ@SYO�H,F¬É²S Ê<ÍB× H"H�ÚBFIÊ<ÍB× H,T,S ËyL�æRVpËyS ËyS ME?GÉ�OBFXË�F®ËyM�É²LBMXT�LBMXT'ËyLBH
ÍBÎyMEÍRMmÉ²HWO�FIÍBÍBÎyMmFEV�L�V7FIAQDRH�?GÉ²HWO�Ó�>@?BÍBÍRMmÉ²H6ËyLGFXË�ËyLBH7ÎyH�FIÎyH�ËyLBÎyH7H�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ
ËyLGFXË%LGFxÕEH=DRH7H7A S ABS ËySYFI× × Ò ÉyV�ÎyH7H7ABHWO�Ó�Ð"LBHWÉ²H�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ�FIÎyH�p�ÛbèxÜ�É²ÊNFIÎ²Ë%V7FIÎ�O
É²Ò�ÉbËyH7ÊÙËyM³ÍBÎyMXÕ@SYO�H�FEV7V�HWÉyÉ/V�MEAmËyÎyME×	ËyMØT�MEÎyJ�ÉbË�FXËyS MEAGÉ7Ö0Û]ïEÜ¬æGÎyH7T"FI× ×�É²Ò�ÉbËyH7ÊÙËyMØDB× M�V�J
ËyLBH�ËyÎ�FIAGÉ²Ê<SYÉyÉ²S MEAGÉ6MIÌ®FI× ×�?BABABHWV�HWÉyÉyFIÎyÒØÍGFEV�JEH�Ë�É7Ö5FIAGO Û·îmÜ/FI?�ËyMEÊNFXËySYVNæGÎyH=O�H�ËyHWVpËyMEÎ�É
FIAGO�FI×YFIÎyÊNÉ7ÓGÐ5FIDB× H/î%É²LBMXT�É"ËyLBH7S Î�DRH7ABH�æBË¬Î�FXËyS ABCmÉ�FIAGO�S Ê<ÍB× H7Ê<H7AmË�FXËyS MEAQV�MmÉbË�É7ÓRÐ"LBH
T�H7S CELmË�É5MIÌRV�ÎyS ËyH7ÎySYF®FIÎyH"FI×YÉ²M®É²LBMXT,A/S A<Ð5FIDB× H,îBÓxÏ{A<FEOBO�S ËyS MEA}ÖIFEÉyÉ²?BÊ<H0ËyLGFXË�ËyLBH"DB?GO�CEH�Ë
× S Ê<S Ë�SYÉª @ï=Ûb>�Û6 @ï�Ö @ï�Ö @ïEÜ²ÜpÓ; Ò]90âm?GFXËyS MEA%Û·îmÜpÖ7DRH7ABH�æBË�Î�FXËyS ABCmÉ�MIÌGV�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ}V7FIA�DRH�V7FI×YV�?B×YFXËyHWO�ÓWåBMEÎ¯S A�ì
ÉbË�FIAGV�HEÖpËyLBH	DRH7ABH�æBË¯Î�FXËyS ABC"MIÌBV�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH�èEÖ7É²ÊNFIÎ²Ë¯V7FIÎ�O®É²Ò�ÉbËyH7Ê�Ö7SYÉ	Û¡é@Ó ï�Ö è� GÓ GÖ è�=BÓ ÞmÜ
Ûb> Û6 GÖ MBÖ éIÜ � Û�tBÓ GÖ tBÓ MBÖ tBÓ éIÜR
 Û¡é@Ö ÞBÖ è�tmÜ � Û�tBÓ GÖ tBÓ MBÖ tBÓ éIÜR
 Û6 GÖ MBÖ éIÜ � Û�tBÓ é@Ö tBÓ ÞBÖ èxÜ²ÜpÓ7}S JEH7T,SYÉ²HEÖ@ËyLBH¬DRH7ABH�æBË�Î�FXËyS ABCmÉ0Ì¢MEÎ�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH¬ï�FIAGO=î<FIÎyHNÛ·ÞBÓ îBÖ èXé@Ó èEÖ ï�èEÓ ÞmÜ�FIAGO

t¯`be dbgy`be c t5o ê t5o � t5oRS t5_Wz¡d
��g�e uW�Xdbz �UT��*�En �In ���¿�UT��*�En �In ���4r8~^���Xn ùIn �p�I��W¶�fIa6c�`{d�t�c�`²~ ��~��*�En �In ���4r8~^���Xn ùIn �p�I����~��*�En �In ��� �b�DùIn ���In �F�0�
�X¶�{
e `bgys�c7q q r8~����Xn ùIn �p�I����~��*�En �In ���4r8~^���Xn ùIn �p�I�©�b�F�Xn �D�In �0�F��I¶�{
e `bg8�0q c�`ba |$~��¢�In �Xn �0� ��~��*�En �In ���¿��~��*�En �In ��� �6ùIn ���Xn �D�I�� ¨m¤�� �UVBª ��»mc7a�lmq g"o�c�dbe \muWz0c7\@~/��g�e uW�Xdbz

Û6 GÓ GÖ è�tBÓ ï�Ö è� GÓ éIÜ"ÎyHWÉ²ÍRHWVpËyS ÕEH7× ÒEÓ�åBÎyMEÊêËyLBHWÉ²H<DRH7ABH�æBË6ÉyV�MEÎyHWÉ7ÖRËyLBHNO�H�Ì¢?BZ7Z7S æGHWOØÕXFI× ?BHWÉ®MIÌ
DRH7ABH�æBË6ÉyV�MEÎyHWÉ�MIÌ0HWFEV�L³V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH/FIÎyH�èWîBÓ éIï�c�Ö¯è�MBÓ î2cNFIAGO³ÞBÓ =@é_cNÎyHWÉ²ÍRHWVpËyS ÕEH7× ÒEÓ(�A¬ËyLBH0FEÉyÉ²?BÊ<Í�ËyS MEA¬ËyLGFXË E >Uè0AIï�ÖpT�H0O�H�Ì¢?BZ7Z7S Ì¢Ò¬HWFEV�L®Ì¢?BZ7Z7Ò�V�MmÉbË}MIÌBV�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ
FIAGO�ËyLBH/ÎyHWÉ²?B× Ë�É�FIÎyH�ïEï�Ó c�Ö}è�=BÓ cNFIAGOçèEèEÓ c�ÖGÎyHWÉ²ÍRHWVpËyS ÕEH7× ÒEÓRÐ"LBH7A}ÖGËyLBH�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH
É²H7× HWVpËyS MEA=ÍBÎyMEDB× H7Ê V7FIA�DRH¬Ì¢MEÎyÊ/?B×YFXËyHWO�FEÉ�Ì¢ME× × MXT�É�p

aQFXÚ�S Ê<SYÉ²H<èWî�Ü éIï�c ¦�° @íè�M�Ü î2c ¦ ­x@'Þ�Ü =@é_c ¦ ½ Û�=mÜ
É²?BD�ÔbHWVpË,ËyM�ïEï%Ü c ¦�° @íè�=�Ü c ¦ ­i@íèEè�Ü c ¦ ½ v @ï

Ð"LBH�É²ME× ?�ËyS MEANMIÌ
ËyLBSYÉ0ÍBÎyMEDB× H7ÊûSYÉ
¦�° >UèEÖ ¦ ­K>:è�FIAGO ¦ ½ >¥tBÓmÐ"LBH7ÎyH�Ì¢MEÎyHEÖIT�H�V7FIA

É²H7× HWVpË/V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH�è%FIAGOÑï�Ì¢MEÎ6S Ê<ÍB× H7Ê<H7AmË�FXËyS MEAçËyM�ÊNFXÚ�S Ê<SYÉ²HNDRH7ABH�æBË�É6?BAGO�H7Î
ËyLBH�CES ÕEH7AÑDB?GO�CEH�Ë/× S Ê<S ËWÓ ; ÒçÉ²ME× Õ@S ABC�ËyLBH�ÍBÎyMEDB× H7Ê4FXË�ÕXFIÎyS ME?GÉ�× H7ÕEH7×YÉ6MIÌ�V�MEAGÉbËyÎ�FIS AmË
ÉyFXËySYÉbÌ·FEVpËyS MEA}ÖBÉ²H7AGÉ²S ËyS Õ@S ËbÒ�FIAGFI× Ò�É²SYÉ"V7FIA�DRH6V�MEAGO�?GVpËyHWO�Ó

W ùØÃ0À�Æ�ÿ²Å�ý@ÇbÃ0À

Ï{ANËyLBSYÉ�ÍGFIÍRH7ÎWÖmT�H�H�Ú@ËyH7AGO�HWO<ËyLBH¬V�MEAGV�H7Í�Ë�MIÌ�K È ë8akaãÍBÎyS MEÎyS ËbÒ�Î�FXËyS ABC�ËyM6ËyLBH¬FEVpËy?GFI×
V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHQÉ²H7× HWVpËyS MEAíÍBÎyMEDB× H7Ê ËyLGFXË�V�MEAGÉ²SYO�H7Î�ÉNËyLBH³DB?GO�CEH�Ë=× S Ê<S Ë�É²S Ê/?B× Ë�FIABH�ì
ME?GÉ²× ÒEÓx<íLBH7A ËyLBH³FEVpËy?GFI×�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH�É²H7× HWVpËyS MEAíO�HWV�SYÉ²S MEA SYÉNDRH7S ABCÑÊNFEO�HEÖ�ËyLBH
V�MEÊ<ÍB× H�ËyH�FIAGO'ÍBÎyHWV�SYÉ²H�S A�Ì¢MEÎyÊNFXËyS MEA�SYÉ�ABMIËNFxÕXFIS ×YFIDB× H�S A�ÊNFIA@ÒÑV7FEÉ²HWÉ7Ó�ë�ÉNFQÎyHWÉ²?B× ËWÖ
ËyLBH�S ABÍB?�Ë�ÕXFI× ?BHWÉ�Ì¢MEÎ,DRH7ABH�æBË®ÉyV�MEÎyHWÉ"FIAGO�ËyLBH6V�MmÉbË,HWÉbËyS ÊNFXËyHWÉ,ÊNFxÒ%ABMIË,DRH6ÍBÎyHWÉ²H7AmËyHWO
FEÉ�H�ÚBFEVpË6A@?BÊ/DRH7Î�É6FIAGO³ËyLBH7ÎyH�Ì¢MEÎyHNS Ê<ÍBÎyHWV�SYÉ²H%OBFXË�F�É²LBME?B×YOØDRH%LGFIAGO�× HWOçÍBÎyMEÍRH7Îy× Ò�ËyM
FEV�LBS H7ÕEH¬É²ME?BAGO�H7Î�O�HWV�SYÉ²S MEA�ì¡ÊNFIJ@S ABCGÓ
à MXT�H7ÕEH7ÎWÖ�ME?BÎ�FIÍBÍBÎyMmFEV�L¬LGFEÉ5É²H7ÕEH7Î�FI×I× S Ê<S Ë�FXËyS MEAGÉ7ÓXå5S Î�ÉbËy× ÒEÖ7ËyLBH"ÉyV�MEÍRH0MIÌ�ËyLBSYÉ¯ÍGFIÍRH7Î

O�M@HWÉ0ABMIË0S AGV�× ?GO�H®SYO�H7AmËyS æRV7FXËyS MEANMIÌ}DRH7ABH�æBË"H7ÕXFI× ?GFXËyS MEA%V�ÎyS ËyH7ÎySYF6FI× ËyLBME?BCEL%âm?GFI× S Ë�FXËyS ÕEH
V�MmÉbË²ì¡H�á
HWVpËyS ÕEH7ABHWÉyÉ"Ê<HWFEÉ²?BÎyHWÉ,O�H7ÍRH7AGOBÉ�LBHWFxÕ@S × Ò�MEA=ËyLBH/É²ME?BAGO�ABHWÉyÉ7ÖBH�á
HWVpËyS ÕEH7ABHWÉyÉ�FIAGO
V�MEÊ<ÍB× H�ËyH7ABHWÉyÉ<MIÌ¬H7ÕXFI× ?GFXËyS MEAíV�ÎyS ËyH7ÎySYFBÓ0>@HWV�MEAGO�× ÒEÖ�ËyLBSYÉ�FIÍBÍBÎyMmFEV�L O�M@HWÉ<ABMIË%ÍBÎyMXÕ@SYO�H
V�MEAGÉ²SYO�H7Î�FXËyS MEANMIÌ5V�ME× × HWVpËyS ÕEH�DRH7ABH�æBË�É"MIÌ¯Ê/?B× ËyS ÍB× H¬V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyHWÉ7òET�H®FxÕEMESYO�HWO<ËyLBSYÉ
ÍBÎyMEDB× H7Ê D@ÒNÉ²S Ê<ÍB× ÒNABMIË,V�MEAGÉ²SYO�H7ÎyS ABC�âm?GFIAmËyS Ë�FXËyS ÕEH�× MmÉyÉ�ÎyHWO�?GVpËyS MEA}Ó@Ð"LBS Î�O�× ÒEÖmËyLBSYÉ"ÍGFXì
ÍRH7Î	O�M@HWÉ5ABMIË�V�MXÕEH7Î5ÕXFI× SYOBFXËyS MEA/MIÌGËyLBH�ÍBÎyMEÍRMmÉ²HWO/FIÍBÍBÎyMmFEV�L/FI× ËyLBME?BCEL�Ì¢?BZ7Z7Ò/É²H�Ë�ËyLBH7MEÎyÒ
× M@MEJ�É5FXË²ËyÎ�FEVpËyS ÕEHEòWÊ<MEÎyH0ÎyHWÉ²HWFIÎ�V�L�É²LBME?B×YO6DRH"V�MEAGO�?GVpËyHWO�Ì¢ÎyMEÊ ËyLBH�ÍBÎ�FEVpËySYV7FI×mÕ@S H7T,ÍRMES AmË
Û¢HEÓ CGÓGFIÍBÍB× SYV7FIDBS × S ËbÒ�FIAGO�H�á
HWVpËyS ÕEH7ABHWÉyÉ�ËyMN×YFIÎyCEH�ì{ÉyV7FI× H�ÍBÎyMEDB× H7ÊNÉ�ÜpÓj�?BH�ËyM<ËyLBHWÉ²H6× S Ê<S Ë�FXËyS MEAGÉ7Ö�ËyLBH/É²ME× ?�ËyS MEA�MED�Ë�FIS ABHWO�Ì¢ÎyMEÊ ËyLBH�ÍBÎyMEÍRMmÉ²HWO�FIÍBÍBÎyMmFEV�L
É²LBME?B×YO6Ôb?GÉbË,DRH®ËyÎyHWFXËyHWO�FEÉ"F�ÎyH�Ì¢H7ÎyH7AGV�H�Ì¢MEÎ�O�HWV�SYÉ²S MEA�ì¡ÊNFIJ@S ABCGÖmÎ�FXËyLBH7Î0ËyLGFIA�FEÉ"F<V�MEÊ�ì
ÍB× H�ËyH³FIAGO O�H�æGABS ËyHQMEABHEÓ0Ð"LBH7ÎyH�LGFEÉNDRH7H7A ÎyH7×YFXËyS ÕEH7× Ò'× S Ë²Ëy× H³H�á
MEÎ²Ë%T,S ËyLBS A ËyLBHQFIÎyHWF
MIÌ�V�ME?BAmËyH7ÎyÊ<HWFEÉ²?BÎyH/É²H7× HWVpËyS MEA}Ó�Ð"LBH7ÎyH�SYÉ¬F�ÎyHWFI×5ABH7HWO�Ì¢MEÎ¬S AmËyH7AGÉ²S ÕEH�ÎyHWÉ²HWFIÎ�V�L�MEAQËyLBSYÉ
É²?BD�ÔbHWVpËWÓ

� ö}ø�ö}ÂBö¯À�Æ
ö¯ý
�W¶>X�f2����ù�ù�°q|�c�`{dS��~�t5_I~Eg�_7^ª|�`²c7hydbe h�g�^Y_7`6[]\E^Y_7`ba6c�dbe _W\çfIg�h�iE`be d]jz�<c7\@c7uWg�a�g�\Xdp¶�X¯`be dbe z{�
fXd²c7\@~mc�`²~/[]\mz¡dbe dbiEdbe _W\B�b�Dù�ù�ùI�

�X¶�t5o"�w�S��~�t5o"�w�S��v�z{gy`"k�ime ~Egw}¯gy`p¶��X¶ �I¶@v�� fIg�h�iE`be d]j�fIgy`bwIe h�g'�·�7�W�_�F��I¶,[]\E^Y_7`ba6c�dbe _W\�fIg�h�iE`be d]jYX¯`bgpc7h²�mg�z�fIiE`bwxgyj,�7�W�x�Xn�v�� « g�l@c�`{dba�g�\XdB_7^m�G`²cW~Eg5c7\@~"[]\@~Eimz¡d{`{jX¶�·�7�W�x����E¶,[{fAZ\[�[¡�5t���o �D�����I�p°q�_~mk�ime ~Eg�q e \mg�^Y_7`x�<c7\@c7uWg�a�g�\Xd¯_7^G[¡�³fIg�h�iE`be d]jI°q|�c�`{d��]�·kª��[¡�	fX°q�I�
°5�Rg�h²�m\me ±Ximg�z�^Y_7`	db�mg8�<c7\@c7uWg�a�g�\Xd	_7^}[¡��fIg�h�iE`be d]jX¶��b�Dù�ùI����X¶,[{fAZ\[�[¡�5t���o �D�����I�p°���~mk�ime ~Eg�q e \mg�^Y_7`x�<c7\@c7uWg�a�g�\Xd¯_7^G[¡�³fIg�h�iE`be d]jI°q|�c�`{d¡�'�·kª��[¡�	fX°��0�
°�fIg�q g�hydbe _W\<_7^5fEc�^Yg�uWi@c�`²~Ez�¶��b�Dù�ù�ùI��I¶,[¡�5°CX�c7z{g�q e \mg8|�`b_7dbg�hydbe _W\H�<c7\Ii@c7qµ¶Bk�gy`ba6c7\�[]\E^Y_7`ba6c�dbe _W\%fIg�h�iE`be d]j��0uWg�\mhyj��·�7�W�_�F��X¶ª��[{fE��r"c7\@~E´�_X_W­%~��0\�[]\Xd{`b_I~Eimhydbe _W\,db_,t5_Wa�lmiEdbgy`}fIg�h�iE`be d]jX¶D��[{fE��fIl�g�h�e c7q�|}im´mq e hpc�dbe _W\�W�W��°¡�����b�Dù�ùI����I¶,o0e z{­X��c�dbh²�^~Eo0e z{­X��c�dbh²��w�¶ �I¶ �8|}�XjEz{e hpc7q�fIg�h�iE`be d]j��G`²c7e \me \mu.�<c7\Ii@c7qµ¶@o0e z{­6��c�dbh²��[]\mhW¶�b�Dù�ù�ùI�ùI¶>X�c7\@~IjX_Wl@cW~E�XjIc�jXn��¬¶ nµ�/jE­XjId]jE\Gn$|
¶ |
¶ nµ�/jE­XjId]jE\Gn��¬¶ ~)�º{E`²c7a�gys�_7`b­�^Y_7`/[]\Xdbg�u7`²c�dbgp~
`be z{­�a6c7\@c7uWg�a�g�\Xd®e \Qe \E^Y_7`ba6c�dbe _W\Qdbg�h²�m\m_Wq _Wu7jXn:�<c7\@c7uWg�a�g�\Xd « g�h�e z{e _W\ V^]`_Aa �b�Dù�ù�ùI��I�I�p°�������p�I¶�t5�mg�\Gn t0¶ ��¶ ~I��^Yim½�½yj�c7lmlE`b_xc7h²��db_0z{g�q g�hyd�db�mg5q _Xhpc�dbe _W\®_7^mdb�mg�~Ee z¡d{`be ´miEdbe _W\�h�g�\Xdbgy`p¶�{mim½�½yj
fIgydbz	c7\@~NfXjEz¡dbg�a�z ���#b �·�7�W�_�F�x�I�p°b������W¶�t5�mg�\Gn}f�¶ n���e ­x_Wq c7e ~Ee z�n}��¶ n5t5i@~E\mgyjXnRr�¶
r�¶ ~¯t5_Wa�l@c�`be z{_W\�_7^w|�`b_W´@c7´me q e z¡dbe h<c7\@~U{mim½�½yj
fIgyd'��gydb�m_I~Ez�^Y_7` « g�z{e uW\me \mu%im\@~Egy`�v�\mh�gy`{d²c7e \Xd]jX¶�|�`b_Xh�g�gp~Ee \muWz¬_7^"�0[b�"�UfXd{`bimhydbiE`bg�z�n
fXd{`bimhydbiE`²c7q « jE\@c7a�e h�z�nIc7\@~´�<c�dbgy`be c7q z0t5_W\E^Ygy`bg�\mh�gWn@fXdp¶I|G_Wime z�n2�cZ�n_�0lE`p¶2���p°¡�F�´�b�Dù�ù�ùI�
�����W��°¡���I�F����X¶�t5e g�h²�@c7\m_ps	e h�½Wn�d
¶ ~mo0e z{­�c7\@c7q jEz{e zL~@`bgp±Xime `bg�a�g�\Xdbz�nEh�_W\E¹@e hydbz0c7\@~�lE`b_W´mq g�a�z�¶@t5_Wa�lmiEdbgy`bze fIg�h�iE`be d]j �#f �b�Dù�ùI���0�W����°¡���x��D�I¶ « im´�_We z�n « ¶ nF|�`²cW~EgWn�r�¶ ~po�c7\m­Ie \mu	_7^I^Yim½�½yj,\Iima®´�gy`bzGe \"db�mg¯z{gyd{dbe \mu0_7^El�_Wz{z{e ´me q e d]j,db�mg�_7`{jX¶
[]\E^Y_7`ba6c�dbe _W\NfIh�e g�\mh�g VAg �b�Dù����I�w�D����°¡�F����L�E¶e{m_7`{dbg�a�lmz�n�|
¶ ~%{mim½�½yjNfIgydbz�^Y_7`e��_I~Eg�q q e \mu/c7\@~�r"c7\@~Eq e \mu�[]a�lE`bg�h�e z{e _W\Nc7\@~S{
q gy»Ee ´me q e d]jX¶|}� « ���mg�z{e z�¶%{@c7h�imq dbge|
_Wq jIdbg�h²�@±Ximg,~Ege��_W\mz8�b�Dù�ù��I��F�X¶,��c7iE^Ya6c7\m\Gn���¶ nRk�imlEd²cIn���¶ ��¶ ~R[]\Xd{`b_I~Eimhydbe _W\Ndb_�{mim½�½yjH�	`be db�ma�gydbe h®���mg�_7`{j�c7\@~��0lE°
lmq e hpc�dbe _W\mz�¶�}5c7\���_Wz¡d{`²c7\@~/o0g�e \m�m_Wq ~Bn2��gysih5_7`b­H�b�Dù��I����D�I¶�Z�½�e gy`pnp� ¶ ~7o0e z{­,c7\@c7q jEz{e z¯c7\@~�c7z{z{g�z{z{a�g�\Xdp¶7e \^~��"`²c7imz{gWnI��¶ nW��e lEdb_W\Gn�r�¶ {5¶��µgp~Ez�¶ ��~�r"c7\@~I°
´�_X_W­/_7^�[]\E^Y_7`ba6c�dbe _W\%fIg�h�iE`be d]j��<c7\@c7uWg�a�g�\Xdp¶�t5o0t�|�`bg�z{z8�b�Dù�ù�ùI�µ�X���p°��I����F�X¶,o�c7e \mgy`pn@o�¶ �¬¶ nBfI\Xjm~Egy`pn@t0¶ ��¶ nGt�c�`{`pn�r�¶ r�¶ ~@o0e z{­�c7\@c7q jEz{e z0^Y_7`�e \E^Y_7`ba6c�dbe _W\Ndbg�h²�m\m_Wq _Wu7jX¶ìW_WiE`b\@c7qG_7^��<c7\@c7uWg�a�g�\Xd	[]\E^Y_7`ba6c�dbe _W\%fXjEz¡dbg�a�z b^_%� �b�Dù�ù_�F�w����ù�°¡�L�0��D�I¶�~Eg6o0iGnR� ¶ k�¶ n¯�}q _���n$ìE¶ r�¶ |
¶ ~}o0e z{­�c7\@c7q jEz{e z¬a�_I~Eg�q q e \muNs	e db��db�mg/imz{g6_7^0^Yim½�½yj�q _WuWe hW¶
t5_Wa�lmiEdbgy`bz e fIg�h�iE`be d]j �#a^_AV �b�Dù�ù��I�0����ù�°¡�F�I��DùI¶Yh�c7uWgy`pnmo�¶ o�¶ ~���lE`b_Xh�gp~EiE`bg"^Y_7`�_7`²~Egy`be \mu®^Yim½�½yj�z{im´mz{gydbz	_7^�db�mg"im\me d0e \Xdbgy`bwWc7qµ¶m[]\E^Y_7`ba6c�°
dbe _W\Nc7\@~<fIh�e g�\mh�g ú#j �b�Dù��_�F�w�L�I��°¡�D�_�

�7�I¶�dBcW~Eg��Gnm|}¶ ��¶ ~%{mim½�½yj6z{gydbz�¶@[]\E^Y_7`ba6c�dbe _W\<c7\@~Nt5_W\Xd{`b_Wq b �b�Dù��I���x������°q�I���

Model-based Risk Analysis of Secur ity Cr itical Systems

Siv Hilde Houmb1, Trond Stølen Gustavsen1, Ketil Stølen2, Bjørn Axel Gran3

1 Telenor R&D, Norway, { si v- hi l de. houmb, t r ond-
st ol en. gust avsen} @t el enor . com

2 Sintef Telecom & Informatics, Norway, kst @si nt ef . no

3 Institute for Energy Technology, bj or nag@hr p. no

CORAS (www.nr.no/coras) is a EU funded R&D project (IST-2000-25031) devel-

oping a methodology and a framework for model-based risk assessment based on
AS/NZS 4360 [1]. CORAS focus on security critical systems in general, with particu-
lar emphasis on IT security. IT security includes all aspects related to defining,
achieving, and maintaining confidentiality, integrity, availability, non-repudiation, ac-
countability, authenticity, and reliability of IT systems (ISO/IEC TR 13335-1:2001
[2]). The focus is on controlling risks by using well know risk analysis methods from
the safety domain, such as HazOp [3], FMEA [4] and FTA [5], which have been used
within for example the chemical and nuclear industry since World War II [3].

The presentation will focus on how to use UML (Unified Modeling Language) be-
havioural diagrams [6] as input diagrams to risk analysis. The approach will be exem-
plified by demonstrating how a UML sequence diagram can be used to support Ha-
zOp for risk identification. Our approach includes both guidelines on how to construct
the input diagrams from existing system documentation and how to perform a risk
analysis using a particular input diagram.

The presentation will conclude with summarising some of the preliminary results
from the CORAS project, with emphasis on how we have and will verify the usability
of the methodology developed within the project and in particular the methodology
developed for using input diagrams to support risk analysis.

References

1. AS/NZS 4360:1999 Risk management (1999).
2. ISO/IEC TR 13335-1:2001: Information technology – Guidelines for the management of IT

Security – Part 1: Concepts and models for IT Security.
3. Leveson, Nancy G., "SAFEWARE, System, Safety and Computers", Addison-Wesley,

ISBN: 0-201-11972-2, 1995.
4. Bouti, A., Ait Kadi, D., A state-of-the-art review of FMEA/FMECA. International Journal

of Reliability, Quality and Safety Engineering 1 (1994), 515-543.
5. IEC 1025:1990 Fault tree analysis (FTA) (1990).
6. Booch, Grady, Jacobson, Ivar, and Rumbaugh, James, "The Unified Modeling Language

Reference Manual", Addison-Wesley Longman Inc., ISBN: 0-201-30998-X, 1999.

Mobile Applications and Multilateral Security

Kai Rannenberg
Mobile Commerce & Multilateral Security

Johann Wolfgang Goethe University Frankfurt, German
Kai.Rannenberg@whatismobile.de

Abstract. “Mobile Whatever” had become a popular buzzword and inspired a lot of
more or less realistic application scenarios, especially when UMTS licenses were in
high demand. Now much of the euphoria is over and many market players had to
revise their optimistic business expectations. “What are the revolutionary new
applications that we need all this bandwidth for?” is a question one can hear very
often. However, the hangover after the hype sometimes seems to overshadow the real
chances of enhanced mobile applications that lie in enhancing privacy and security of
day to day communication, e.g. by using the extra interaction channels for
negotiations.

Following a short description of Mobile Commerce and the work this talk will
introduce the concept of “Multilateral Security” that aims at balancing the competing
security requirements of the different parties. The discussion will include scenarios
and examples of research on everyday communication and interaction, such as
Reachability Management and access to mobile portals. They indicate that on one side
the prudent use of the extra commu nication channels and options can enhance security
and privacy while on the other side this can make mobile applications more popular
and acceptable.

References

Kai Rannenberg: CamWebSim and Friends: Steps towards Personal Security Assistants; Pp.
173 - 176 in Viktor Seige et al.: The Trends and Challenges of Modern Financial Services –
Proceedings of the Information Security Summit; May 29-30, 2002, Prague; Tate
International; ISBN 80-902858-5-6

Kai Rannenberg: How much negotiation and detail can users handle? Pp. 37-54 in Frédéric

Cuppens et al.: Computer security: Proceedings of the 6
th

 European Symposium on
Research in Computer Security; October 4-6, 2000, Toulouse, France; Lecture Notes in
Computer Science 1895, Springer-Verlag; ISBN 3-540-41031-7

Kai Rannenberg: Multilateral Security – A concept and examples for balanced security; Pp.
151-162 in: Proceedings of the 9th ACM New Security Paradigms Workshop 2000,
September 19-21, 2000 Cork, Ireland; ACM Press; ISBN 1-58113-260-3

���������	��

������������� �������

�����! #"!�%$�&(')�+*�,.-

/10325476#8:9;2=<?>�@+ACB�D+E�F!8:2HG3IJ6�BK@+E	LNM!<:6#8POQD�FR@+8SD�<:@�8;>
TU2HV5V52HD+EXWYD�<:6#91ZKM325V[G!250NI3\N]7]_^�`N@+E	9;@J0bac476d0(M36
B�D�E�F38:2HG!IJ6�B�Z�e	f+gih�\N/c0N2=<:6�G�jk2H03I7G!@JE

l7m7n+o7pqmsrut!v�w(mJx(y7z+{(|J}Qr;|Jvd~�r?vq|Qr��J�

�_�s�d�d�����+�J�%� 6#��<:`!8:6�D�<:9%9;M3��`�D�9%�d@JE	L3MNV59;25@J0�<:@�8:6d476�D�V�V5@JIJ9d\�9;6d��8:6#<_D+0NG
L!8:2H4+D�<:6��76#>!9�D+9��K6dV5VcD�9�<:@�G36d�#8;>!L!<�E_D�<:6#8:2HD+V�D�8:6b9�<:M�G3256�G�250�<:`N6��d@J0q<:6#�(<
@�A�<:`N6�9;6d�dM38:2=<�>�@�A�E	2=��0N6�<?��@�8:�(9d�Qa�A�<:6#8�D��d@JE	LND�8:259;@J0�@+A�<:`3259k0N6#��<:`!8:6�D�<
E	@(G!6dV���2=<:`�<:`36�<;8SD+G32=<:25@J0�D�V�@J0N6+\�D�036#���d@+0N9�<;8:MN��<:2H@+0 259%250q<;8:@(G3M3�d6�G)\s<:`N6
¡�¢S£u¤�¥H¦ \q<:`ND�<KE	2H0325E	2H§#6d9�<:`36c25E	LND+�#<¨<:`�D�<K9;MN�S`_LR@��K6#8:9�`ND�4J6c@+0_<:`36c9;6#�dM38:2=<?>
@�AY<:`N6©036#<?�K@+8:�R\¨F(>ªM39;250NI�A�@+8;��D�8SGU9;6d�dM!8:6��d@JE	E�MN032H�dD�<:25@J0���`ND+030N6dV59_D+0NG
�76�>�M3L)GND�<:2503Ik@JLR6#8SD�<:2H@+0_2H039;2HG36�<:`N6�E	2=�!6d9d�qa«G3259;�dMN9;9;25@+0¬D�FR@JM!<¨<:`36�A.@+8;��D�8SG
9;6d�#M38:2=<?>¬@+Ai<:`36d9;6k0N6��­L!8:@JLR@+9:D+V591D�0�G�9;@JE	6k6#�(<:6d039;2H@+0N9�259�2H03�dV5M�G!6�G®�

¯b°�±q²P³q´#µ7¶�·�¸ ')�!'�¹�º©,H»:¹3¼Rº©,H½R�+-+¼R¾u�3 �¿Y&(dÀ�-��+Á�Â) �,[»:¹!¼�»# #&(Ã�Á�&!'®&(Ä�¹R-S,.-

Å ÆNÇPÈRÉ)ÊkË�Ì�ÍQÈ)Î:ÊPÇ

Ï �+-��+&! #ÁdÐÑÁ��!'ÒÁ��� #'),�')" &!')�!'�¹�º©�!Â®-©Á��!º©º�Â)'®,�Á+&q»�,��!'Ò-¬ÐÒ&!-b¾u�! �&«Ä��!')" »�,�º©�ªÁ��!'ÒÁ���')Ó
»� d&q»��JÀÔ�!'�Õ) #�(»��JÁ�»#,[')"�&!"3&(,�'®-S»Y»� d&!ÀR,[»�,��!'®&!Ä�Á� #¹�ÕR»��3"! d&(Õ)Ð®,�Á�»�Ð) #�+&(»�º©��À)��Ä.-�Ö®×YÐ®�+-��	,['RÓ
Á�Ä�Â®ÀR�	Õ®&3-�-�,[Ø3��&!'®ÀÔ&!Á�»#,[Ø3�	&q»S»d&!ÁdÙR-Y&("N&(,�'®-:»Y')��»:¿c�3 �Ù�Ä�,['®Ù�-+¼)&('ÒÀÔ&©-�Â)Ú®-���»k�(¾�Á��3º©Õ) ��!Ó
ºb,.-��+ÀÔº©,H½Ô')�RÀR�+-_Û ÜqÝ�Ö®Þ�'R¾u�! �»�Â)'Ò&q»��+Ä[¹�»�Ð)�J-S�%º©�RÀR��Ä.-Y¾�&!,[Äs»#��&!ÀR�JßNÂ®&q»#��Ä�¹�Á�&!ÕR»�Â) #�%»�Ð®�
-SÂ)Ú)»�Ä���»:¹��!¾¨»#Ð)�_&q»�»#&3ÁdÙ�-1»#Ð®&q»�º©,[½�')��»:¿c�3 �ÙR-1º©,["3ÐN»�ÚÒ�_-�Â)ÚRà:�JÁ�»k»��Ò¼®-�Â®ÁdÐÔ&3-kÁ��3ºbÕ®Â)ÄHÓ
-S,��!'�»#�� ��+Ø!�J&(ÄCÙ3��¹R-�&!'®À�Ä[�3"3-+¼®&!-�¿c�+Ä[ÄK&!-�ÚÒ�+,[')"�¾u�! dÁ��+ÀÔ»#��ÀR�JÁ� #¹�ÕR»�-���,�*��+À�º�&(»��� #,.&(Ä?Ö
×YÐ)��-SÐ®�! �»#Á��3º©,[')"��!¾1»#Ð)�©»� d&!À),H»#,[�3'®&(Ä�»#Ð) #�+&q»_º©�RÀR�+ÄPÐ®&3-%Ä[�JÀU��')"3,[')�+�� d-�»���Õ) #�RÀRÂ®Á��
-S�3Ä[ÂR»#,[�3'®-1»�ÐÒ&q»�&(#��¿c�J&(Ù�Â)'ÒÀR�� Y»#Ð)�+-��!¼®ßNÂ),[»��	 #�+&!Ä[,.-S»�,.Á(¼�»�Ð® ��J&q»#-+Ö

á 'â-S�JÁ�»�,��!'äãÔ¿1��&!'®&(Ä�¹�*��©»�Ð®��»� d&!À),H»#,[�3'®&(Ä�»#Ð) #�+&q»¬ºb�RÀR�+Ä�-¬&('®Àå&! �"3Â)�b»�Ð®&(»�»#Ð)��¹
&(#��-S»�,�Ä[Äs #��Ä���Øq&!'3»Y,�'��3 #ÀR�+ P»#�©Õ) ��!»��JÁ�»Yºb,[½�')��»:¿c�3 �ÙR-+Ö á '�-��+Á�»#,[�3'Ôæ¬¿1��Õ) #�+-���'N»�-��!º©�
')��¿ç»�Ð) #�+&(»#-�&!'®À�&q»�»���º©ÕR»�»���Á��3º©Õ)Ä[�+º©��'N»k»�Ð)�_»� d&!ÀR,[»�,��!'®&!Äi»�Ð) #�+&(»�º©��À)��Ä?Ö®è«�%»�Ð)�+'
��½RÕ)Ä��! #��Ð)�q¿é��½R,.-:»#,[')"Uº©,[½�,�')"«»��JÁdÐ)')�3Ä[�3"!¹âÁ��3ÕÒ�J-©¿k,H»#ÐÑ»�Ð)��')�+¿ê»#Ð) #�+&q»d-©&('®ÀÑÐ)�q¿
Õ®&(�»�,.&(ÄK-S�3Ä[ÂR»#,[�3'®-�Á+&('�ÚQ��,�º©Õ)Ä[�+º©��'N»��JÀ�»���Õ) ��!»��JÁ�»�&!"3&(,�'®-S»�»�Ð®��º�¼Ò,�'�-��+Á�»�,��!'�ë�&!'®À
ì #�+-�ÕÒ�JÁ�»�,�Ø!�+Ä[¹3Ö¨è«��»�Ð)�+'äÕ) #�+-���'N»b& "!�+')�� #,.Á�-S�3Ä[Â)»�,��!'âÕ) #�(»#�+Á�»�,�')" &!"3&(,�'®-S»�»#Ð)��'®��¿
&q»S»d&!ÁdÙR-�&('®À &('®&!Ä[¹�*��¬,H»d-%-S�JÁ�Â) #,H»:¹�&!'®ÀªÐ)�q¿�,[»_Á��3Â)Ä�Àª,['«Õ) d&!Á�»#,�Á���ÚQ�¬ÂÒ-S�JÀäí�-��+Á�»�,��!'®-
Ü)¼Òî¬&('®À�ïNð�Ö

ñ òbÉ)ó�Ë�Î:È)Î:ÊPÇ�ó�ô¬ò õ�É)öCóKÈÑ÷�ÊYË�ö�ôSø

á '�»#Ð)�	Á��!'N»#��½�»1�!¾K&!')�!'�¹�º©�!Â®-1Á��3ºbº¬Â)'),.Á�&(»�,��!'®-P»�Ð)�%�3ÚRà:�+Á�»�,�Ø!���(¾�»#Ð)�	&q»�»#&!ÁdÙ3�� 1,�-c»#�
ÀR,�-#Á��qØ3�� Y»#Ð)�_Õ®&(»S»��+ �'Ò-k�(¾�»� d&qÃ�Á%�!¾�ÂÒ-S�+ #-k,�'�»�Ð®�_')��»:¿1�! #ÙiÖ ¸ -��+Á��3'®À)&! �¹�"3�3&!ÄC�(¾�»�Ð®�
&q»S»d&!ÁdÙ3�� Yº©,["3Ð3»kÚQ�%»���ÀR,.-� �Â)Õ)»k&!'®À�ÀR,.-�Á� ��JÀR,H»Y»#Ð)�_&(')�3'�¹Nº©�3Â®-1')��»:¿1�! #ÙiÖ

ùYú)ûYü�ýdþ!ÿ��[ü������Òþ���ü�ú®ý�ûJþqü
	��RÿRû���
��!ý
	������)û�ü����3ý�����ú®þ����Òû+û����®þ��SûJÿ����bü�ú)û��3û��)û+ý#þ��
ü�ú)ý#û+þ(ü�	��RÿRû�������û+ÿ ���!�Sû#"$�)ý%�Hü�&�þ��®ÿ "�ý�&('Rü%��������&�ý�û#�SûJþ(ý)"dú+*�,-��ü�ú.�/�0	���ÿ)û���þqü�ü#þ�")�3û�ý)�
þ(ý#û21®ý)�:ü3"$�.þ��%�4��1®û+ÿ�þ���5�687)7:9<;8=>�!ý!6�?$@A9<;B=$*�CD'Òþ��%�4��E!û�þ(üSüdþ�")�!û+ý�ú®þ���ü�ú®û«þ��.�����[ü�&äü%�
	F���.�[ü��!ý%þ������)û�ü��G�!ý%�3�����.���%þ��®ÿ�ý�û#"$�3ý#ÿÔü#ú)û���ý�ü�ýdþBHI"�*KJ�þ8EL�.ÿ!McúÒþ��.	 ÿRûN	������Sü�ýdþqü#û+ÿ
ü�ú)ûI��ûN"��)ý��[ü�&2��
G	��O�!�)û�ü��G�!ý%����þ��3þ������SüP����"dúUþ��Uþqü�ü#þ�")�3û�ý�Q R�SA*K,-�T�!ü�ú)û+ýP�Sü��Òÿ��[û#�%ü�ú®û
þqüSüdþ�")�3û�ýF����þ������.	©û+ÿâü��T�Òû2��ûN�%�F'U�B�1û�ý�
��.��þ��®ÿV�/�����.��&äþ������B�cûJÿUü��T	������Hü%�!ýI����	©û
')ý���'U�3ýSü%�����2��

�������(�FQ�W#X8SY*ZC[��þ�"�ü���E!ûbþqü�ü#þ�")�3û�ý[���(üP���.��&�úÒþ���ü�ú)û©þ��.�����Hü�&Ôü��\	����.�[ü��3ý
�����.�����.�Rü�"+þ��©þ��/�4�%ÿRûN��þ8&�](ÿRû���û�ü#û�](ý#û�'.�.þ8&_þ��Òÿ^���B_:ûN"�ü`�)ûN�a	©ûN�%��þ��!û#�b���Nü���ü�ú®û��)û�ü��G�!ý%�Z*
c ��"dú þ�� þ(üSüdþ�")�!û+ýI"�þ��d'Qû�ý�
��!ý%	 ý#û�'���þ8&Ñþ��®ÿÑüdþ����������Uþ(üSüdþ�")���©ü�úÒþqü\����	©û2	��RÿRû�ý%�
')ý���'U�L��þ�����
��3ý�	F���\�®û�ü��G�!ý%�(�Yþ3ÿ)ÿRý#ûN�%�0Q X�e�]$W�f�SA*
,-�g	����Sü�ü#ú)ý#û+þqüh	���ÿ)û��/�Ôþ��3þ������Sü\	����i�)û�ü��G�!ý%���j�[ü3����þ��/���­þ��%���.	©û+ÿ ü#ú®þqü�ü�ú®û

þqüSüdþ�")�3û�ý�"$���Nü#ý������KþP�4�.�U�Sû�ük��
®ü�ú®ûG	����^�.�RÿRû#��*(ùYú)û#�Sûl"$��	�')ý���	�����û+ÿ^�.�RÿRûN�m"+þ���ûN�Hü#ú)û�ý
�4��	�'.��&�	����.�Hü%�!ýcü�ú)û�ü�ýdþBHI"�]!ü#ú)û�ý#û$
��3ý�û�ý�ûNE!û+þ������.�	ü#ú)ûP"$�!ý#ý#ûN��'U���®ÿRû��U"�û��Qû�ü��1û�û���ü�ú)ûN�[ý
���.'��Rü%�Kþ��®ÿP���Rü�'��Rü%�Cü��kü#ú)ûcþ3ÿ�E!û+ý%�#þ(ý%&�])�!ýb"�þ��_þ�"�ü%��E3û���&n	������Qû�ú®þ8E3û
���o�3ý#ÿ)û�ýsü%��û$��ü�ýdþ�"�ü
����
��3ý�	�þ(ü������!���Rüo��
1ü�ú®û��)û�ü��G�!ý%�2�!ý_ÿRû#"�ý#û+þ��SûF�Hü)�	ý#û�����þ��.�����[ü�&�*+J����Sü�ý%�����Rü������!��
1ü�ý%���Sü
�L&��������.�p	�þ��(&F	F���RûN�����������®þ�����&�����û+ÿ�ü��¬þ3ÿ)ÿRý#ûN�%��ü�ú®û��/�����)û[��
+���.
��!ý%	©þ(ü���������û+þ��7þ��!û�]
�kú.����û��������Rü%�������[�®þ��SûJÿ2���2'��.�.����"���&3E!û+ý���1Òþ��.�[û^')ý��(��
q�[��
`"��!ý#ý�û#"�ü%�)ûN�%�pQ�W�]�r�]$WNr�]$W8s8Sb�3ý
ý�ûN'.�Rü#þ(ü������T�4&��Sü�ûN	���Q t.]NWNe�S�úÒþ8E!û��Òû+û��T')ý%��'u����û+ÿªü��ªþ!ÿ®ÿRý�û#����ü#ú)û�ý�ûN���.þ��������Hü�& ���%�4�®ûN�N*
Jn��vQû+ý�ûN�NüI	F���w�®û�ü��G�!ý%�åü���'U����������ûN���4�U"dú þ���	��O�(x-"�þ��%"�þ3ÿRûN�3Q f�S�þ�����	�'.��û�	©ûN�3ü#û+ÿy���
z�C�{|Q }BSY]Rú®þ8E3û�þ��������Qû�ûN��û$��'.���!ý#û+ÿ�ü���	����.��	���~+û%ü�ú)û%ý%������ü#ú®þqün"��!ý#ý��.')üG�.�RÿRû#�l�)ý#û+þ��
ü�ú)ûp��ûN"��)ý��[ü�&I��
�ü�ú®ûo�)û�ü��G�!ý%�Z*

� �T�K���`�n���.�[���F�.�m�n�����4�`�[�m�F���n�.�+�k�w�����n���4�

ùYú)û_ü#ú)ý�ûJþqü)��þ!ÿ®ÿRý�û#����û+ÿ3����ü#ú)û�ü#ý#þ3ÿ��[ü������®þ��Cü�ú®ý�ûJþqün	��RÿRû���þ(ý#ûp����"�ý#û+þ��4���.����&Ôý�ûN�[ûNEqþ��Nü
ü��¬ü�ú)ûP')ý%��'Qû�ý�
��.��"�ü������.���.����
�	����j�)û�ü����3ý����N*NùYú)ûP��	©þ����Z�(�.	��Òû+ýG��
Kþ�"�ü���E!û�ý�ûN	�þ����[û+ý
�.�RÿRûN�pQ�WNt�S¨þ��Òÿ�ü#ú)ûp')ý%���3ý�û#���G���2���Nü#û�ý)"�û�')ü������Ôü�û#"dú.�.��������&�þ��Òÿ3�[ûN���/�4�.þqü%�����+]�	�þ��!û#���[ü
'U�L���������[û�
��!ý	þ�����	��O���.�RÿRû#��ü��Ôú®þ8E!û�ü�ú)ûN�[ý�ü�ýdþBHI"�	����.�[ü��3ý�ûJÿK*�M���	�	���� þ�����û��Nþqü%�������
��
p���.ÿRû$x-�4'®ý�ûJþ!ÿy���3ü#û�ý)"�ûN'Rü������i��
^���3ü#û�ý%�®þqü%�����®þ���ü�ûN�[û#"$��	�	��.�.�/"�þqü%��������ý#û�����
��3ý%"�ûªü�ú®û
��	�'u�!ý�ü#þ��U"�ûF��
Pü#ú®þqü%ü#ú)ý�ûJþqü�Q s8SA*+J���	©û#�:ü%��"F���3ü#û�ý)"�ûN'Rü���������
Pü#ú)û�"$���3ü#û��NüP��
G"���	�	^�.x
�.��"+þqü%�������G���N])þqü���û+þ��Sül���Ôü�ú®û��!ý%&�]�ý#û����.��þ(ü�ûJÿ�þ��Òÿj�Yþ(ý#ý#þ��Nü%�
�®û�û+ÿ�ü����Qûo�4���.�!úNül�Òû�
��!ý#û
�Hü�"+þ�� ü#þ��!û�'.�.þ�"�û�*k���Rüdþ����.���.�Ôü�ú)ûN	 üdþ��!û#��ü���	©û�þ��®ÿ«û�vu�3ýSü#]�þ��®ÿUþ2"��[ûJþ(ýo�)û+û+ÿUú®þ��
ü��F�Òû%ÿRû�	������:ü#ý#þ(ü�ûJÿK*��n
k"$���®ý%��ûkü�ú����Yÿ���ûN���.�!üYþ�'.'.��&¬ü%��	����.�Hü%�!ý%�����^�(&©û��Nü��[ü���ûN�G�.�!ü
�ÒûN�����.�����.�bü��bü�ú®ûp��þ8���`��
��!ý)"�ûN	©û��Nü["$��	�	��.�.�[ü�&�*
Cn"�ü%��E3û1þ(üSüdþ�")����þ(ý#û��������!úNü���&o	��!ý#û1ÿ.�OHI"$���Hü�ü%��	������3üm�.�)ü�����E3û���ü�ú)û�"$�®ý�ý#û��Nü�ü#ûN"dú�x

�.��������&ÔÿRûN'.���B&!û+ÿTQ�WN}�SA]u�kú)û�ý#ûp���.��&h�1û+þ���þ��)ü�ú)ûN�3ü%��"+þqü%��������������û+ÿ3�Qû�ü��1û�ûN�ªý�ûN	�þ����[û+ý
�.�RÿRûN�N]iü�ú)ûN&�þ(ý#û������Hü#ûF'u���%�����.��ûbü��h'Òû+ý4
��3ý�	3*CùYú)û+ý�ûbú®þ8E3û��.�!üo�Òû+û��Uþ��(& "$����1®ý%	©û+ÿ
ý�ûN'U�3ýSü)�`��
�"$��	�')ý%��	��/�SûJÿ�	��O�I����ÿ)ûN�N]��.�)ü�������"�û��Hül�����.�.ÿI�Qû�E3û�ý%&bÿ���HI"$�.�[üYü��©ÿRû�ü#ûN"�ü
ü�ú)ûN	 ü�ú)û�"$�)ý#ý#û��Nü0�Sü#þ(ü�ûF��
`�.�U"�û�ý�ü#þ����Nü�&�ý#û�	�þ������N*�,-� 'Òþ(ý�ü��/"$�.�.þ(ý�ý�û#"�ûN�3üP"$���)ýSüP"�þ��Sû#�
���«ü�ú®û��n�.�[ü�û+ÿ c ü#þqü#ûN�%ú®þ8E3û¬ý%�.��û+ÿ«þ��P��û��Nþ��P�Sú®þ�")�(���.�L�I���Nü��2	�þ�"dú.���)û#�FQ X�XBS
���!�!ýdÿRû+ý
ü������LE3ûN�Sü����3þ(ü�ûP"�ý%��	����®þ���þ�"�ü%��E(�[ü���ûN�l�!ý��Nþqü#ú)û�ýkûNEL�.ÿRûN��"�û�*.,�ü[���[�.�(ün"��[ûJþ(ý���
¨ü#ú®þqün"����.�.ÿ
û$��ü�ûN�®ÿ�ü����.��"��L��'Òû+ý#þ(ü���E!ûP	��O�\�.�RÿRûN�N*
,-�Uþ3ÿ)ÿ��[ü������«ü��ªü�ú)û�ü#ú)ý#û+þqü)�	þ��u�BE!û�]sü�ú®þ(ü�þ(ý#û���þ!ý��3û���&��4'QûN"��.�.þqü���E!û�]Cý#û�	�þ����[û+ýp��'.x

û�ýdþqü��3ý%�¬ú®þ8E3û�û$��'Qû�ý%�[ûN��"�ûJÿäþ!�Sû+ý���ûN����
0�)û�� ü�ú)ý#û+þ(ü%�N*�ùYú®ûh	��L�:ü�"$��	F	����a���®û\�/�©þ
�4�.��'U��û��Òþ�ý#ûN�L�)û#�:ü%���.�!����������
�ü�ýdþBHI"�* c �U"dúa�������©ÿ��!�.�!üF�����®þ�����&åû$���/�:ü����a	��RÿRû�ý%�

�4���4�� �¡��N¢L£�¤O�%¥.¦�§�¨�¥���¥� j©�£�ª.¦�ªZ«�¬U Nª. $�#­ ®U¯j°O±#²B³U´% �¡�£�µ�¤� �´�ª.¦�¶� n¥�£�¶���¦����%¦�¬I¦�¬U N´%£���µ�ª.¨
£B·<�� N´[�4§U¸)¥3£�ª\µ�ª�¸�µ�¶� NªL�n¸$¦�¡�¬.´%¦�¡�µ/�4 #¶��%¥. p£�ª.¦�ª(�L¡�µ����I¦�·k¦�ª. P¦�·kµ��%��§U�4 N´%�N­
¹ N¸� �ªL��¤��\µ�ªL��´%¦�¶�§�¸$ #¶3ºp­ »�­�¤� �¨�µ/��¤�£���µ�¦�ª2£�¤/�4¦I£�¤�¤�¦B¼[�[½b£8¼|¾`ª�·�¦�´)¸$ N¡F NªL��¿[¨� �ª�¸�µ� #�

��¦a´% NÀL§. #���3¶� N¸�´��(¬��%µ�¦�ªÁ¦�·^¡�£��� �´%µ/£�¤�£�ª�¶Á NÂ� �ªg¬.´�µ�ÂB£B�% �ªU¸$´%�L¬.��µ�¦�ªÁ¦�´3¶� #¸$´%�L¬.��µ�¦�ª
Ã ����p°�±�±�³A­.Äl¥�µ��nµ�ªL��´%¦�¶�§�¸� N�G��¥� o��¥.´% N£�����¥�£��n¥.¦�ª. N�4�[¡�µOÅ� N�n¼�µ�¤�¤+¥�£8Â� 0��¦j¸�¦�¤�¤�£�ÆU¦�´%£���
ÆL�\¨�µ�Â(µ�ª.¨�¦�§�����¦�¡� o¬�£�´4�%µ�£�¤+µ�ª.·�¦�´%¡�£���µ�¦�ªh��¦I��´)£�¸$ P¬�£�´4�%µ�¸�§.¤/£�´n¸�¦�¡�¡^§.ª�µ�¸N£B��µ�¦�ªU��­�¿n¤�¤
¸$§.´%´� NªL��¤��V¶� �¬.¤�¦B�� #¶V¦�´���¥. N¦�´% $��µ/¸�£�¤l¡Fµ�Åw£�´%¸)¥.µ��� #¸:�%§.´� #��£�´% \Â(§.¤�ª. �´)£�Æ�¤� \��¦>��§�¸)¥d£�ª
£B�4�)£�¸ Ã ¢k¬�£�´���µ/¸$§.¤/£�´%¤���µ�·[��¥� ��V£�´% I´% NÀL§. #���% N¶T�%¦!¶� #¸$´%�(¬��F£ ¡F #���%£�¨� ���¥U£B��¥�£���¨�¦�ª.
¬�£��4�
��¥� �¡3¢�¦�´
´% �Â� #£�¤��%¥. [´%¦�§��% [¦�·+£o��µ�ª�¨�¤� [§��� [´� N¬.¤���Æ.¤�¦�¸ Ã ­�¾
Â� �ª�¼G¦�´)�4 G��¥� ��� �µ�Ç�§.´%
¦�·��%¥. �µ�´ Ã N���b¼G¦�§�¤�¶^¡F #£�ª���¥�£�����¥. Nµ�´�·�§.ªU¸:��µ�¦�ª�µ�ª.¨P¼G¦�§.¤/¶�ÆU �¸$¦�¡�¬.¤� ��� N¤��o�%´%£�ª���¬�£�´% �ªL�
��¦[¦�§��%��µ�¶. �´)��­BÈn·�¸�¦�§.´)��
�4§�¸)¥o´% NÀL§. #���)�K·�¦�´b¶� #¸$´%�L¬.��µ�¦�ªp£�ªU¶ Ã ����+¸N£�ªo¦�ª.¤��0Æu
�%£�´�¨� $�% N¶
£�ª�¶F¤�µ�¡�µ��� N¶j�4µ�ª�¸$ �Æu¦��%¥���¥. Nµ�´G¸$¦L���
µ/�`��§.Æ��4�%£�ª��%µ�£�¤�£�ªU¶^�%¥. n£�§���¥.¦�´�µ�ÇN£���µ�¦�ªF¬.´%¦(¸� N¶�§�´� #�
£�´% P�4��´%µ/¸:�[£�ª�¶\�%µ�¡� p¸$¦�ª���§.¡�µ�ª.¨U­
¿[¤���¥.¦�§.¨�¥�µ�ªL�� N´%¸� �¬��%µ�¦�ª ¦�·G£�¤�¤�ª. $��¼G¦�´ Ã ¤�µ�ª Ã �Pµ/�� �Å�¬U Nª��4µ�Â� �£�ªU¶ ´% NÀL§.µ�´� #�n¬�´�¦�¬U N´

¼G£�´�´)£�ªL�%�Gµ�ª3¡F¦L���mÉ�§�´�µ/��¶.µ�¸$��µ�¦�ª��N¢���¥� pµ�ªL�% �´)¸$ �¬.��µ�¦�ªh¦�·���´)£BÊI¸P¶.£B�)£�ª. N¸� N�%��£�´����%¦�¬U N´4Ë
·�¦�´%¡Ì�%´%£�Ê�¸o£�ª�£�¤����4µ/�N¢�¶�¦(N�nª.¦��n¥U£8Â� P��¥� ��%£�¡� p¶� �¨�´� N o¦�·m¤� �¨�£�¤�¬.´%¦��% N¸$��µ�¦�ª+­ ¹ N¸$ NªL�
¤� N¨�µ/�4¤/£B�%µ�Â� ^µ�ª.µO�%µ�£���µ�Â� #��£��0µ�ªL�� �´%ª�£���µ�¦�ª�£�¤k£�ª�¶2ª�£���µ�¦�ª�£�¤k¤� �Â� �¤/��° Í8³�¡�£ Ã ^µ�ª��% �´)¸$ N¬���µ�¦�ª+¢
£�¸�¸� N�%�+�%¦o£�ª�¶^Æ.¤�£�ª Ã ��m´� ��� �ªL�%µ�¦�ª^¦�·���´)£BÊI¸�¶�£B�%£0¬u¦��%�4µ�Æ.¤� �­B¿[¤���¥�¦�§.¨�¥^�%¥. lµ�ª�·�¦�´�¡�£���µ�¦�ª
¬.´� #�4 NªL�Gµ�ªI�%¥. 0��´)£BÊI¸�¶�£B�%£^µ��l¡�§�¸)¥j¬u¦(¦�´% �´���¥�£�ªjµ�ªj�%¥. P¸$¦�¡�¡�§.ª.µ/¸�£B�%µ�¦�ªjµ��%�� �¤�·�¢�¡�µOÅ
ª. $��¼G¦�´ Ã ¶� #�4µ�¨�ª� �´)�Pª. � #¶.�o�%¦ Ã N �¬>µ�ª>¡Fµ�ª�¶T�%¥. I #£��� �¦�·[£�¸N¸$ N�%�P�%¦ �4§U¸)¥V¶.£B�)£.¢�£�ª�¶
 �ª.¨�µ�ª. N �´���¥. Nµ�´o¬�´�¦���¦�¸$¦�¤����4¦\��¥�£����%¥. ���¸�£�ª�´� #�4µ/�4��¦�¬�¬U¦�ª. �ªL�%�0¼�¥�£��0¥U£8Â� �£�¸�¸� N�%�[�%¦
��¥. N¡h­
¿Î¡�£BÉ�¦�´n£��%�4§�¡F¬.��µ�¦�ª2¼G ^¼�µ�¤�¤k¡�£ Ã �¢�µ�ª2��´%�(µ�ª�¨���¦I¬�´�¦��� N¸$�0�������% �¡��n£�¨�£�µ�ª��4�[��¥�

��¥.´% N£��%�G¶� N�%¸$´%µ�Æu N¶j£�Æu¦BÂ� �¢Lµ/�
�%¥�£B�l¼�µO�%¥I�%¥. � �Å.¸$ �¬.��µ�¦�ªj¦�·+Æ.¤/£�ª Ã $�`�%´%£�ÊI¸n¶.£��%£�´� ��� �ª.Ë
��µ�¦�ª+¢U��¥. N�\¥U£8Â� o�%¦IÆU �¤�µ�¡�µO�% N¶ µ�ª2Æ.´% N£�¶(��¥�£�ª�¶3µ�ª2��µ�¡� �­ZÏ.¦�´n $Å.£�¡F¬�¤� o�%¥. �£��4�)£�¸ Ã N´
¸�£�ªw¦�ª.¤��>´% NÀL§. N�4�F��¥. 2¶� #¸$´%�L¬.��µ�¦�ªa¦�·0��¦�¡� h¡�£��� N´�µ/£�¤�·�¦�´���¦�¡� \¬u �´%µ�¦(¶w¦�·n��µ�¡F �­
ÐY·
��¥. I¶� N¨�´% � �£�ª�¶ ��¥� ��%µ�¡� �¦�·`��¥� I£B�4�)£�¸ Ã �P£�Æu¦BÂ� F¼G£�����¦3ÆU �§�ª.¤�µ�¡�µO�% N¶!µ��p¼�¦�§.¤�¶�Æu
 $Å(��´% �¡� �¤��j¶�µ�ÊI¸$§.¤��[�%¦F Nª.¨�µ�ª. N �´[£��4 #¸$§.´% o£�ª.¦�ª(�L¡�µ�Ç�µ�ª.¨F¬.´�¦���¦�¸$¦�¤Ñ­
Ð-ª�£�¶�¶�µO�%µ�¦�ªo��¦���¥� G£�����§.¡� N¶o¤�µ�¡Fµ��%��µ�ªp�%µ�¡� l£�ª�¶^Æ.´% N£�¶���¥p¦�·.��¥. G¦�¬�¬U¦�ª. �ªL�b¬u¦B¼G �´)�

¼� o£��%��§.¡� n�%¥�£B���%¥. P¦�¬.¬u¦�ª. NªL��¶.¦L #�lª.¦���¥�£8Â� 0£�ª(�j�4¬u N¸�µ�£�¤Zµ�ª�·�¦�´�¡�£���µ�¦�ªhµ�ªh¦�´)¶� �´G�%¦
¬U N´4·�¦�´�¡Ò�%´%£�Ê�¸0�� �¤� N¸:�%µ�¦�ª+¢�£�ª�¶I��¥. N´� �·�¦�´% n¥�£�����¦F§��4 0µ�ª�·�¦�´%¡�£B��µ�¦�ª\µ�ª\��¥� �ª. ���¼�¦�´ Ã �%¦
¸)¥.¦(¦��� ^�%¥. �Â(µ�¸$��µ�¡��P¦�·�¥.µ/�0�%£�´�¨� $�% N¶!£�¸:�%µ�¦�ª��N­Z¿��P¼� �¼�µ�¤�¤��4 N �¢Z��¥� ��% N¸)¥.ª�µ�ÀL§. #�P§��4 #¶
��¦V¬.´%¦��% N¸$�j£�¨�£�µ�ªU�����%¥. £�Æu¦BÂ� 3�%¥.´% N£B�)��´% �¤��a¦�·P�%¥. £B���%£�¸ Ã �´j¥�£8Â(µ�ª.¨!�%¦Vµ�ªL�% �´)¸$ �¬.�
¦�´�¶. N¸$´%�(¬��n �Å(¬u¦�ª� �ªL��µ/£�¤�¤��\¡�£�ª(�\¡� #���%£�¨� N��´% �¤/£B�%µ�Â� P��¦��%¥. ^ª(§.¡�ÆU N´[��¥� ��2£�´% o´� #£�¤�¤��
µ�ªL�� N´� #���% N¶\µ�ª�¢.¦�´l�%¥. oª(§.¡^Æu �´�¦�·k´% �¡�£�µ�¤� �´)��§U�4 #¶K­

Ó ÔhÕ[Ö4×�Ø.Ö4ÙnÚÜÛ�ÝKØ�ÞTß
à.á�×TâmÙnãDäÁÝb×LÖ4Ú`Ùn×

å �¼�µ�¤�¤(´� NÂLµ� �¼!�%¥. ` �æu #¸:�k��¥�£�����¥� �£B���%£�¸ Ã �b£�Æu¦BÂ�
¥U£8Â�
¦�ªp£���´)£�¶.µO�%µ�¦�ª�£�¤�¡Fµ�Åp�4���4�� N¡h¢
��¥�£���µ�ªj£�¶.¶.µO�%µ�¦�ª���¦^¬�´�¦BÂ(µ/¶�µ�ª�¨p£o·�¦�´%¼l£�´)¶F�� �ªU¶� �´�ËY£�ª.¦�ª(�(¡�¦�§��m¸)¥U£�ª.ª. N¤U£�¤���¦o¬.´%¦BÂLµ/¶� #�
·q£�¸$µ�¤�µO�%µ� #�P·�¦�´o��µ�ª.¨�¤� �§��� �´% �¬.¤���Æ.¤�¦�¸ Ã ��çAè�º ¹[é �)êo£���®�´)�4�^¶� N�%¸$´%µ�Æu N¶�µ�ªy° ²B³`£�ª�¶�§��4 #¶
µ�ªi°�±�ë�³A­�ì�¦��4�p¦�·l��¥. \¸$¦�ªU���%´�§�¸$��µ�¦�ª��P§U�4µ�ª.¨�ÇN �´%¦�Ë Ã ª�¦B¼�¤� #¶�¨� F¬.´%¦L¦�·q��°O±�¢�í�¢$±Ní�¢$±8î8³�£�´%
¸$¦�ªU¸$ �´%ª. #¶ ¼�µ���¥>Â� �´%µO·��(µ�ª.¨2¸$¦�´%´% N¸:�%ª. N�%�N¢Z��¥. N´� �·�¦�´% Fµ�ª�¸�´� #£���µ�ª.¨3´%¦�Æ.§U���%ª. N�%��­+Äl¥� ���¶.¦
ª.¦��0µ�ª�¸�¤�§U¶� ^·� #£B�%§.´� #����§�¸)¥ £��0è.º ¹[é �0£�ª�¶�£�´% ^¶�µ�Ê�¸�§.¤����%¦j¡�¦�¶�µO·��2¼�¥�µ�¤� �´% $�)£�µ�ª.µ�ª.¨

ï�ð.ñNò�ó�ô�õ4ñ�ö�ô.÷�ø�ó�ù�øUñNó4ï%ò�ñ#õ�ú�ï%ð.ñ�ó%ñ$ö�ù�ó�ñoûGñpõ�ð�ü�÷�÷+ý.ù�ïnñ$þ.ü�ÿ�ò�ý.ñPï�ð�ñ�ÿ ò�ý � ñ$ï%ü�ò�÷AúUü�÷Oï%ð.ù�ô���ð
õ4ù�ÿFñPù�öbï%ð.ñPï�ñ��)ð.ý.ò���ô�ñNõlûGñ0ø�ó�ñ#õ4ñNý�ï���ù�ô.÷ �
	 ñpü � ü�ø�ï%ñ � ü�ý � ô�õ�ñ �
	�� õ�ô��)ðhõ
�)ð.ñNÿFñ#õ��

� ð.ñ
ù 	�� ñ��:ïbù�ö�ù�ô.ókõ�ï%ô ��� ò�õ+ï�ù � ñ$ï%ñ�ó%ÿFò�ý.ñ
ð�ùBûTü�ýoù�ø.øuù�ý�ñ�ýLï��$ù�ô.÷ � ô�õ4ñ
ï�ð.ñ
øuùBûGñ�ó)õ
� ñNõ
�$ó%ò 	 ñ ��	�� ï�ð�ñFñ�þ(ï�ñ�ý � ñ � ï�ð�ó�ñ#üBïPÿFù � ñN÷
ò�ý�ù�ó � ñNó0ï�ùhï�ó)ü���ñFü3õ�ñ�ý � ñNó��-ü�ý�ù�ý � ÿFù�ô�õ
�$ù�ÿ�ÿ�ô.ý.ò���üBï%ò�ù�ý\ù�ólï�ù���ý � ù�ô�ï�ï�ð.ñoù�ó�ò���ò�ý�ü�ï�ù�óGù�ömüFó�ñNø.÷ ��	 ÷�ù���� �

! ýVï�ð�ñ3ü 	 õ�ñ�ý���ñ\ù�ö�ü�ý � �$ù�ýLï�ñ�ýLï�ò�ýLï%ñ�ó��$ñ�ø.ï�ò�ù�ý+ú�ò�ïFò/õ�ñ$þ(ï�ó%ñ�ÿ�ñN÷ �"� ò$#��$ô.÷�ï�ï�ù!ô�õ�ñ
ü�ý �%� ñ��$ó � ø.ï�ò�ù�ý!øUùBûGñ�ó)õ0ï�ùhï�ó)ü���ñ 	 ü���� ü2õ�ñ�ý � ñ�ó&�Yü�ý.ù�ý � ÿ�ù�ô�õ'�$ù�ÿ�ÿ^ô.ý.ò���ü�ï�ò�ù�ý(�()�õ*�
õ4ô.ÿ�ò�ý��hï�ð�ü�ïPï�ð.ñ�ÿ�òOþ!ý.ñ$ï�ûGù�ó
�3ð�ü�õoü\ÿ�ü � ù�ó�ò�ï � ù�öGð.ù�ý.ñ#õ�ïPý.ù � ñ#õoü�ý � ï�ð�ü�ïoÿFò�þ�ò�ý��
ð�ü�õ`ó�ñNý � ñ�ó%ñ � ï%ó%ü+#�� � üBï)üoô�õ�ñ�÷�ñNõ%õ�ú�ï�ð.ñ�ó�ñ��$ò�ø.ò�ñ�ýLï`ù�öKï%ð.ñnõ�ñ�ý � ñ�ó�ü�ý.ù�ý � ÿ�ù�ô�õ
ÿFñ#õ�õ%ü+��ñ
� ù(ñNõoý.ù�ï^ð�ü-,�ñFò�ýTï�ð�ñ�ò�ó^øuù�õ%õ4ñ#õ�õ�ò�ù�ý!ü�ý �%	 ò�ï��-õ�ï%ó�ò�ý��3ï%ð�üBïpï%ð.ñ � �$ù�ô.÷ � ü�õ��!ü�ý � ý�ù � ñ
ù�ölï�ð.ñjÿFò�þTý.ñ$ï�ûGù�ó
��ï%ù � ñ���ó � ø�ï���)[÷�÷
ï%ð.ñjó%ù�ô.ï�ò�ý��2ò�ý.ö�ù�ó%ÿ�ü�ï�ò�ù�ýTð�ü�õ 	 ñNñ�ýaõ4ï�ó%ò�ø.øUñ �
ü�ý ��� ñ�÷�ñ$ï�ñ �.	�� ï�ð.ñnï�ò�ÿFñ�ï�ð�ñnÿ�ñNõ%õ�ü���ñnü�ó�ó%ò�,�ñNõ���/nùBû�ñ�,�ñ�ó�ü�ý�ù�ø�øUù�ý.ñ�ýLï�ò�ýLï�ñNó�ñ#õ�ï%ñ � ò�ý
ï�ó)ü��$ò�ý��0��ù�ÿ�ÿ^ô�ý.ò��NüBï%ò�ù�ý�õ
õ�ñ�ýLï 	�� üoø�ü�ó�ï�ò��$ô�÷�ü�ó
ô�õ�ñ�ó#ú�ù�ý�÷ � ý.ñ�ñ � õmï%ù^ø.ô.ï`ï�ð�ò�õGõ4øuñ���ò1�2�
ô�õ4ñNó[ô.ý � ñ�ónõ�ô.ó
,�ñ�ò�÷�÷�ü�ý��$ñoü�ý � ó�ñ���ô�ñNõ4ïnü�÷�÷+ò�ýLï%ñ�ó%ÿFñ � ò/üBï�ñoý�ù � ñNõ�ô�õ�ñ �3	�� ÿFñ#õ�õ%ü+��ñNõGï%ù
ó�ñ�,�ñNü�÷uï�ð.ñ � ñ#õ�ï%ò�ýUüBï�ò�ù�ýUõlù�ökï�ð.ñoÿ�ñNõ%õ%ü+��ñ#õ��

4 ð.ñ�ý2õ�ù�ÿ�ñ5�$ù�ýLï%ñ�ýLï[ò�ýLï%ñ�ó��$ñ�ø.ï�ò�ù�ý\ï%ü+��ñNõlø.÷/ü���ñ0ï�ð.ñ6��ù�ÿ�ÿ^ô.ý�ò��NüBï�ò�ù�ý3��ü�ý2üBï 	 ñNõ4ï
	 ñ2ï%ó%ü7�$ñ �8	 ü����Zúmö�ó%ù�ÿ ò�ï%õ���ý�ü�÷nó%ñ��$ò�ø.ò�ñ�ýLïNú
ï�ù>ï%ð.ñ�øuù�ò�ý�ï\û�ð.ñ�ó%ñ3ï�ð.ñ ÿFñ#õ�õ%ü+��ñ3ûGü�õ
ò�ýLï�ñNó
��ñ�ø�ï%ñ � �:9nö<ï%ñ�ýwï�ð.ñNó�ñ3õ4ñNñ�ÿ�õ�ï�ù 	 ñ3õ�ù�ÿ�ñ
��ù�ý�ö�ôUõ4ò�ù�ýdü 	 ù�ô�ïFï�ð.ñhñ$þ.ü7�:ï�ø.ó�ù���ñNõ%õ
ï�ð�ü�ï�ü�ýaù�ø.øUù�ý.ñ�ýLï�û�ù�ô.÷ � ý.ñNñ � ï%ù ö�ù�÷�÷�ùBû ò�ýaù�ó � ñNó^ï%ù ï%ó%ü7�$ñ\ï�ð.ñ;��ù�ÿ�ÿ^ô.ý�ò��NüBï�ò�ù�ý<�
! ïpò�õPý.ù�ïoï�ð.ñ��Nü�õ�ñFï�ð�ü�ï0ï%ð.ñ�ù�ø�øUù�ý.ñ�ýLï0��ü�ý!õ4ï%ü�ó4ïPö�ó%ù�ÿ ï%ð.ñ�÷/ü�õ4ïPð�ù�øTü�ý � ûGù�ó
�2ð.ò�õ
ûGü �=	 ü7���Lûlü�ó � õ�ö�ù�÷�÷�ùBû�ò�ý��Vï%ð.ñ�øUüBï�ð�ù�öpï%ð.ñ!ÿFñ#õ�õ%ü+��ñ 	 ü7���(ûGü�ó � õNú 	�� �$ù�ÿ�øUñN÷�÷�ò�ý��
ÿFò�þ�ñNõGï%ù � ñ���ó � ø�ïlï�ð�ñoÿFñ#õ�õ%ü+��ñNõ���>(ô��)ð2ü�ýhñ$þ�ñ�ó��$ò/õ�ñ0ûGù�ô�÷ � ó�ñ��Lô.ò�ó%ñ0ï�ð.ñoù�ø.øuù�ý.ñNý�ïlï%ù
ø.ó�ù?,(ò � ñoÿ�òOþ�ñ#õnû�ò�ï�ð2ï%ð.ñ^ÿ�ü�ï�ñ�ó%ò/ü�÷Kï%ù � ñ��$ó � ø.ïnû�ð.ò��)ð 	��
� ñ�öqü�ô.÷�ï�ð�ñ � ù(ñNõ�ý.ù�ï�ð�ü-,�ñ7�
! ý�ù�ó � ñ�ó[ï�ùIï%ó%ü7�$ñ 	 ü7���hü@�$ù�ÿ�ÿ�ô.ý.ò���üBï%ò�ù�ý2òOï0ò�õ�ó%ñ��Lô.ò�ó�ñ � ï%ùjûGù�ó
�Iö�ù�ó�ûlü�ó � õ�ï)ü�ó�ï�ò�ý��
üBï
ï%ð.ñ[ò�ý�ï%ñ�ó��$ñNø�ï�ò�ù�ý�øuù�ò�ý�ï#ú 	�� ó�ñ���ô�ò�ó%ò�ý��0ÿ�ò�þ�ñNõmï%ù � ñ��$ó � ø.ïmï�ð.ñ[ÿ�ü�ï�ñ�ó%ò/ü�÷.ò�ýLï�ñ�ó��$ñNø�ï�ñ �
ð.ù�ø.ò�ý�� ï�ð�ü�ï^ï�ð�ñ
��ù�ÿ�ÿ^ô.ý�ò��NüBï�ò�ù�ýTï%ó%ü7�$ñ � ñ�ý � õ�ô.ø 	 ñNò�ý�� ï�ð.ñhù�ý�ñ�ï�ð�ü�ïFðUü � ï%ù 	 ñ
ï�ó)ü��$ñ � � � ð.ò/õ
ø�ó�ù��$ñ#õ�õ
ÿFñ#ü�ý�õ
ï�ð�ü�ï
ï�ð�ñ[ù�ø.øuù�ý�ñ�ýLï`û�ò�÷�÷Uý.ñ�ñ � ï�ù^ü7���Lô.ò�ó�ñ�ñ�þ(øuù�ý�ñ�ýLï�ò/ü�÷�÷ �
ÿ�ü�ý ��� ñ��$ó � ø.ï�ò�ù�ý>ò�ýTï�ð.ñIý(ô.ÿ 	 ñNópù�ö�ð.ù�ø�õoï%ù2øUù�ï�ñNý�ï%ò�ü�÷�÷ � ï�ó)ü��$ñIü�ÿFñ#õ�õ%ü+��ñ��<A0ù(ù �
ü�ý.ù�ý � ÿ�ò�B�ò�ý���ø�ó�ù�ï�ù��$ù�÷�õFûGù�ô.÷ � ö�ù�ó
��ñ\ï%ð.ò/õ�ñDCZù�ó�ï�ï%ù 	 ñ2ü�õ�÷�ü�ó&��ñhü�õ^ï%ùTó�ñ���ô�ò�ó%ñhü�÷�÷
ÿFñ#õ�õ%ü+��ñNõGø.ó%ñNõ�ñ�ýLï�ò�ýhï%ð.ñoÿ�òOþhý.ñ$ï�ûGù�ó
��ï�ù 	 ñ � ñ���ó � ø�ï%ñ � �

! ö`ù�ý.ñ���ü�ý ü�õ%õ4ô�ÿFñ^ï�ð�ü�ï0ý�ñNü�ó�ô 	 ò��Lô.òOï%ù�ô�õE��ù�ýLï�ñNý�ïPõ4ô�ó&,�ñ�ò�÷�÷/ü�ý���ñpò/õ�ò�ý�ø.÷/ü���ñ�úuï�ð�ñ
ø.ó�ù���ñ � ô.ó%ñnü 	 ù?,�ñ 	 ñ��$ù�ÿFñ#õ`ÿ�ô��)ðjÿ�ù�ó�ñ[ñ�#��$ò�ñ�ýLï�� ! ï�ò/õGù�ý.÷ � ý.ñ���ñNõ%õ�ü�ó � ö�ù�ó�ï�ð.ñ0ù�ø�øUù��
ý.ñ�ýLïmï�ùoó%ñ��Lô.ò�ó%ñ�ï%ð.ñ[÷/ü�õ4ï
ð.ù�øFï%ù � ñ���ó � ø�ï`ü�÷�÷���ù�ÿ�ÿ^ô.ý�ò��NüBï�ò�ù�ýUõ�ï�ð�ü�ï
û�ñNó�ñlò�ýLï�ñ�ó��$ñNø�ï�ñ �
ô.ýLï�ò�÷+ï�ð�ñoÿFñ#õ�õ%ü+��ñ0ï�ù 	 ñoï�ó)ü���ñ � ò�õ � ñ��$ó � ø�ï�ñ � � � ð.ñNý3ï�ð.ñoø�ó�ù��$ñ � ô.ó%ñPò�õ�ó%ñ�øuñNü�ï�ñ � ù�ý
ï�ð.ñ�ø.ó�ñ�,(ò�ù�ô�õmð.ù�ø�õ`ó%ñ���ô.ó)õ4ò�,�ñN÷ � �+Fnò$CuñNó�ñNýLï�ÿ�òOþ�ò�ý���õ4ï�ó)üBï%ñ���ò�ñ#õ�G H�IDJuÿ�ü � ÿ�ü+��ñ�õ4ô��)ðIü�ý
üBï4ï)ü����Iõ�÷�ò���ðLï%÷ � ð�ü�ó � ñ�ó 	 ô�ï[ò�ï�õ�ð.ù�ô.÷ � ò�ý
��ñNý.ñ�ó)ü�÷ 	 ñP÷�ò�ý.ñNü�ólù�ýIï%ð.ñPý(ô.ÿ 	 ñ�ó�ù�ö�ÿ�òOþ�ñNõ
ô�õ4ñ �
	K� ï�ð.ñ6��ù�ÿ�ÿ^ô�ý.ò��NüBï%ò�ù�ýMLÑü�÷�ï�ð.ù�ô���ð2ü�÷�÷<��ù�ýLï�ñNý�ï�ð�ü�õlï�ù 	 ñoò�ý�ï%ñ�ó��$ñNø�ï�ñ ��N � � ð.ñ�ó%ñ
ò�õ0ü�ï�ó)ü � ñpù+C 	 ñ�ï�û�ñNñ�ý2ï%ð.ñ^ý(ô.ÿ 	 ñNó�ù�ö
ÿ�ñNõ%õ�ü���ñNõ�ï�ð�ü�ï�ð�ü-,�ñoï�ù 	 ñ^ò�ýLï�ñNó
��ñ�ø�ï%ñ � ü�ý �
õ�ï%ù�ó%ñ � ,�ñNó%õ�ô�õlï%ð.ñpý(ô.ÿ 	 ñ�ó�ù�ö � ñ��$ó � ø.ï�ò�ù�ý2ó%ñ��Lô.ñNõ4ï%õ�ï�ð�ü�ïnÿ�ò$��ð�ï 	 ñpó%ñ��Lô.ñ#õ�ï%ñ � û�ð.ñNý
ï�ó)ü��$ò�ý��Iü�ÿ�ñ#õ�õ%ü+��ñ���F � ý�ü�ÿ�ò��Pï�ó)ü?#��põ�ñ�÷�ñ��$ï�ò�ù�ýO�$ù�ô.÷ �3	 ñ�ñ�ÿ�ø.÷�ù � ñ � ï%ùjõ4ñN÷�ñ��:ï�ï�ó)ü?#��
ü�����ù�ó � ò�ý��nï%ù0ï�ð.ñ�÷�ò$��ñ�÷�ò�ð�ùLù � ï�ð�ü�ï
òOï:��ù�ó%ó�ñ#õ4øuù�ý � õbï�ùoü0ÿFñ#õ�õ%ü+��ñGõ�ñ�ýLï 	�� úBù�ó�ï�ùUú�ü0õ�ô 	 �
� ñ��:ï�ô.ý � ñNónõ4ô�ó&,�ñ�ò�÷�÷/ü�ý���ñ�� 4 ò�ï�ð.ù�ô�ï�ü�ý � ü ��� òOï%ò�ù�ý�ü�÷Kò�ý�ö�ù�ó%ÿ�üBï%ò�ù�ý+ú.øuñ�ó�ö�ù�ó%ÿFò�ý���õ�ô��)ð2ü
ï%ü�õ&�^ò/õmñ���ô�ò$,Bü�÷�ñ�ýLïmï%ùoøUñNó4ö�ù�ó�ÿ�ò�ý��0ï�ó)ü?#���ü�ý�ü�÷ � õ�ò�õNú�ü�ý � û�ò�÷�÷�ó%ñ��Lô.ò�ó�ñGï�ð�ñ�ò�ýLï�ñNó
��ñ�ø�ï%ò�ù�ý
ù�ö�ü�÷�÷kÿ�üBï�ñNó�ò/ü�÷P� ! ý�õ�ñ��:ï%ò�ù�ý�Q���I^ûGñFû�ò�÷�÷�ñ$þ.ü�ÿ�ò�ý.ñ^ð.ùBûÎõ�ô.øuñ�ó&�AñNý��$ó � ø�ï�ò�ý��@��ù�ÿ�ÿ^ô�ý.ò1�

R�S?T
U$V7W�XZY\[�T*]^[�[�W%_`U$a�[�X']bU1T
c%[�d�c�[�_`[�e
S�f�g7[�h�Xie
[�W\j�[�e�XZR�V�WKT&[�WKT'X&k�e&l7[�U�f$f�S+W\RD[0V�mnT&c�[
f$U�W�g�Xbk�X&[�f�[�X
X�o

p X0X�T
S+T&[�jrq<T
c�[3S+Y2V?l�[._`[DT
c�V�j�X6msV7e6T
e
S7RDU�W�t%RDV7_`_0k�W�U�R�S+T&U�V�W�XuRDV7W�RD[�e&W"X&[�W�j�[�e&v
S+W�V7WKh�_`V�k\X�R�c�S+W�W�[�f�X�o\wxW3T&c�[�R�S7X�[5T
c�S?T'S�X�U�W�t7f$[6k\X�[ue&[�d�f$h
Y�f�V�R�gyc�S7XbT
V�Y\[0T&e�S�R�[�j
Y�S�R�gzT&V{T
c�[�j�[�X*T
U$W\S?T&U�V�W|U$T@d2V�U�WKT
X�q:_0k\R�c|_�V7e&[;U�W�msV7e&_.S?T
U$V7W|U�XyS-l?S+U�f�S�Y�f$[3T
V{T&c�[
S?T�T�S�R�g7[�e�T&c�S�W0U�W0T
c�[}X&[�W\j�[�e&v~S�W�V�W�h�_`V�k�X�R�S7X�[7o��b[�d�f�h6Y�f�V�R�g�X�RDV7W7T�S+U�WuS�f$fKT&c�[}e
V�k�T&U�W�t
U$W�msV7e&_.S+T&U�V�WOW�[�[�j�[�j3T&V3j�[�f$U�l�[�e�T&c�[u_`[�X
X
S+t�[0[�W�R�e&h�d�T
[�j;k�W\j�[�e'T&c�[0d�e
U$l?S+T&[�g�[�h�XiV+m
U$WKT&[�e&_`[�j�U�S+T&[b_`U$a�[�X�o7��c�[�e
[DmsV7e&[}T&c�[�S?T�T�S�R�g7[�e�R�S�W`X&U�_�d�f$hue&[��7k�[�X�T�T&c�[be
[�d�f�h0Y�f$V�R�g5T
V
Y\[�j�[�RDe
h�d�T&[�juU$T&[�e
S+T&U�l�[�f$h6Y�h�S+f�f�T&c�[�X&[�e
l�[�e
X�o?��c�U�X�]bU$f�f�T�S+g�[�X&V�_`[}T&U�_`[�d�e
V�d2V�e&T&U�V�W�S�f
T&VuT&c�[EW�k�_0Y2[�e�V�m<_`U1a�[�X^T
c�S?T�T&c�[Ze
[�d�f�h.Y�f�V�R�g�RDV�WKT�S+U�W�X�o���e
S7RDU�W�t0e
[�d�f�h.Y�f�V�R�g�X}j�V�[�X
W�V+T@j�U�e
[�R�T
f$h�S?� [�RDT.T&c�[OS�W�V�W�h�_`U1T*h"V�m'V�T&c�[�e.k�X&[�e�X�S+W�j8U�X`T&c�[�e&[�msV�e
[3f$U�g�[�f$hzT&V{Y2[
RDV�W\X�U�j�[�e
[�j��Kk�U1T
[.d�e
V�d2V�e&T&U�V�W�S+T&[0U$mbSy]�S+e
e�S+WKTZU�XEW�[�R�[�X
X&S�e&h7o2�iV+T
[`T&c�S+T'T
c�[�e
[`U�XEW�V
W�[�[�j@msV7e�S+W�h@R�V�WKT&[�W7TbV7e�T&e�S?��REj�S?T�SuU�WKT&[�e
R�[�d�T
U$V7W@T
VuT
e
S7RD[EY�S7R�gy���i�i�}X�o

� �3�������*�����}�:�&�b���*�:�Z�

� c�U$f�[�T&c�[�h0j�VEW�V�TnS�j�j�e
[�X
X�T&c�[}msk�f�f�e�S+W�t7[^V�m2S+T�T
S7R�g�X�j�[�X
RDe
U$Y2[�juS+Y2V?l�[�X�V7_�[bj�[�X�U�t�W\X
d�e&V7d\VKX�[`_`[�S7X�k�e&[�X'S�t7S�U$W�X�T6X�V7_`[�V�m^T
c�[�_3o�wxW�T
c�U�X6X�[�R�T
U$V7W�]}[.]bU$f�f:X�T&k�j�h�X&V�_`[`V+m
T&c�[�X�[ERDV7k�WKT&[�e
_`[�S7X�k�e
[�X:S+W�j�S7X&X&[�X
X�T
c�[Ej�[�t7e&[�[bT&Vu]bc�U�R�c@T&c�[�h`d�e&V�T&[�R�T}T&c�[ZW�[DT*]}V�e
g o
wxW6T&c�[}W�[Da�TnX�[�R�T&U�V�W0]^[}]bU$f�f�U�W7T
[�t7e
S+T&[nT
c�[�_�S+f�V�W�tZ]bU1T
c�S7j�j�U$T&U�V�W�S�fKR�V�k�WKT&[�e&_`[�S�X&k�e&[�X
T&V'd�e&V?l�U�j�[}t�[�W�[�e
U�R:d�e&V�T&[�R�T&U�V�W�S+tKS+U�W�X*T�S?T&T
S7R�g�X�Y�S7X�[�j6V�W�RDV7_�d�k�f�X&U�V�W6T
VEe&[�l�[�S�f7g7[�h�X�q
f$V7t7X�V�ebj�[�RDe
h�d�T&U�V�W
V+m�_.S?T&[�e&U�S+fPo

w~T^U�X:]}V�e&T&c�_`[�W7T
U$V7W�U�W�t6T
c�S?T}T&c�[Zd�e
V�d2V7X
S+f�XnY2[�f�V?]�S�j�j�e
[�X
X�T
c�['[Da�T&[�W�j�[�j.T&c�e
[�S+T
�V�j�[�fbY�k�T�W�V{R�V�k�WKT&[�e&`[�S�X&k�e&[
R�S�W8Y2[;[D� [�RDT&U�l�[;S+tKS+U�W�X*T.S+W=S�j�l�[�e�X
S+e
h%T
c�S?T�R�S�W
msV�e�RD[E_`U1a
W�V�j�[�X}T
V.g�[�[�d
S`j�[�T
S�U$f�[�j
e
[�RDV7e
j@V+m�T&c�[�UeiUWKT&[�e&W\S+fr]}V�e
gKU�W�tKX�o�wxW�j�[�[�jyT&c�[
X�V7f$k�T
U$V7W�X^d�e&[�X�[�WKT&[�j@e&[�f$h`V7W�T&c�['c�V�W�[�X*T�_`U1a�W�V�j�[�X}Y\[�U$W�t`S+Y�f$[ZT&V�[D� [�RDT&U�l�[�f�h`msV�e
t�[�T
g�[�h8_.S?T&[�e&U�S+fiV�e�W�V�T@[�l7[�W|Y2[�U�W�tzS�Y�f$[3T
VzS�R�RD[�X&X.U$T�q:T&c�e
V�k�t�c�T&c�[%k�X�[%V+mET
S�_�d2[�e
e&[�X�U�X*T�S+WKT.RDe
hKd�T&V�t7e
S�d�c�U�R.c�S�e
j�]�S+e
[�o p W=S?T&T
S7R�g�[�e0T&c�S+T`T&c�e
V�k�t7czf�[�t7U�X&f�S+T&U�l�[y_�[�S+W�X
V�e�c�S7R�g�U$W�t`T
[�R�c�W�U��Kk�[�X�_.S+W�S�t�[�X�T&V�e
[�R�V�e�jyT&c�U�Xi_.S+T&[�e
U�S+f(]bU�f$f<T&c�[�e&[�msV�e
[6Y2[0S+Y�f�[5T
V
j�[Dms[�S?TiS+f�f(RDV7k�WKT&[�e&_`[�S7X�k�e&[�X�o

�r� � ¡�¢�£-¤0¥�£?¦¨§<©�ª�«�£?©O¬:­ ®<¯�°Z®�ª+£-±r²�³�­´¢2®
p R�c�[�S+d6]�S-hiT
V�e
[�W�j�[�e�f�U�W�gEf$[�l�[�fKX�k�e&l7[�U�f$f�S+W�R�[:S+W\j5e&[�RDV7e
j�U�W�tbV�m�RDV�WKT
[�WKT<mse
k�U$T&f�[�X
X(msV7e
S+W%V7d�d2V�W�[�W7T5U�X'T&V
k�X&[`S@msV�e
]�S+e�jOX�[�RDk�e
[�[�W�R�e&h�d�T
[�j%R�c\S+W�W�[�f�Y\[�T*]^[�[�W�_�U$a%W�V�j�[�X�o
�<[�R�c�W�U�R�S+f�f�hzT
c�U�X
U�W�lKf�V?l�[�X.[�W\RDe
hKd�T&[�jµR�c�S+W�W�[�f�X�[�X�T
S�Y�f�U�X&c�[�j�k�X�U�W�t"g7[�h=[Da�R�c�S�W�t�[�X
]bU1T
cy[�d�c�[�_`[�e
S�frd�k�Y�f�U�R'g7[�h�X�q�X&U$t7W�[�j@]bU1T
c3f$V7W�t0T
[�e
¶X&U$t7W�U$W�tug7[�h�X�o���c�[E[�d�c�[�`[�e
S�f
g�[�h�XES+e
[`j�U�X
R�S�e
j�[�jOU�_`_`[�j�U�S?T
[�f�h%S?m·T
[�e6S
X�[�X&X&U$V7W%g7[�h;c�S7XEY\[�[�WM[�X�T
S+Y�f$U�X�c�[�jro p m·T&[�e
[�S�R�c
_`[�X
X&S�t�[EU�Xbd�e
V�R�[�X
X�[�j�T
c�[6X&[�X
X�U�V�W
g�[�h�U�X�k�d2j�S?T&[�j3k�X&U$W�t.X&V�_`[5c�S7X�cymsk�W�RDT&U�V�W(q
X�V7_�[@[Da�R�c�S+W�t�[�jMmse
[�X&c{W�V7W�RD[�X0S+W\j{d\VKX&X&U�Y�f$h�T&c�[@_`[�X
X&S�t�[�R�V�WKT&[�W7T�o���c�[�V�f�j{g�[�h�X
S+W�j�T
c�[�W�V7W�RD[�XnS+e
[�X�h�X�T&[�_`S+T&U�R�S�f$f�huj�[�f$[�T&[�j.S?m·T&[�enT
c�[�k�d j�S?T
[�c�S7X�T
S�g�[�W.d�f�S7RD[�o7��c�U�X
`S�g�[�X6U$TuU��d2V7X
X&U$Y�f�[.msV7e0W�V�j�[�X6T
V%j�[�R�e&h�d�Tud�S�X�Tu_`[�X
X
S+t�[�XET&c\S?T�S�e&[.d�e&[�X�[�W7T
[�jMT
V
T&c�[�_
q�X&U$W\RD[�T
c�['g�[�h�X:k�X�[�j.c�S-l7[�Y\[�[�W
j�[�f�[DT
[�jro�w~T^U�X^[�X
X�[�W7T
U�S�f�T
c�S?T^mse&[�X�c@W�V�W�R�[�X}S+e
[
k�X�[�j¸j�k�e
U$W�t
T
c�[�g�[�hOk�d j�S?T
U$W�t�o<��c�U�XEmsV7e
R�[�X5S+W{S7j�l�[�e
X
S+e
h
T&c�S+T0S?T0X&V�_`[.d\V7U$WKT6U�W
T&U�_�[�X&[�U�¹�[�X�T&c�[�g�[�h�X�k�X�[�j0Y�hET
c�[b_`U1a�[�X�T
VEV�Y�X&[�e
l�[^U$W�j�[Dº�W�U$T&[�f$h0T&c�[bR�c�S�W�W�[�f�T&V'g�[�[�d

»�¼�½E¾�¿�À?ÁbÂ�Ã�Ä�Å�Ã�À+Æ}Ç&»�Ã.ÈDÉ�Ê&Ê
Ã�¿KÇ5¾�Ã�Ë�½'É�ÌMÇ
À3Ä�Í?Ç&Ã7Î�ÏKÇ�Í+¿�Ä�Í�Ê
Ä�½�Ã�ÈDÉ�Ê
Ã.ÈDÀ7Ð�ÐuÉ�¿�¼�È�Í+Ç&¼�À�¿
Ì�Ê&À�Ç&À�ÈDÀ7Â�½i½�É�È�»OÍ7½iÏ�Ï�ÑµÒ Ó?Ô�½&É�Ì�Ì2À�Ê&ÇZ½�É\È�»3ÆsÀ�Ê
Á}Í�Ê
Ä3½&Ã�ÈDÉ�Ê&Ã5Ð`À�Ä�Ã�½iÀ+Æ�À�Ì2Ã�Ê�Í?Ç
¼$À7¿(Õ�Í�¿�Ä
½�Ì2Ã�È�¼�Í�ÂrÌ�É�Ê
Ì\ÀK½�ÃEÌ�Ê
À+Ç
À�È�À�Â�½�½�É�È�»;Í7½bÖ7×�Ø¶Ò Ó+Ù+Ô<Í+Ê
Ã'Í�Â�½&À.Í-Ú?Í+¼�Â�Í�Û�Â$Ã7Î

Ü »�¼�½ZÇ
Ã�È�»�¿�¼�ÝKÉ�Ã`Ê&Ã�¿�Ä�Ã�Ê
½'¼�¿7Ç
Ã�Ê�ÈDÃ�Ì�Ç&¼�À�¿MÍ?ÇEÇ&»�Ã`Â�¼$¿�¾OÂ$Ã�Ú�Ã�Â�É\½�Ã�Â$Ã�½&½�ÕrÍ�½
½�É�Ð`¼�¿�ÅyÇ&»�Í+Ç
Ð�¼$Þ�Ã�½E»�Í-Ú7ÃuÅ7À�À�Ä�Á�Í-Ë�½ZÀ+Æ�Í+É�Ç
»�Ã�¿KÇ
¼�È�Í?Ç&¼�¿�Å3Ã�Í7È�»%À�Ç&»�Ã�Ê�Îrß~Æ�À�¿�Â�Ë%Í
½�Ð.Í�Â$Â�¿�É�ÐuÛ\Ã�Ê5À+Æ
Ð�¼$Þ�Ã�½�À�Ì2Ã�Ê�Í?Ç
Ã�Õ�Ç&»�¼�½�½�»�À�É�Â�Ä5¿�À�Ç�Û2Ã}ÍZÌ�Ê�Í�ÈDÇ&¼�È�Í+Â7Ì�Ê
À�Û�Â�Ã�Ð3Î Ü »�ÃnÇ�Í�½&¾5À+Æ�Í�É�Ç&»�Ã�¿KÇ&¼�È�Í?Ç
¼$¿�Å
Ð�¼$Þ�Ã�½.È�À�É�Â�ÄzÍ�Â�½&À�Û2Ã3Ì\Ã�Ê�ÆsÀ7Ê&Ð`Ã�Ä"Û�Ë¸Ç&»�Ã;È�Ê&Ã�Í?Ç&À7ÊuÀ�ÆiÇ
»�Ã;Í+¿�À7¿KË�Ð`À�É\½0Ð`Ã�½
½
Í+Å�Ã7Õ�Û�Ë
¼$¿�È�Â$É\Ä�¼$¿�ÅuÇ
»�Ã5»�Í7½�»
À+Æ�Ç&»�Ã�¼$ÊbÚ7Ã�Ê
¼1à\È�Í?Ç
¼$À7¿@¾�Ã�Ë�½^¼�¿yÇ&»�Ã6Í�¿�À�¿�Ë�Ð`À�É�½^Ê&À7É�Ç&¼�¿�Å.Ä�Í+Ç
Í�Î�ái¿
»�À�¿�Ã�½*Ç�¿�À�Ä�ÃO½�»�À7É�Â�Ä�È�»�Ã�È�¾{Ç
»�Í?Ç�Ç
»�¼�½.»�Í�½&»=Ð.Í?Ç
È�»�Ã�½`Ç
»�Ã;Ú�Ã�Ê&¼$à\È�Í+Ç&¼�À�¿�¾�Ã�ËzÄ�É�Ê
¼$¿�Å
Ç&»�Ã�¾�Ã�Ë=Ã�Þ�È�»\Í+¿�Å7Ã;Ì�Ê&À�Ç&À�ÈDÀ7ÂiÛ2ÃDÆsÀ7Ê&Ã�Ã�½�Ç
Í+Û�Â$¼�½�»�¼$¿�Å"Ç&»�Ã�Ã�¿�È�Ê&Ë�Ì�Ç
Ã�Ä�È�»�Í�¿�¿�Ã�Â Î}ß~Ç
Í�Â�½&À
Ð`Í�¾�Ã�½b¼1Ç'Ä�¼1â�È�É�Â1ÇiÇ&À�Ì2Ã�Ê&ÆsÀ�Ê
ÐãÍ7È�Ç&¼�Ú�Ã6Í+Ç�Ç�Í�È�¾�½�½&É�È�»;Í�½b¼�¿�½&Ã�Ê&Ç&¼�¿�Å�Õ�Ä�Ã�Â�Í-ËK¼�¿�Å\Õ�Ä�Ã�Â�ÃDÇ
¼$¿�Å
À�Ê�Ð`À�Ä�¼1ÆsË�¼�¿�Å.Ð`Ã�½
½&Í�Å�Ã�½^À�¿yÇ&»�Ã'¿�ÃDÇ*Á}À�Ê
¾.Â$¼�¿�¾�½�Õ�Ç
»�Í?ÇiÈ�Í+¿yÛ\Ã5É�½&Ã�Ä@Ç&À�ä�À�À�Äy¿�À�Ä�Ã�½}Ç
À
Ä�Ã�È�Ê&Ã�Í�½&ÃiÇ
»�Ã6Í+Ð`À�É�¿7ÇbÀ�Æ�Í�¿�À�¿�Ë�Ð`¼1Ç*Ë`Ç
»�Ã�ËyÌ�Ê&À?Ú�¼�Ä�Ã5Í�½bÄ�Ã�½&È�Ê&¼�Û2Ã�Äy¼$¿{Ò Ó�åDÔ~Î

æ Ã�½
½&Í�Å�Ã�½�É�½�Ã�Ä`Ç&ÀuÈDÀ�Ð`Ì2Ã�Â2Ð`¼1Þ�Ã�½:¼$¿KÇ
À0Ä�Ã�È�Ê&Ë�Ì�Ç
¼$¿�Å5Ç&»�Ã�ÐçÈ�Í+¿�½�Ç&¼�Â�Â\Û2Ãi¼�¿KÇ&Ã�Ê�ÈDÃ�Ì�Ç&Ã�Ä
ÛKË@Ð`Í�Â$¼�ÈD¼�À�É\½�¿�À�Ä�Ã�½�Í�¿�ÄyÌ�Ê&Ã�½�Ã�¿KÇ&Ã�Ä@Ç&À`Ç
»�Ã5¿�Ã�ÞKÇ�»�À�¿�Ã�½*ÇbÐ`¼1Þ
¼$¿
Ç
»�Ã6È�»�Í+¼�¿(Î�ßx¿3À�Ê�Ä�Ã�Ê
Ç&ÀEÄ�ÃDÇ
Ã�È�Ç�Ð.Í+Â�¼�ÈD¼�À�É�½�¿�À�Ä�Ã�½<Ç
»�Ã�¿�Í+Ð`Ã�À+Æ�Ç&»�Ã�Ì�Ê
Ã�Ú�¼�À�É�½�Ð`¼1ÞuÈ�À�É�Â�Ä6Û2ÃbÈDÀ7¿7Ç�Í+¼�¿�Ã�Ä0¼$¿uÇ&»�Ã
»�Ã�Í7Ä�Ã�Ê�½�À+Æ�Ð�Ã�½&½
Í+Å7Ã�½�Î�ßx¿yÇ
»�Í?Ç�Á�Í-Ë.¼$Ç�¼�½b¼�Ð`Ì\ÀK½&½&¼�Û�Â$Ã'Ç
À�»�¼�Ä�Ã5Áb»�¼�È�»3¿�À�Ä�ÃEÌ2Ã�Ê&ÆsÀ�Ê
Ð�Ã�Ä
Ç&»�Ã5¼�¿KÇ&Ã�Ê�ÈDÃ�Ì�Ç&¼�À�¿
À�Ê�Ç
»�Ã5Ì�Ê
Ã�Ú�¼�À�É�½�Ä�Ã�ÈDÊ
ËKÌ�Ç&¼�À�¿(Î

èré·ê ë5ì�í�î ï´ð
ñ;òKó=ô0ó(ð�î ï´õ�ö

ß~Ç6¼�½5Û2Ã�½�Ç6Ì�Ê�Í�ÈDÇ&¼�ÈDÃ�Ç&À;È�»�Í�¿�Å�Ã�Ç&»�Ã.Ã�¿�È�Ê&Ë�Ì�Ç
¼$À7¿2÷?Ä�Ã�ÈDÊ
Ë�Ì�Ç&¼�À�¿�¾�Ã�Ë%Ì�Í+¼�Ê
½EÀ�Æ:Ç
»�Ã.Ð`¼1Þ�Ã�½
À+Æ·Ç&Ã�¿(ÕnÍ+¿\Ä8½&Ë�½*Ç
Ã�Ð.Í?Ç
¼�È�Í+Â�Â$Ë"Ä�Ã�½*Ç
Ê&À?Ë¸Ç
»�Ã;À�Â�Ä"À7¿�Ã�½�Î Ü »�¼�½`Ð.Í+¾�Ã�½uÇ&»�ÃOÄ�Ã�ÈDÊ
Ë�Ì�Ç&¼�À�¿8À+Æ
Ð�Ã�½&½
Í+Å7Ã�½}Ã�¿\ÈDÊ
ËKÌ�Ç&Ã�ÄyÉ�¿�Ä�Ã�ÊbÇ
»�Ã5À�Â�Ä@¾7Ã�Ë�½�¼�Ð�Ì2À7½
½&¼$Û�Â�Ã�Î

Ü »�Ã3Ð`Í�¼$¿�Ì�Ê
À�Û�Â�Ã�ÐøÍ�Ê&¼�½&¼$¿�ÅMÁb¼$Ç&»8ÆsÊ&Ã�Ý7É�Ã�¿KÇ�È�»�Í+¿�Å7Ã�½�À+ÆZÇ&»�Ã3Ì�É�Û�Â$¼�È3Ã�¿\ÈDÊ
ËKÌ�Ç&¼�À�¿
¾�Ã�Ë�½^¼�½^Ç
»�Ã'½&»�À7Ê�Ç�Â$¼$ÆsÃ'À+Æ<Ê
Ã�Ì�Â�Ë`Û�Â�À�È�¾�½�Î�ù|»�Ã�¿
Í0¾7Ã�Ë.È�»�Í+¿�Å�Ã�½�Õ�Í+¿�Ä.¼�½�Ä�Ã�½�Ç&Ê
À?Ë�Ã�ÄrÕK¼1Ç�¼�½
¼$Ð`Ì2À7½
½�¼�Û�Â�Ã�Ç&ÀuÊ&À7É�Ç&Ã�Ç&»�ÃEÏ�úiû�ü�½^Ã�¿�È�Ê&Ë�Ì�Ç
Ã�Ä.É�¿�Ä�Ã�Ê^Ç&»\Í?Ç^¾7Ã�Ë`Í+¿�Ë`Ð`À�Ê
Ã�Î7áZÄ�Ú�Ã�Ê�Ç
¼�½&¼�¿�Å
ÆsÉ�Ç&É�Ê
ÃEÌ�É�Û�Â�¼�ÈE¾�Ã�Ë�½^¼$¿;Í7Ä�Ú?Í+¿�È�ÃZÀ7Ì\Ã�¿yÐ`¼$Þ�Ã�½^Ç&À�Ç&»�ÃEÊ
¼�½&¾.À+Æ�»�Í-Ú�¼$¿�Å0Ç
»�Ã�¼�Ê�ÆsÉ�Ç&É�Ê&ÃE¾�Ã�Ë�½
½�Ã�¼$ý�Ã�Ä
Í�½�Á}Ã�Â�Â Î

èré�þ ÿ<ò�ð�ì��-òMô��-ó������2ö	��
���
�ï´ð���
�������
��?ò
ßx¿MÀ7Ê
Ä�Ã�ÊEÇ&À;Ð`¼�¿�¼�Ð�¼�ý�Ã`Ç
»�Ã�Ê
¼�½&¾OÀ�Æ}Û2Ã�¼�¿�ÅOÈDÀ7Ð`Ì\Ã�Â$Â�Ã�Ä�Ç&ÀO½&É�Ê
Ê&Ã�¿�Ä�Ã�Ê'¾7Ã�Ë�Ð`Í+Ç&Ã�Ê&¼�Í+Â�À7Ê
Ä�Ã�È�Ê&Ë�Ì�Ç
¼$¿KÇ&Ã�Ê
È�Ã�Ì�Ç
Ã�ÄµÐ`Í+Ç&Ã�Ê&¼�Í+ÂPÕ:À7¿�ÃMÈ�À�É�Â�Ä|¼�Ð`Ì�Â$Ã�Ð`Ã�¿KÇyÇ
»�Ã¸ÈDÀ�Ê
Ã;ÆsÉ�¿\È�Ç&¼�À�¿\½yÀ�Æ6Ç&»�Ã
Ð�¼$Þ;¼$¿\½�¼�Ä�ÃuÍ�Ç
Í�Ð�Ì2Ã�Ê'Ì�Ê
À�À+Æ�»�Í+Ê�Ä�Á�Í+Ê
Ã5Û\À-ÞrÎ Ü »�Ãu½&Ã�¿\½�¼$Ç&¼�Ú�Ã5ÆsÉ�¿�È�Ç
¼$À7¿�½i¼�¿�È�Â$É�Ä�¼$¿�ÅyÇ&»�Ã
Ä�Ã�È�Ê&Ë�Ì�Ç
¼$À7¿;À+Æ�Ð`Ã�½
½&Í�Å�Ã�½bÍ�¿�Ä
Ç&»�Ã0Ê
Ã�Ì�Â�Í-Ë@Ì�Ê
Ã�Ú7Ã�¿KÇ&¼�À�¿<Õ�Á^À7É�Â�Ä3¿�Ã�Ã�Ä
Ç&À�Û2Ã6Ì2Ã�Ê&ÆsÀ�Ê
Ð�Ã�Ä
ÛKË¸Ç
»�Ã;½�Ã�ÈDÉ�Ê
Ã3ÈDÀ��~Ì�Ê
À�ÈDÃ�½
½&À�Ê0¼�¿�À�Ê�Ä�Ã�ÊuÇ&À¸Í-Ú�À7¼�Ä"È�À�Ð`Ì2Ã�Â�Â$Ã�Ä8Ä�Ã�ÈDÊ
Ë�Ì�Ç&¼�À�¿(Î�áZ½&½&É�Ð`¼$¿�Å
Ç&»�Í+Ç�Ç&»�Ã6È�Ê&Ë�Ì�Ç
À�Å7Ê
Í�Ì�»�¼�ÈZÈ�À��~Ì�Ê&À�È�Ã�½
½�À7Ê}¼�½�½&Ã�È�É�Ê&ÃE¼$ÇZ½&»�À�É�Â�Ä
Û\Ã5Ã�Þ�Ç&Ê
Ã�Ð`Ã�Â�ËyÄ�¼$â�ÈDÉ�Â$Ç�Ç
À
ÃDÞ�Ç&Ê�Í�ÈDÇ}Ç
»�Ã6½&Ã�ÈDÊ
ÃDÇb¾7Ã�Ë�Ð.Í?Ç
Ã�Ê
¼�Í�Â ¼$¿�½&¼�Ä�Ã5¼1Ç�Î

Ü »�¼�½5È�À�¿�½�Ç&Ê
É�ÈDÇ&¼�À�¿%Ì�Ê&À�Ç&Ã�ÈDÇ
½5Í�Å7Í+¼�¿�½�ÇEÈ�À�Ð`Ì�É�Â�½&¼$À7¿OÇ&À3Ê
Ã�Ú7Ã�Í+Â�¾7Ã�Ë�½�Õ Û�É�Ç0Ä�À�Ã�½E¿�À�Ç
Ì�Ê&À�Ç&Ã�È�ÇZÍ�Å7Í+¼�¿�½�ÇZÈDÀ7Ê&Ê
É�Ì�ÇZÐ�¼$Þ;À?Áb¿�Ã�Ê�½�Õ�Ç&»�Í+ÇZÁ�Í+¿KÇ�Ç
À�Ç&Ê�Í�È�Ã5Ç&»�ÃuÈDÀ7Ê&Ê
Ã�½&Ì2À�¿�Ä�Ã�¿�ÈDÃ5Û2Ã��
Ç*Á^Ã�Ã�¿M¼$¿�Ì�É�Ç
½6Í�¿�Ä�À�É�Ç
Ì�É�Ç
½E¼�¿MÇ&»�Ã.È�Ê&Ë�Ì�Ç
À�Å�Ê�Í+Ì�»�¼�È0Ð`À�Ä�É�Â$Ã7Î(ßx¿¸Í�Ä�Ä�¼$Ç&¼�À�¿MÇ
ÀyÇ
»�Ã.Ä�Ã��
ÈDÊ
ËKÌ�Ç&¼�À�¿¸Í+¿�Ä%Ê&Ã�Ì�Â�Í-Ë;Ì�Ê&Ã�Ú�Ã�¿KÇ
¼$À7¿(Õ2Ç&»�Ã�½&Ã�È�Ê&Ã�Ç'Ì2Ã�Ê
Ð0É�Ç�Í?Ç
¼$À7¿�¿�Ã�Ã�Ä�½'Ç
À3Û\Ã`Ì2Ã�Ê&ÆsÀ�Ê
Ð�Ã�Ä
¼$¿�½&¼�Ä�ÃEÇ&»�Ã6È�Ê&Ë�Ì�Ç
À�Å7Ê
Í�Ì�»�¼�È�Ð`À�Ä�É�Â�Ã5¼$¿3À�Ê�Ä�Ã�Ê^Ç
À.Ì�Ê
À+Ç&Ã�È�Ç�Í+ÅKÍ+¼�¿�½�Ç�½&É�È�»;Í?Ç&Ç
Í�È�¾�½�Î

� ���������	�! #"%$'&)(+*,�-$'��.0/21��43�5�687:9<;
=,>@?BADC�?<EGF)H�I�J	?)HLKNMPO,QRHSO	IS?)TVU�WBMP>XOZY[C@Q@H\F'WB],H�U,?B>�E�J	I�W�>�^�MNO_W)H�?BISHSU�WBMP>XO`JaF!H�KPH\F)F�b,F!MNO	ISH
Mc^dMNO_W)HS?BY[H�E�MeC�WBH�O,>�E�H\F+^f>@?Bg@HSW�W)]	H�>@KeEZQ@H�T�FSb�WB],H�YhC�W)HS?BMeC�KiWB?BC@O	F)YjMPW!WBH�EZ>XOZW)],HkKPMNO,H�F
ISC�O	O,>�WLlaHhE�H\I�?BTVU�W)H\E�b�l,J�W�F!W)MNKPKdC@KPKN>�A�F0IS>@?B?)J	U�WmY[MPn�H�F0W)>`MPO_WBHS?<I�HSU,WLY[H\F)FBC�gXH�FoW)]	C�W
I�>@J	KNEjlpH0E�H\I�?BT_U,W)H�EkWB>LW)?<C@I�HDWB],HoIS>@Y[Y�J,O	MNI�C�W)MN>@O�q@r�Y[>@?BH+g@H�O,HS?BMNI+C@U,U,?B>XCXI<]�A%>@J,KeE
laHsW)>tY[C@Q@H�WB],HuE�H�IS?)TVU�WBMP>XOv>�^wWB],HsY[H\F)FBC�gXHxMPY[Up>XFBF!MNl,KNHylVT4],>@O	H�F!WRY[Mcn�H\FRC�^zW)HS?
CxI�H�?!W<C�MNO{C�Y[>@J	OXWk>�^+W)MNY[HG>X?kC�^zWBHS?jCyI�H�?!W<C�MNO|HS}XHSO_W�q�~sH`F!]	C@KPKDISC@KPK'W)],MeFkU,?)>XUaH�?!W-T
�������'���B���S�<�����B�R���p���a���k�z��� C@O	EsCZY[MPnyWB]	C�W�MNY[U,KPH�Y[HSO_WBF�McW�C �������'���)�x�S�B�S���)���k�c�
� �B�����k�c��� q

�i��� �L���V���V�� \¡� �¢�£a�4£p¤+ �¥��x�\¦\¥��V§¨�
~sHyI�C�OvCXI<],MPH�}@H`^f>@?BADC�?<E©F)H�ISJ,?BHxC�O,>XO_TVY[MPW-T¨lVTtMNO_W)?B>VE,J	I�MNO,g¨F!WBC�WBHxMNOXWB>|W)]	HxY[Mcn
O,>�E�H�F�q«ªD],MeF�MeF�O	>�WRCu?<C@E�MeISC@KPKNT{O	HSA¬?)H\­_J,MP?BHSY[H�OXWGF)MNO	I�H�Y[>XF!W�WBH�I<],O,Me­_J,H�FGMPY[U,KNH�®
YjH�O_W)MNO,g[?)H�U,KNC8ThU	?)H�}@HSO_WBMP>XORC�KN?BH�C@E,Tk^f>X?BISHLYjMPn�H�F%WB>jQXHSH�UG]	CXF!],H\F%>�^�W)],HLU	CXI<Q@H�W<FSbV>X?
U	C�?)WBFmWB],HS?BHS>@^-b�W)]	C�W�]	C8}@H[lpHSHSOuU,?B>�I�H\F)F)H�EyMPO2W)]	HhU	C@F!W�qiªD],H�E,Mc¯�HS?BHSO	ISH@b�CXFLA«H[A+MNKPK
F!H�H@b@MeF�WB]	C�W«W)],HoF!WBC�W)H�A%H+?BH�­_J,MN?)HDWB],HoY[MPnVH\F�W)>�Q@HSH�UhMPOh>X?BE,HS?�W)>�MPY[U,KNHSY[HSO_W«^f>@?BA%C@?BE
F!H\I�J,?BMcW-TGO,HSH\E,F%W)>hlpHwQ@H�U�W�F!H\I�?BH�W�F!MNO	ISHwMcW�A+MNKPK�lpHwU	C@?!W+>�^�W)]	HwQ@HSTVMNO,g[MPO,^f>@?BY[C�W)MN>@Oiq

°�OxW)?<C@E,McWBMP>XO	C�K�Y[McnyF)T�F-WBHSYhF[± ²@³,b�´8µ�b�´�¶�·�W)],HhCXE,E�?BH�FBFo>@^dW)],H[O,HSnVWLY[MPn �¹¸mºo»\¼_½ �
C�O	EGW)],HwQXHSThJ	F)H�ERWB>[E,H�I�?BTVU�WDW)],HwUaC8T_KN>XCXE[W)>hlpHwF!H�O_W ��¾ Y[H�FBF)C@g@H � C@?)HmMPOaI�KNJ	E�H�E`MNO
W)],H�CXF!TVY[Y[H�W)?BMeISC�KNKNThHSO	IS?)TVU�WBH�E`],H�CXE�HS?\bVJ,O	E�H�?+W)]	HwU,J,l,KNMNILQXHST�>@^�WB],HwY[Mcn �¹¿�ÀXÁ � q

Â ÁVÃiÄ+Å Â ÁRÆ�Ç ¾ YjH\F)FBC�gXHVÈ ¸0º0»�¼V½�É8Ê�Ë<» È Ç8Ì H�FBF)C@g@H É8Í Y[H�FBF)C@g@H
ª�?<C@E�MPW)MN>@OaC�K�Y[MPnxF!T�F!W)HSYhF�baF)J	I<]yCXFoY[MPnVYhCXF-WBHS?\baF!W)>@?BH�CGU	C@I<QXH�Wo°-ÎÏW)]aC�W0MeF0J	F!H\E

C�KN>@O,gLA+MPW)]�F)>@Y[HDMPO_W)H�g@?BMcW-TjI<],H�I<QVMNO,gmW)>�C8}X>@MeE�Y[H�FBFBC�g@H\F�laH�MPO,gwU	?)>�I�H\F)F)H�EkY[>@?BHDW)]	C@O
>@O	ISHhl_TsW)]	H�O,>�E�Hx± ²�³�·Ðqi°�OuWB],HGISCXF!Hh>@^�±c´�¶�·«C�F)UaH\I�MeC�KdU	J,l,KNMNIG]	C@F)]|Ñ�Ò<Ó�Ô�ÕPÖ�×`>�^DW)]	H
F!TVY[Y[H�W)?BMeIGQXHST ¾ b�>�WB],HS?BA+MNF)HGJaF!H\E|W)>uE�H\I�?BT_U,WkU	C@?!W<Fk>@^+W)],HZY[H�FBFBC�g@HXb�MeFjQ@HSU,WjMNO
>@?<E�HS?kW)>|C8}@>XMNE¨?)H�U,KNC8T�Fk>�^�WB],H�F)C@Y[HRY[H�FBFBC�g@HXq�°�O4ISCXF!H`C�O,>@W)],H�?[YjH\F)FBC�gXH@Ø FkF)H�IS?)HSW
]	C@F)],H�F%WB>jW)],H�FBC�Y[HL}�C�KNJ,HwMcW�MeF+E�?B>@U,UpH�Eiq

Ñ ÒBÓ�Ô�ÕNÖ�× ÆÚÙÜÛ�Ä �¹¾ YjH\F)FBC�gXH �
~sHkU,?)>XUa>_F!H�Q@HSH�U,MNO,gGCGF)H�IS>@O	EyF!H\I�?BH�Wo]	CXF!]y>�^ÝW)]	HjF)TVYjY[HSW)?BMNIkF!H\I�?BH�W ��¾�Þ � MPOsC

WBC�l	KPHwMNO	E�HSnVH\EGlVT`CkU	J,l,KNMNIL}�C�KNJ,HwÑ Þ Æ
¾ ÞdÆÚÙvÛjß �¹¾ YjH\F)FBC�gXH � C�O	E`Ñ ÞÝÆàÙÜÛjá �¹¾ Þ �

~�],HSO¨C�Y[H\F)FBC�gXHhg@>VH�FLWB],>@J	g@]2W)],HRY[Mcn�MNO,gxO,HSW-A«>X?)QsMcW�KNH�C8}XH�FwlpHS]	MPO	EuMPWjCyF!HS®
­XJ	HSO	ISH'>�^,QXHST�F�C@O	EmW)]	HSMN?�MNO	E�HSnVH\F�>XOwH�CXI<]�>�^VW)]	H«O,>�E�H\FiMPW�A%HSO_W�UaC@F!W�q8=,J�WBJ,?)H«U	C@I<QXH�W<F
ISC�O2J	F)H�WB],H�F)H[Q@H�TVF�b�MPOuI�>XO�â-J,O	I�W)MN>@O2A+McWB]|F!H\I�?BH�WBFoW)]	HSTsI�C�?B?)TXbaMNO2>@?<E�HS?mW)>ZE�H\I�?BT_U,W
la>@W)]kW)],H�MP?dCXE,E�?BH�FBF!MNO,goMNO�^f>X?)YhC�WBMP>XOkC@O	EwWB],HSMN?ÝU	C8TVKP>_C@E�q�ãV>mMPOjU,?<C@I�W)MeI�HDCoO,>�E�H%A%>@J,KeE
ä ?BF!W«E�H\I�?BTVU�WÝW)],Ho],H�CXE�HS?<FÝ>�^iCLY[H�FBFBC�g@H+JaF!MNO,gwMPWBFdU	?)MN}�C�W)H0E�H�IS?)TVU�WBMP>XOjQXHST�FdC@O	EkW)],H�O
?)H\C@E[WB],H0MNO	E�HSnh>�^iWB],H0QXHSTjW)>klaHmJ	F)H�ERÑLå�b�C�O	Eh?BH�WB?)MNHS}XH�WB],HmC@U,U,?B>@U,?BMeC�W)H�F)H�IS?)HSW ¾ å@q
°ÐW'A«>XJ,KeE�WB],HSO�IS>@Y[U,J�WBHoCwF)H�I�?BH�W'F)]	C@?)H\EkQXHST ¾Gæ ÞPÁ Ö�Õ laC@F)H�Ej>@O[lp>�W)][WB],H�QXHST ¾ å+C@O	E
W)],H�F)H�IS?)HSW ¾ YjH\F)FBC�gXH IS>@O_WBC@MPO,H\EGMNO`W)],H�E,H�I�?BTVU�W)H\EG]	H�C@E,HS? Æ

çGè\éPêXë<ì�íÚîvïkðVñ¹ç�òjó\ô)ôBõ�öXóV÷)çjø\ù�÷)çhì�íÚîvï[úXñ�ç[û	ü õ@ý ù õ ü	þZÿ ì�íàîvï��Xñ¹çhì¹ù

� ê������ � ê í
	�� ò[ó�ôBôBõ�ö@ó ÷ ÿ ø�
������ ÷�	���� ����� ÷�� ó�ôBôBõ�ö@ó
�� û	ü õ@ý
� ü! #"Bþ ó "%$& òhõ�'@ó)($ (Nò�* ô)ô&(,+,ýPó)- #" õ ü õ $.$ õ0/�'Xó "1$& - 0" /�ó þ ó2/ "&3 * $ (Xü! - $�4 (Nô

òjó\ô)ôBõ�öXó 0"�$� öXõ0(ü õ ü�3 (ü - 0" òhõ $ (@ü + 3 õ0/�/Só�ôBô.(ü ö $�4 ó�ý,(Nô $5 -Ýô)ó2/ " ó $ ô ç ô òjó6'@ó 3
7 * þ õ $ (ü ö *pó " õ $ (Xü ô ü óSó þ8$� +pó9*aó " - #" ò[ó þ;:2$� <" ó�*	ýNõ#/�ó $&4 ó ý þ 'Xó 3 ô=+ 3wü ó�>@?�õ@ý 7 ó\ô í

ç ø íàîvï�AXñ¹ç[û	ü õ�ý ù õ ü	þ`ÿ ø íÚîÜï � ñ¹ç ø ù
B ôZô � Xü õ@ô $&4 ó ý þ ?8õ@ý 7 ó�ô ñ ÿ ø ÷)ç ø ù õ " ó " ó�*,ýeõ0/Só þ + 3C$�4 ó ü ó�>+ý 3 ö@ó ü ó " õ $ ó þ

ñ ÿ ì ÷)ç ì ù $&4 ó 3 ò 7 ô $ +aóD*pó " òhõ ü ó ü#$ ý 3Rþ óSýNó $ ó þ�EF ô 7 ò[òhõ " (HG�ó :I$�4 ó ï � - 7 ü / $ (@ü (eô 7 ô)ó þ%$� óKJ $&" õ0/ $ õL* 7 +,ý,(M/ $ õ@ö - $&4 óoòjó\ô)ôBõ�öXó$& õ�? (þN" ó2*,ýeõ 3 ôLõ ü	þ (Nôwõ@ýH>Dõ 3 ômõ0*
*,ý,(Pó þO$& P$&4 ó�ô!ó�/ " ó $ / Xü#$ õ�(ü ó þ (üO$�4 óhò[ó�ôBô)õ@ö@ó E
F 4 óQ- 7 ü / $ (@ü ïjú (Nôjõ�*
*	ýH(Nó þR$� S$&4 ó û	ü õ@ý«ô 3 ò[ò[ó $�" (M/�ô)ó2/ " ó $ (üT 0"<þ ó "D$� ö@ó ü ó " õ $ ó'@ó 3 ô $&4 õ $ /�õ ü +pó 7 ô!ó þ (ü - 7 $ 7 " ó�/ ò[ò 7 ü (,/�õ $ (@ü ô : õ ü	þQ$&4 ó<- 7 ü / $ (@ü ï%� (eô%õ0*
*,ý,(Pó þ$& U$&4 ó\ô!ó�'@ó 3 ô $� öXó ü ó " õ $ ó $&4 ó2(" * 7 +	ýH(M/%(ü	þ óKJ�ó�ô E F 4 ó%- 7 ü / $ (Xü ïjð (eô 7 ô!ó þV @üO$&4 óô!ó�/ " ó $ ôGô $� 0" ó þ (üW$�4 óxò�(XJ�õ üaþT$�4 óV*	õ#/�'@ó Y& / " ó�õ $ ó û	ü õ�ý0ô 4 õ " ó þ ô)ó2/ " ó $ ôY> 4 (NýNó$&4 óY- 7 ü / $ (Xü ï A (Nô 7 ô)ó þR$& 7 * þ õ $ óRô!ó�/ " ó $ ô E B ýPýZ- 7 ü / $ (@ü ô ï%[añ�ù õ " ó�ô)ó2/ 7 " ó 4 õ@ô 4- 7 ü / $ (Xü ô : (ü *aõ "&$ (M/ 7 ýeõ " +aó�/Sõ 7 ô!ó $&4 ó 3R4 õ�?@ó $� +póU* " ó�\](Nòhõ�ö@ó " ó\ô.(eô $ õ ü�$2:^$& õ�? (þö0(,?�(ü öwõ ü�3 (ü - #" òhõ $ (@ü õ�+ 7 $_$�4 ó�'@ó 3 ç é õXô)ô /K(eõ $ ó þ >�($�4 õ ü (üaþ óKJ ÿ é íàîvï � ñ�ç é ù 0"9$&4 ó " ó�ýNõ $ (@ü +pó $ >%óSó üZü ó�> õ ü	þU ý þ '@ó 3 ô ç ø íàî�ï�AXñ�ç[û	ü õ@ý ù E

F 4 ó " ó�ò 7 ô $ +aójõ�ô.*pó2/�(Nõ@ý�(ü	þ ó�J ÿ8` (ü	þ (M/Sõ $ (ü ö $�4 õ $<$&4 ójò[ó�ôBô)õ@ö@ó þa ó�ô ü
 �$Lþ óK*aó ü	þ) @ü õ ü�3 óKJa(eô $ (ü öY'@ó 3 * " ó\ô!ó ü�$9 Xüb$�4 ó�ô)ó " ?@ó "�: õ ü	þb$&4 ówòjó\ô)ôBõ�öXómô 4
 7 ý þ (ü)$&4 õ $/Sõ@ô)ó%+aóY* "� /�ó\ô)ô)ó þ (üO$&4 ó $�" õ þ ($ (Xü õ�ýc>Dõ 30E � -Dòjó\ô)ôBõ�öXó�ô " ó�-fó "L$� õU'@ó 3 (ü	þ óKJ $&4 õ $þa ó�ô ü
 0$ óKJa(Nô 9&4 ó 3 ô 4
 7 ý þ +pó þa"& *
*pó þ�E

d;egf h8i=jVk#lnm2o%lqpsr
t@u0v�w�xOy{z
F 4 óQ* "� *pó "&$ (Nó�ô6* "& ?�(þ ó þ + 3U|�}�~��%�X����}�: õ@ô þ ó\ô&/ " (,+pó þ õ�+ ?@ó : õ " ó ü
 0$ õ0/ 4 (Pó2?@ó þ - #"
- " ó�ó E F 4 ó ü ó�J $ ô!ó�/ $ (Xü >�(PýNý�óKJa*,ý 0" ó $&4 ójô!ó�/ 7 " ($�3 õ þ ?8õ ü�$ õ�öXó�ô - $&4 (eô ü ó�> ô�/ 4 óSò[ó\ô
+ 7 $�ûn" ô $ >%óY>�(PýNý þ (Nô�/ 7 ôBô $�4 óRõ þ,þ ($ (@ü õ@ýdóKJa*pó ü ô)ó�ô6+ 0$&4 (ü�$ ó " òhô -�ô $� 0" õ�ö@óhõ ü	þ* "& /Só�ôBô.(ü ö E

B $�" õ þ ($ (Xü õ�ýDò�(HJ @ü ý 3|ü óSó þ ô $& òhõ�(ü#$ õ�(ü õO* 7 +,ý,(M/ " ó2/ 0"<þ� - $&4 ó ��� -0õ@ýPý$&4 ójò[ó�ôBô)õ@ö@ó�ôs($L4 õ@ôoó�?Xó " * "& /�ó\ô)ô)ó þ 7 ü	þ ó " ($ ô�/ 7 "�" ó ü�$ * " (H?�õ $ ó6'Xó 3#E F 4 ó " ó�- 0" ó $&4 óô $� 0" õ�ö@ó " ó2� 7 (" ó þ õI- $ ó " * "& /�ó\ô)ô&(ü ö�� òjó\ô)ôBõ�öXó�ô�(eôP� ñ � ù E��� 0" ó�õ0/ 44ü ó2>¬òjó\ô)ôBõ�öXó
* "& /Só�ôBô!ó þ õLý � ' 7 *�(eô_*pó " - 0" òjó þ% @ü�$&4 ós* 7 +,ý,(M/ " ó�/ #"Bþ�E B ôBô 7 ò�(ü ö $&4 õ $_$�4 ó�ý � ' 7 *$ õ�+	ýPóU(Nô1(Pò�*,ýNóSò[ó ü#$ ó þ 7 ô.(ü öyõ 4 õ@ô 4�$ õ0+,ýNó @ü óU/Sõ ü óKJa*pó2/ $ õN/ ô $6 -�� ñ ý öZ� ù $� *aó " - #" ò ó\õ0/ 4 ý � ' 7 * EB ü -¹ô.\�ò�(HJ4ô $& #" ó\ô[ò #" óxô $ õ $ ó $�4 õ ü õ $�" õ þ ($ (@ü õ@ý�ò�(XJ E � $ >�(PýNý ü ó�ó þC$� ô $� 0" ó
� *	õ0(" ô - ñ ÿ ÷)çsù ?8õ@ý 7 ó�ô E���ü ýH(,'@óY� :^$&4 ó ü 7 ò1+aó "6 -%ò[ó�ôBôBõ�ö@ó\ôD* "� /�ó�ôBô)ó þ + 3O$&4 ó/ 7 "�" ó ü�$ * " (H?�õ $ ó6'Xó 3P - $�4 ójô)ó " ?@ó "2: � (eô<* "& * #".$ (Xü õ�ý $& b$&4 ó ü 7 ò6+pó "� -'ò[ó�ôBôBõ�ö@ó\ô$&4 õ $=4 õ�?Xó'ó2?@ó " +póSó ü * "� /�ó�ôBô)ó þ + 3L$&4 ó«ò�(HJ E � ü *	õ "&$ (M/ 7 ýNõ " ($ >�(NýNýa+aó%òhõIJa(Pò 7 ò�(H- $&4 ó

���0�����0���V�&�2���
���8���
���K�&�,�0���0 H�H��¡V�M���
��¢#���L���&�2�V£�¡V¤����&����¥#�2�2¦q�&�H�n�K�%�
�U§n���,���L�����6�2¢0�2�
�a�� ,�K���2��¨0©<�_��£q�I¢0����ª
�s�K�����_�0�n«��n�a�H��¥8�<§n���&�&�M�K�
 M���c�2 H�2¤%�2���¬�.ª
�#�
 M�6£q�s§
���0§q�0�&�&�,�0���0
�&�V­Q®¯ H�#¥¬°S±�¨³²��O�#�
�a�H�&�,�0�V���b��ª
�% H���0´��
§n�<�#�5¤Y����¡V�#�s���#�
�Lª��0�&ªV�0§q�����I���H�#�V¤��H¥#ª��
�
�����b����£n�D§q���&���0��¤��2�U§n�2�s¤��2���&�0¥0�0¨

²��)�#���
���9�&�b¤%�,�
�,¤��Hµ2�D�&ª
�1�����I�&�D�����2�
�2�P£�¡U�0�U�¯�.¶{¤%�H·P�����&���H�����,�P�&ª
�8�,���a��·)�0���
´0��¡R����£
 ,�U�2���@£q�U¤Y�#�a�Q���N�K·a§
�,���0¦=���H�&ª
�2�%�0�a�&�#¤����&�M���0 H ,¡��0�1�#�6���2¸��
�������2��£�¡R�&ª��
�.�2���a����¨
¹S�#�&�D�a�������, M����£q�0�a����ª
�,�5�&��ª
�2¤������, , ;£n�D§��&���.�2�#���2�U�H�P�&�2�����H�#�Sº
¨ »
¨

¼ ½9¾^¿�ÀsÁ�Â�Ã�ÄÆÅÈÇ5ÉËÊ�ÄsÌ�Â&Ì

Í ���&ª��� , a����¥0�
�Z�&ª����Ë�&ª
�9¤��a�a�X«q���I���H�#���=§
���2�&�����&���6�a�L�
�0�=¤Y��´#�¬��ª
�9¤��X·1�0��¡D�Z����´0�2�
��ª
�H ,��§
���I¢��M�a�,�
¥U�#�
�a�H�&�,�0���0 =�&�2���
���X��¡P�����I�&���&����¨³²{�L�,�D�� H�����<�&ª����L�H�¬��ª
�%´0��¡a�LÎÏ�K�0�
¶
�����,�
���!�,�W��¢#����¡�¤%�H·!�������P§
�
£
 ,�M��¦¬�0�C�#�a¢0�2��������¡��Z�#�
 ,�!£q�V�K·
�0�K�& ,¡@�,�!��ª
�V����¤��
§n���.�H�&�,�0�V�#���H�V�%�����#�a�H�&�,�0���0 ;¤��X·S������ª
�H�&�2�K�&�
���0¨nÐs�8���0�
 M�)ª���¢0�L���b�K�#¤�§n�2 ;�&ª��8¤��X·
�&�V§q���&���0��¤Ñ�
�2�K��¡�§a�&�,�0�����&�,�
¥V�H���8§��&�,¢I�I�&�b´0��¡a�D�#�6�&�
�&�����n�a���8�H�2¦=�,���0���a���D���S�&���0���
����¡Q¤Y�I�������,�0 ³�&ª����5�,�s�H�Pª
�M��§q�#���.���&�&�H�#�;¨
Ò9ª
�2�&�����0���<�,�P�&ª����5���#�.���&ª��8�
���Ó����ª
��¤��L�,�
�2¸��
�,¢��0 H�2���������&ª
�L�����#�a�H�&�,�0���0 ��0�
�#¨

Ô�Õ×Ö ØLÙIÚnÛ2Ü�Ý�Û�Þ¯ÚqßCàUánâ�Þ¯ß=ã�Ûbä1Únå@æ=ç=è¯ã�Þ¯Úqß
©s�U���.���0��´0�2�_��ª��I���&���H���Z�&�8�����#�K�<£��0��´Y�8¤����&����¥#�s�&ªn�I�9ª��0���� ,�&���0�a¡%¥0�#�
�5§n�0�.�9�0�Y�¯��¶
¤%�H·U�2���
�
�0�9�
�2�K��¡�§a�9�X���
�
 ,�2������ , q�&ª
�L¤��2������¥0���¬��§n�#�U��ª
�M��ªQ��ª
�M���K�0¤�¤1�
�
�M���I���H�#�;é �
´0��¡8�
��§q�����
�Ë�������9�� M�.�<�H���&�2������§a���2�%�����1�a�2���&¡�§a���2��¨0êa����ª1�0�1��·��2�����,�&�¬���0�� ,�6�&��¸#���H���
�� , ��&���IëQ���&�U�� , ��&ª
�6¤%�H·a�2�s�&�Y£q�8 H�#¥0¥#�2�P�����P�0 H ;�0�c�X�s���Q£q�6�a�2���&¡�§a���2�)�,�S�0���a���9���
�Z�#�&´³¦��.�,�����1��ª
�Q�I�&���#��´0���D�a�����L�
���8ª���¢#�%�0��¡N�I¶{§
���H�#�&¡P´��
�I�� ,�2�a¥#�1�0�Z��ª
��¤%���&����¥#�
�a��§q�����
�������H����¨�Ò9ª
�Z�0£n�I¢#�_�M�;���&�
�¬���0��£n�0�&ª1�&���n�a���&¶{�0�
�0��¡�¤��0�������0¤�¤6���
�,�2�I���H�#���^�0���
�.�,�
¥0 ,�L���&�D�&�2§
 H¡b£
 H�a��´a�2¨

²��N���#�.�8´#��¡a�5Îì�����6�&���,µ��2�S�&ª
�1«�������¤%���&����¥#�2�����K���2�&���,�
¥Y�&�b�&ª
�2¤í�����N£n�%�H�������&¶
�K��§
�&�2�;¨^Ò9ª
�Y�I�&���0��´#�����&ª������
�����
���&�S£q�Y�,�#�������K�2§a�&�,�
¥S�� , _�.��£��.��¸��
�����D¤��2���&�0¥0�2���,�
�0���a�����&�S��§q�
���&�Yª
�M�L´��
�I�� ,�2�a¥#�1�0��´#��¡a�<�&�S¤Y���,�������,�Rª
�,�6�a�2���&¡�§a���H�#�R�2��§��0£
�H ,�H�&�,�2�2¨
î �0�9���0��ªQ�0�^�&ª��2�&�<¤��2������¥0���_��ª
������¤6���.��£q�D�1�
�2�K��¡�§a�&�,�0�U�&��¸��
�2�.��¤Y�#�a�5���6��ª
�L¤��X·
®��
�
 ,�2���9��ª
�D§
���H¢I�I���L´0��¡a���0�&�L�.�2�Hµ2�2��±K¨

ê��H�n�K�6�����L�0�
 ,¡)�&ª
���0�
�
�&���&�5�,�<�H¤�§q�#���.�,£
 ,�6���U�a���K��¡�§a�<£
�
�<��ª
�1��ª��0 ,�6¤��2���&�0¥0�#¦
�&ª
�2�&���M�c�
�D�9��¡8�����0§�§n�#�
�����¬�K�#�
 M�6���&¡6�&�L���&�9�&ª
�5£n�a�a¡1���q�&ª
�s¤����&����¥#�Z�,���0���a���Ë���
«����1�0�a�Ë�X���Ë�a�2�.�&�,���I���H�#�;¨IÒ9ª��I�c¤��2�0���^�&ª����Ë�2¢0�2�1���.�,�
¥0 ,�¬ª��0�
�����Ë¤��X·6�,�1����ª��0�H�6�&ª����
�H¤�§
 ,��¤��������b�SïKðIñ�ò¬ó�ñ&ôTõ�ö�÷�øañ&öOóIùqð�ù�úIûYðIø�õN��ª��0�
�
�2 ×¦c��ª��I�Uª��0�Y¥#�����
�,�
�� ,¡!�
�� ,�K�&���
�&ª
�)���&�2�@´#��¡a�2¦^�M�%�&�aëQ�K�,�����1�&�R�0���a���6�&�N§��&�I¢��M�a�Q���#�&�9�������.���K�
���H��¡N���#�6��ª
�U��ª��0 ,�
�K�0¤�¤1�
�
�M���I���H�#�;¨

Ô�Õgü ýZÙIâaþ@ÝSàbß=â
è�ÿ;ã�Þ¯ã
©s H�&ª
�#�
¥0ªY��ª
�L�K��¡�§
�&�0¥#���0§
ª
�M���.���K�
���H��¡1�0���&ª
�<¤%���&����¥#�2�¬�,�������&�#�
¥0�2�c�&ªn���Q�,�Y�&ª��5������¶
�a�X���H�#���� �¤��X·a����¦^�&ª
�2�&�U�,�1�V�
�2� �&��¸#���H����¤������8�,¤�§n���.�����0����ª
�U�&�� ,�2�K�&�,�0���0�s�&�#�a�&���
�&ª����9§n�0��´0�����Z�
�����Y���6������¢#�� n�&ª
���0�
¥#ª;¨�²{�^��ª
�����<�M�9�6�����2�b���0�9�.���I�����&�%£n�L§
���2�&�����Z�#�

�������	��

�����������������������������! ��"�!��#$���%�&�'�(�)�+*��������&�,�����-���+�	�.�	�/
0�$�'�+���1�!���2�3�$*
�����4�"�35
�����/����6�78�/*9�:*���*;�!�+*�<0���=�>�+*�*��$�$?A@B�%�&�
�3�$6/�)�C���/��*D�����0�"�)���E�	�/F��2�G�����&���H<0�I�$*�����F��
�/*0�������>�+������*J�����B�����
��<0�����!������7(���	K4�
�+K�6��G���	6��/*� L�	�$������F��)�1K4�"�NM����$*L�������O?

P �/*%�"�I�����	*����QK4���G���.*��0<0�$�G������6�72��*�FJ�����	�������4�����$<R���!���$�	�(<0���)�S*��+�T*����)<U���
K%�V������7R6H�+��F���#A�+*�<9�����&����<��$<D�����+�
���������>���I�U�3�>�+6�6.*����IK%�$�
�+�-�	�/
��)��#A�����L���!�&WV�
�+*���6/70�������+�������T���������T�3������6H<LK4�T������<X?�@B�����B�H�B�����G�$�����GK%�)���+�%�3�T�(���+�����H�"��6�����*���<��
�����	�D6�����F��L������K���K���6/�/�N79�+�SK4����*�F;�����$����*2�(��*Y�NM1�D�����0���)�(��*�72MB�Z7�?�[*]�����U�����3�J�+�
�86H�+��F��>�4������5^���+5_�4�����I�	��
`���!�����	��#a�����O���$�"�����/�N7D���b�3�%�!�c���������0�"��6��I�+F2�+��*��N�Q���!�&WV�
�+*���6/70���������������>K4�T����5^�$�Z��6/�%�&���)<X?

d <�<0�/������*%�+6�6/7(�����b��*��������	�$<0�H�&���b�	��
0�)�1�����b�ZMB�+���-�+�a�����S6/��*� 	K%���NM1�$��*J�(�)�����+F��$�$#
�3��*��"�(�����	��*�6�7U���+���N7O���%�&�T �*��&Me�e�����> ��$70�S�3�������)<8�H�E�����	�����3�N7O�����&�T�����E����*2�G�����
�����$���/�����.�	�)�����+F��$�$?�@B���$7V�+���S�+6H���I�ZMB�+���e�+�X�NM��I�������$�1*���<��$����*>�����G���&���V�����&�-�+���
�3�$�$<0�)<LK�7>�����T�����(�G�	�$�����+F��)�Sf������T��*��G�����$�"�)<0��*�FQ�������g�+*�<L�����T��*��G�&�h�����B�������ViC?

[_�b���eM1���3���:*��+����*�F	�����&�e�����
�	�$�����+F��)�B�����$<:���V<����3�����/K��0���
 ���70�e�����T�H<0��*2�����$�+6X���
�+��������M-�����T*������>�+6X�	�$�����+F��)��#%���B�j���b���e��*�7L����������<0�T��K������������-���e�"���(�������(�H���$<:�	��

�����"��*��"�$��*��)<X?�@B�����1�H����*V�$������*2���H�+6����$�&��������#������+���>�+ ��$�k�����S���!�&WV�b����6��$�"������*>�!���� 	�+�
�"
����!���"����*�F
�	�$������F��)�'�����+������*2�����/*> ���7	�>�&���$���H�+6%�"
��������	�$6/7(���+�!<(�����.�����G��<������!���+��7�?
[*;�>��*27D�������$�S�����> ��$7U���!�+��6l6/���h�
K%�$����*�<9*������>�+6'�	�$������F��)�E������6H<DK%�>�����$<9���G ���7
�	�+���$���H�+6m�����B�����3�������-�	�)�����+F��$�$?

nXoHp qJr�s't�uvw,x�u$u

[_�a�����E��*���*�7��	���N7	�+�,�Q*����NM1���� >�$�+*�*����1K4�GK����� ��$*A#2��*J�+�3�����! ��$�.�	�/F��2�B�!���2�3�b���	<0�"5
F��!��<0�k�/�����4�����������	��*��"��#$����������*�Fb�����+���/�,M-��6/62���0�'�4������6/�1�+y	�����������3��*�Fe�/�$?&@B���$�����������
�G6�����F���K4�0<07(�+�mM1���� Q����*�����*2���!�&���$�'��*(�����&����*�FE�����e���������)�C��*��$���'�+�m�(�/
	*��"�NM����� 0��z/{�#
| #"{ | #"{&})~_?��e*0�����3����*��+����6�7�#������
���$�2���������	��*2�-���4��*O�j�35^�	�/
J*��0<0�)�B���V�3�������
��<�<0�/������*���6
�N�!�&���-�H�'�>�+ ���*�FE�����B������*��3�4�����l�+�m�	�$������F��$�,�	������������F���6/�-��*�<
�����-*��0<0�)�l�	������������*��
���V<0�$*�����6X�+�l�3�$�����H�"�G�&�������! 0�$?

� �/����*;�����+�
�	�$������F��$�T�$�+*9F����Q<0�������4�$<9�&�
�!�+*%<0���O#a<0���	���O���!�&WV�>����*�F��$�3������*
���
����NM1���� 8�j�+��6/�����$�$#A�>�+ ����F:���0�������V�	�)�����+F��$�G����6�����*��
��*9�����3�
��*��)�
�"����6H<D�4�+����*05
���H�+6�6/7(�>�+ ��e�����e*��"�NM����� Q������*>6��$���l����6�����K�6/�b�&�����!�+6�6^?+����������*��&����6�7I��*��e�"����6�<(������*� 	�+�
�N�����+����F��/�)�l��*>���!<0���l���
��*%�3�����-�����b�������4���1<0��6��/������7Q���X���4�$�"�H�+6^#� ���7	<0�H�N������K��0���/��*>�(�)�N5
����F��$�$#�K4�"�������I�	�� ��/*�FV�����3�������E�	�$������F��)�e<0���4��*%<0��*2�G��*O�����I ���70�B������78<0�H�N������K��0���$<X?
� *��	M��Z78���B<�����*�FU�3�U�"����6H<RK4�>���U�����)�&���>�:�	�$������F��(��*���6/6�7R��<�<0���$���3�)<8���:��*��$����6/�
�+*�<9�!���)�! 8�����T�/���I<0��6���������78K4�"�������>������*�FO�����J�3�)�"���"���T<����3�����/K��0���)<;���U�����0���	�����3�������
�(�)�����+F��$�$?��b*0����������*%�&���$6/7(���������S�����b���$���������N7	���(��6/�H���+������*��$#�*%�+�	��6�7(�����S���H�3 	���A���Z�25
�/*�FO�����V ���7D<����3�����/K��0������*9�	�$������F��	��*������!�"�$�0���)<;��*�<;���!�����$<X#A���TM���6�6.���
��6/6k�����3�������
�(�)�����+F��$��6��/*� ��$<L���>�/�$?

� ���S�b�\���3�.�e�l�Q�e�A�,�0�b���a�

[*;��<�<0�/������*8���L�����	�	�$�!����*������>�G<0�$���"���/K4�$<D�+K4�&����#%���Z����*�FJ�j���"��6������/�)�b���O�	�� ��I�(�)�N5
����F��$��<0���4��*%<0��*2�l��*
 ���70����*T�����1*���<��$�'�"����6�<
K%�������$<T���b���	��6/�$�	��*2�-�h���\�"�����_�����4�������
���_�m���J���/�) �¡&¢
�+*�<V��£+�h¤D��¥0�C���h�2¦V§	�"¢!¢�£�¦2�C¢C?

¨A©«ª ¬"­m®)¯2°Z±,¯2².¯�­�±,¯�­m®>³L¯2²,´jµ]¶(´j·A¸)¹Aº
»�¼�½�¾�¿�À0½�Á	¿�Â�¼�Ã%Ä$Å&½�¼/¿�Æ�Ç'½�¿
½�¾�ÈSÁ(È)Ä!¾�Å+Æ�¼�Ç�Á>ÇkÂ0È$Ç�Ä"É�¼�Ê%È)Â>Å+Ê4¿&Ë�È-¼/½.¼�Ç.Ì%¿2Ç�Ç�¼�Ê�Í/Èe½�¿
Á>Å+Î�È
Á	Å�Æ�ÏUÉ�È$Ì�Í/ÏRÊ�Í/¿0Ä!Î0ÇGÂ0È�Ì4È�Æ%ÂR¿�ÆDÈ)Å�Ä!¾R¿�½�¾�È$É$ÐX¼�Æ9Ç3À�Ä!¾;Å:Ñ�ÅZÏO½�¾�Å&½T¿�Æ%Ä"È(¿�Æ�È	¿+Ò.½�¾�È$Æ
¾�Å�ÇlÊ4È�È$Æ	À�Ç3È)ÂI½�¾�È-¿�½�¾�È$Ék¿�Æ�È)ÇlÄ�Å�Æ�Æ�¿+½kÊ4ÈB½�É!Å�Ä�È$Â(Ê�Å�Ä!Î4Ó+Ô�¿
Â0¿E½�¾�¼�Ç1ÅEÄ�¿�Á	Á	¿�Æ	Á	¼�Õ(¼�Ç
À�Ç3È)ÂQ¼�Æ
½�¾�ÈBÌ�Å&½�¾I¿�Ò4Å�Í/Í2½�¾�È�É�È�Ì�Í/ÏTÊ�Í�¿0Ä!Î0Ç�Ð)½�¾%Å&½l¾�Å�Ç,Ê4È�È$ÆIÖ�¼/Ë�È�ÆIÅSÌ�Å�É3½�¼�Ä�À�Í�Å�É,Ç�È$Ä�É�È�½,Ê�Ï
Å
Ì�É�È�Ë�¼�¿�À�Ç.Á(È)Ç�Ç�Å+Ö�È�Ó2ÔB¾�ÈE×0ØSÙeÚBÇ1Å�É�ÈSÄ"¿�Æ%ÇN½�É�À�Ä"½�È)Â>¼/ÆJÇ3À�Ä!¾JÅ
ÑBÅZÏQ½�¾�Å&½1½�¾�È$ÏVÅ+Í�Í%Ä�Å�Æ
¿�Æ�Í�ÏOÊ%È(Â0È$Ä�É�Ï�Ì0½�È$ÂUÊ�ÏOÅLÇ�¼/Æ�Ö�Í/ÈIÇ3È)Ä"É�È"½bÈ$Æ�½�É�ÏO¿�ÆO½�¾�È	Ç3¾%Å+É�È$Â:Á	¼�ÕUÆ�¿0Â0È�Ó4ÛSÇSÇ�¿�¿�ÆRÅ�Ç
½�¾�ÈbÃ�É�Ç3½.¿�Ò4½�¾�ÈbÁ	È)Ç�Ç�Å+Ö�È$ÇlÉ�¿�À0½�È$Â	À�Ç�¼�Æ�Ö
¿�Æ�È-¿+ÒX½�¾�Èb¼�Æ�½�È�É!Â0È�Ì4È�Æ%Â0È�Æ2½�×0ØSÙeÚBÇ.À%Ç3È)Çl½�¾�È
Î�È�Ï�Ð4½�¾�È	Î�È$ÏOÀ�Ì4Â�Å&½�¼�Æ�ÖO¿�Ì4È�É!Å&½�¼/¿�ÆU½�Å�Î�È)ÇbÌ�ÍHÅ�Ä�È�ÐXÅ+Æ%Â8½�¾�ÈIÁ	È)Ç�Ç�Å+Ö�È$ÇSÀ�Ç3¼�Æ�ÖJ½�¾�È	¿�½�¾�È$É
×0ØbÙeÚBÇeÅ�À0½�¿�Á>Å&½�¼HÄ�Å�Í/Í�Ï>Ö�È�½eÂ0É�¿�Ì�Ì4È$ÂXÓ�Ü�À�É3½�¾�È�É�Á	¿�É�ÈS¼/½e¼HÇB¼/Á	Ì4¿�Ç�Ç3¼�Ê�Í�ÈG½�¿(½�É!Å�Ä�ÈEÅ�Æ2ÏL¿+Ò
½�¾�È$ÁÝÊ�Å�Ä!Î4Ó

¨A©hÞ ßSà0®$áâ¶(ã�°Z­,äj­,å9æç¯�º$º)à�å4¯�º
èUÀ�Ä!¾`¼�Æ`½�¾�È:Ç�Å+Á	ÈVÑBÅZÏ9Å�Ç(Å+Ê4¿&Ë�È�Ð�¼�½	¼HÇQÌ4¿�Ç�Ç3¼�Ê�Í�ÈV½�¿RÁ>Å+Î�ÈLÉ�È�Ì�Í�Ï9Ê�Í/¿0Ä!Î0Ç
Ë&Å�Í/¼HÂcÒ�¿�É
¿�Æ�Í�Ï]Å;Í/¼�Á	¼�½�È$ÂéÅ+Á	¿�À�Æ2½	¿�ÒS½�¼/Á	È�Ó.Û-Òh½�È�ÉLÅ9Â0È�½�È�É�Á	¼/Æ�È$ÂY½�¼�Á	ÈUÌ%È$É�¼�¿0ÂYÅ;Á	È$Ç�Ç�Å�Ö�È:¼�Ç
Ä"¿�Æ%ÇN½�É�À�Ä"½�È)ÂL½�¾�Å&½SÀ�Ç3È)ÇB½�¾�ÈQÇ�Å�Á	ÈT¼/Æ2½�È$É�Á	È)Â0¼�Å+½�ÈQÇ�È$Ä�É�È�½�Ç-Å�ÇB½�¾�È(×0ØbÙeÚBÇ$Ð%Å�Æ�ÂO¼�Ç-Ã�É�È)Â
¼/Æ2½�¿I½�¾�ÈEÁ	¼/ÕLÆ�È�½NÑ1¿�É�ÎmÓ�ÔB¾�¼�ÇBÁ	È)Ç�Ç�Å+Ö�ÈbÀ�ÌmÂ�Å&½�È$Ç�½�¾�ÈGÎ�È�Ï0Ç$Ð0Å+Æ�ÂJÅ+Æ�ÏVÇ3À�Ê�Ç3È)ê2À�È�Æ2½BÁ(È)ÇNë
Ç�Å�Ö�È$Ç�Â0È$Ì%È$Æ�Â0¼�Æ�Ö	¿�ÆV½�¾�È�ÁÝÑ-¼/Í�ÍXÖ�È�½BÂ0É�¿�Ì�Ì%È)ÂXÓ0ÔB¾�ÈTÇ�Å�Á(ÈS½�È)Ä!¾�Æ�¼Hê2À�È$ÇBÄ�Å�ÆLÊ4ÈGÀ�Ç3È)Â>½�¿
Á	Å�Î�ÈBÉ�È�Ì�Í�ÏQÊ�Í�¿0Ä!Î0Ç'ËZÅ�Í/¼HÂ	¿�Æ�Í/ÏQÅ+Òh½�È$É.ÅGÌ�Å+É�½�¼HÄ"À�Í�Å�É'½�¼�Á(È-Ì4È�É�¼�¿�Â(Ê�ÏQ¿�Æ�Í�ÏQÌ�É�¿&Ë�¼�Â0¼�Æ�ÖE½�¾�È
Æ�È$Ä�È$Ç�Ç�Å�É�Ï>Î�È�Ï0Ç-Å&½eÇ�¿�Á	ÈEÒ�À0½�À�É�ÈG½�¼�Á	È�Ó

¨A©Hì íJãa®)·%î`à�®$äj¸JïU¯2µYðSñX²,äj°)µéò:à0®$¯
Ú1ÏUÅ�Â�Â0¼�Æ�ÖJÅV½�¼�Á(È	Ç3½�Å+Á	ÌR½�¿LÈ)Å�Ä!¾8¿�Òk½�¾�ÈQÎ�È$Ï0Çb¿�Æ�ÈIÄ$Å+Æ8Á>Å+Î�ÈIÇ�À�É�È
½�¾%Å&½E½�¾�È(¼/Æ2½�È�É�ë
Á(È)Â0¼HÅ&½�ÈSÆ�¿0Â0È$Ç�Å+À�½�¿�Á>Å+½�¼HÄ�Å+Í�Í�Ï(Â0È$Í/È�½�Èb½�¾�ÈEÎ�È$Ï2¼�Æ�Ö
Á>Å+½�È�É�¼HÅ+Í^Ó�ÔB¾�¼HÇ.Ñ�¿�À�Í�Â>Ì�É�¿&Ë�¼HÂ0È-½�¾�È
Ç�Å�Á(ÈLÒ�À�Æ�Ä"½�¼�¿�Æ�Å�Í/¼/½NÏcÅ�ÇQ½�¾�ÈOólÅ&½�¾]Ú�À�É�Æ�¼/Æ�Ö;èUÈ$Ç�Ç�Å+Ö�È)ÇTÑ-¼/½�¾�¿�À0½(É�È$ê2À�¼�É�¼/Æ�ÖR½�¾�ÈJÌ�É�¼/Æ0ë
Ä"¼�Ì�Å+ÍHÇ(Ñ-¼/Í�Í/¼�Æ�Ö;½�¿9Á>Å+¼�Æ2½�Å�¼/Æ]½�¾�È$¼/ÉVÅ�Æ�¿�Æ�Ï�Á	¼�½NÏ9½�¿9Å�ÄC½�¼/Ë�È�Í�Ï`Â0È�Í�È"½�È:Î�È�Ï0Ç$ÓkôSÆ�È:Ä�¿�À�ÍHÂ
Ä"¿�Æ%Ç3¼HÂ0È�É.½�¾�ÈSÈ�Æ�Ä�É�Ï�Ì0½�¼/¿�Æ4õ&Â�È$Ä"É�Ï�Ì0½�¼�¿�Æ	Î�È�ÏQÌ%Å+¼�É.É�¿+½�Å+½�¼�¿�Æ	½�¾�Å&½�Á(¼/Õ0È$Ç1Ç3¾�¿�À�ÍHÂ>Ì%È$É3Ò�¿�É�Á
Ì%È$É�¼�¿0Â0¼�Ä$Å+Í�Í/ÏO½�¿OÊ%È>Ì�É�¿&Ë�¼�Â�¼/Æ�Ö:Ç3¿�Á	È	Å�À0½�¿�Á>Å&½�¼HÄIÎ�È�ÏUÈ�Õ0Ì�¼/É�Ï8Å+Æ�Ï�ÑBÅZÏ�ÐmÅ+Æ�ÂDÉ�È)ê2À�¼/É�¼�Æ�Ö
½�¾�È
Ç3½�¿�É�È)ÂLÎ�È�Ï0Ç1½�¿>È"Õ0Ì�¼�É�ÈGÅ+½B½�¾�È
Ç�Å+Á	ÈE½�¼�Á	È�Ó

ÛeÍ/½�È�É�Æ�Å+½�¼�Ë�È�Í�Ï:½�¾�È(È"Õ0Ì�¼�É�ÏJ½�¼/Á	È>Ä"¿�À�ÍHÂUÊ%È	Ç�Ì%È)Ä"¼/Ã�È$ÂDÊ�ÏJ½�¾�È(À�Ç3È$ÉTÅ+Í�¿�Æ�ÖVÑ-¼/½�¾D½�¾�È
Î�È�Ï�ÓAÔB¾�¼HÇT¾�Å�ÇE½�¾�ÈVÂ0¼HÇ�Å�Â0Ë&Å+Æ2½�Å�Ö�ÈI½�¾�Å+½T¼�½QÄ�¿�À�ÍHÂ;Ê%È>À�Ç�È$ÂRÒ�¿�ÉG½�É�Å+öVÄ(Å�Æ�Å+Í�Ï0Ç3¼HÇG¼/ÒBÅ�Æ2Ï
Í/¿�Ö�¼HÄI¼HÇTÀ�Ç�È$Â;½�¿8Ä�Å�Í�Ä�À�Í�Å+½�È(½�¾�¼�ÇQÈ"Õ0Ì�¼�É�ÏRÂ�Å&½�È�ÐX½�¾%Å&½
½!Å+Î�È)ÇG¼/Æ2½�¿8Å�Ä�Ä�¿�À�Æ2½G½�¾�ÈLÄ"À�É�É�È�Æ2½
½�¼�Á(È�Ð�¿�É-¿�½�¾�È$É-¼/Æ�Ò�¿�É�Á	Å+½�¼�¿�Æ:Í/¿0Ä$Å+Ím½�¿(½�¾�ÈTÀ�Ç�È�É)Ó

÷ øDù1úbûXü3ýSþ�ÿNù.úSþ

»DÈ:¾�ÅZË�È:Ç3¾�¿&Ñ-Æ`¼/Æ]½�¾�¼HÇ(Ì�Å+Ì4È�ÉI½�¾%Å&½(½�¾�ÈJ½�É!Å�Â0¼/½�¼�¿�Æ%Å+Í1½�¾�É�È$Å+½(Á	¿0Â0È�Í�¿+ÒEÅ�ÄC½�¼/Ë�ÈJÅ�Æ�Â
Ì�Å�Ç�Ç3¼�Ë�ÈeÅ+½3½!Å�Ä!Î�È$É�ÇlÅ�Æ�Â>Ä"¿�É�É�À�Ì0½1Æ�¿0Â0È$Ç1Â0¿�È$ÇkÆ�¿+½kÒ�À�Í�Í�Ï	Ä$Å+Ì0½�À�É�È-½�¾�ÈSË&Å+É�¼/È�½NÏQ¿+ÒAÅ+½3½�Å�Ä!Î0Ç
½�¾�Å+½�½�¿0Â�ÅZÏ0Ç1Á	¼/Õ0È$Ç-Ä"¿�À�ÍHÂJÄ�¿�Á	ÈSÀ�Æ�Â0È�É)Ó��\Æ:Ì�Å+É�½�¼HÄ"À�ÍHÅ+ÉBÄ"¿�Á	Ì�À�ÍHÇ3¼�¿�ÆJ½�¿	É�È�Ë�È)Å+Í4Î�È$Ï�Ç�¿�É
Â0È$Ä�É�Ï�Ì0½-Á>Å&½�È�É�¼�Å�ÍAÄ"¿�À�Í�ÂJÊ%ÈTÀ%Ç3È)ÂL½�¿	½�É!Å�Ä�ÈEÄ�¿�Á	ÁQÀ�Æ�¼�Ä$Å&½�¼�¿�Æ%ÇBÖ�¿�¼�Æ�ÖI½�¾�É�¿�À�Ö�¾J½�¾�È$Á:Ó

Ú1Ï8Å�Â�Â0¼�Æ�ÖUÇ3¿�Á	È(Å�Â�Â0¼/½�¼�¿�Æ�Å�Í'Ç3½�Å+½�È	¼�ÆR½�¾�È>Æ�¿0Â0È$ÇGÑ�È(Á	Å�Æ�Å+Ö�ÈQ½�¿OÍ/¼�Á	¼�½T¼�Æ;Á>Å�Æ2Ï
Ä�Å�Ç�È$Ç1½�¾�ÈGËZÅ�Í/À�ÈS½�¾�Å&½bÅ�ÆJ¿�Ì�Ì4¿�Æ�È$Æ�½-Ä�Å�ÆJÈ�Õ�½�É!Å�ÄC½-À�Ç�¼�Æ�ÖI¾�È�ÉeÄ"¿�Á	Ì�À�ÍHÇ3¼�¿�ÆJÌ%¿&Ñ�È�É!Ç�Ð0Å�Æ�Â
Å+Í�Í/¿&Ñ ½�¾�ÈQÆ�È�½NÑ1¿�É�ÎL½�¿LÉ�È�Ö2Å+¼�ÆU¼�½!ÇSÇ�È$Ä�À�É�¼�½NÏ:¼/Æ8½�¾�È(Å+Ê�Ç�È�Æ�Ä�È
¿+Ò.Ä�¿�Æ2½�¼�Æ�À�¿�À%ÇeÅ+Æ�Â8À�Ê�¼Hê�ë
À�¼�½�¿�À�ÇbÇ3À�É�Ë�È$¼/Í�ÍHÅ+Æ�Ä�È�Ó

�������
	��
������������������������ "!$#�!&%&'�(*)+�,).-0/21"'�35476+ "89(�:.;<%&6+��:>=?:�@BA0C�10#�(�:�6+��1D/210#7354
E ��!&!&(F/2GH "(F6I@>% E -0/2:�#KJL!$/M4H).��15/�10#NC�10#�:.(�%"O<(�:QPR/21S).��;�TU�H:I:.(F/H#�%�10GV)+-0(L3�/21< 06 E :.%&8�)W/�10#
8":+��;<%$#�%&1"G>;�/2!& 0/2X"!&(YTU(F(F#�X0/ E '
AFZ
-"%$6[80/�8�(F:\-0/H6\/�!&6+�>X�(F(�1N%&3,8":.��;�(F#*X<4?)+-"(E ��3,3,(�1S).6
�2TW)+-"(N/�1"��1<4<3,�� 06�:.(�TU(�:.(�(]6�A

^`_\a._\b"_\c�d
_Ie

f]g�h,i�jki�lHmHn2o[pLq�r]gVsLtSovuMr.wkjki�xyxzl�u]r.wkoz{�iFqHxvrBh}|�~���oz�k�7u]r.wkoz{<��i��koy�Ft��W�Fwkn�ovt<��r���r�t<��r�t������
�k�Hr}t2mS�?q�r.w�����h}|�~�j�r.wkuMr+wkj�g�|�t����F�������R�+�,�$�����R R¡<¢�£]¤v£k¥F §¦V¨�©�ªV«
�9ª>¬"­V®°¯]±M±F²]³
´9µ ��¶�·H£]¤y¸[¯.¹<ºF»]g"¼2�HwkovtS½Fr.w�¾�¿Ir+wkx�i�½HÀ0f�ÁFÁ]Â�g

Ã2gVÄ�i�mSx9ÅLgSÆ>���R�Sr+w�p�xyiFt�Ç?gSÈHwkr�ovr.w�À<Ä\�Hovxyov�,ÆVi�wkxz�k�]t�g\ÉÊ�Hr�¼S¼�ËÌÄ�wk�F�k�����Fx
¿�r.wkj�ov�Ft�Í�g Î�g
ÏMÐMÐ]Ñ\ÒÔÓ]Ó�Ï�Õ�ÖS×
Ø�Ù2×]Ð�Ú]Û]Ü�Ñ2×�ØÔÛ]Õ�Ö<Ó]×�Ù�Ý2Ó�ÚMÚMÞFß�ÓFà�á2ÜFâ]Ð2ßMã�ä
ØQÐ�å]Ð g

Í�g�Ç�xvovuMr.w*æWr.w��k�H�]xy�0À[ç�iFtHtSr�j?ÈSr���r.w�wRi��k�0À[iFtS�è¼2�kr.�$iFtèÆBé�]�Hj�r�xvxUg�êDr.qëh}|�~�r.j�ì[píjÔl�jÔ�kr��
�&�Fw�i�tS�Ft2l��B�FmSj\iFtS�NmHtS�FqSj�r.wkuFiFqHxyr�|�t��kr.wktHr.�WiF����r.j�j�g9|Qt,î��+�k�y¥F�S�$��¥>­Y�R�$���M�. >¨Y�2ïH�F�<�.�$�2¥
®��k�Rï���£]¤v£k¥F���+�k³ ´
µ ��¶ð·S£F¤y¸
ñ2ºMº]±FÀH�<i�½]r�jVf]f�ò�ó<f�ÃFÁ2g�¼��HwkovtH½]r.w�¾�¿\r.wkxyiF½HÀ<ÃFÎFÎ]Î2g

ô g�Ç�xvovuMr.wõæWr+w��k�S�]xy�"À,p�t<��wkr�iFjöÄ[{H�k÷��NiFtHt�ÀKiFtS�ùø��]tHt2lú¼��RiFt<�2�knMr]g ÉÊ�Hrû�Hovjki]��u]i�tH¾
�Ri�½]r�jð���§�&wkr�rûh}|Q~üwk�]m��kr�jöiFtS�ú�S���ý�k�þ��uMr.wk�.�]�Br`�k�Hr��,gÿ|�t î?�+�k�y¥F�H�$�2¥�­Ê�+� ¦
���]�. �¨Ê��ï��F���.�$��¥°®"���Rï2�<£]¤v£k¥F���+�k³ ´
µ ��¶ ·H£]¤y¸Bñ2ºMº]±FÀV�SiF½]r.j§Í]Î�ó ô ò�gB¼2�HwkovtS½Fr.w�¾�¿Ir+wkx�i�½HÀ
Ã�Î]ÎFÎ�g Ï�Ð]Ð]Ñ\ÒÔÓMÓ ����� ØQÐ����IØ�×M×
Ø�×]Ð]Ï���Ø�Û�Ï�Ó
	 � ×��]ÞM×]á�ÓMÞM×FÏ�á�×MÓFÙ2×]Ð�Ú]×2ÛFÓ��2Ù�Ð�×]á�Þ�ÜFÝ�×FÙHÓMÜ�Ù�Õ�ÙHÓ
à��MÚ]ÜFà�
�Ü�Ù�Ð2ÜFÝM×2Ú����2×FáMÐ]Ï�ÕMÞ�à[Ø�Ñ�àMâ g

ò2g��[xvr��.��wk�FtSov��Ä[wkovuFiF�.l5|�t��$��wk�Ni��kov�]t�ÅWr.t2�kr+w�g��>i��Ri?wkr+�kr�t��koy�Ft�g\|�t��kr.wktHr.�ÊêÌr�q}ø�r�j��]m�wk��r]g
ÏMÐMÐ]Ñ\ÒÔÓ]Ó ����� ØQ×FÑ��MÛ9Ø�ÕFáMÝ2Ó�ÑMá
��
2Ü�Û��2Ó���Ù�Ð�Þ]ÓFà2Ü]Ð2Ü���á2×]Ð�×FÙ�Ð��FÕ�Ù\ØQÏ�Ð�ÖSÞ g

��g��
i�u2oy��ÅW�SiFmS�,gÊs�t���wRiF��r�iFqSxvrVr�xvr��.��wk�FtSov���NiFovx ÀSwkr.�km�wkt�i]�H��wkr�j�j�r�j�À0i�t<�,��ov½]oz�RiFx
�Hj�r�m<���F¾
t�l��Bj�g��\£������2�H�U�k�F¢ �U£F�H�V£��>¢&ïS�
��� ��À ô"! Ã$#+À<ÈHr�qHwkmSi�w�l�f�ÁFÂMÃ2g
ÏMÐMÐ]Ñ\ÒÔÓ]Ó ����� ØQ×2Ú��"�.ÖSÕ
Ø�Û]Õ�ÖSÓ
	 � ×���à2Ü��]Ó�Ö%��å�&�Ù2×]Ð�ØQÐ�åMÐ g

'2gVÉ�r��B���FwRi�w�lB���]�B�Boz���kr�r��]tN�k�Sr(�IÅWç)�\Ë
Ç+*öoyt��kr.wk�.r��H�kov�]t5jÔl�jÔ�kr��,g�øLr�����w��Y�]tN�k�SrLr��R�H¾
r.xy�Ft,ovt��kr.wk��r����koy�Ft,jÔl�jÔ�kr��,g��[mHwk�F��r�iFt�Ä�i�wkxvo�i��Br�t���øLr�����w���p
ò�¾�Î]Ã$� ô�, Ã�Î]Î2f�Ä"pLøVf]g
ÏMÐMÐ]Ñ\ÒÔÓ]Ó ����� ØQ×$-�á2Õ�Ñ2ÜFá2Þ
Ø�×�-\Ø.��Ù�Ð�Ó�Û]Õ�ÖMÖ%��ÐMÐ�×�×2Ú]ÓF×�Û�Ï2×�ÞMÕFÙ���Ï�Õ�ÖS×�ØUÏ2Ð�Ö g

Â�g)/�uM�0�
r.j��Br����*iFtS�DÆViF�Fwkm§Æ>m�wk�]jki��Yi2gÌçL���°�k��qHwkr�iFnDi���wRiF�.�kov��i�x�h}|�~ i�t<�§�Hr.j�oy½Ft
i,tHr.�í�FtSr]g�|Qt ���F���F�<�R�+�5�&�õ���R +¡S¢�£]¤v£k¥F Ì¦L¨�©"ª>«
�9ª>¬0­>®`ñ�º]ºMº�³ ´9µ ��¶û·H£]¤y¸�¯F²2ºF»]g
¼2�HwkovtS½Fr.w�¾�¿Ir+wkx�i�½HÀ<ÃFÎFÎ]Î�g Ï�ÐMÐFÑ\ÒÔÓMÓ�Û���Ð�×2ÚF×]×]á[Ø�Ù
19Ø�Ù2×2Û9ØÔÛ]Õ�Ö<Ó$2�2�3�3�ã�4�ØUÏ2Ð�Ö<Þ g

Á�g>ø��]½Fr.w��
ovtS½Fxvr��HovtSrFÀ�h}ov�R�<iFr.x65Hg9ÈHwkr�r��H�NiFt0À%�>i�u2o���ç��F���Ê���2�0À9iFtS�7�>i�u2oy�Ìh}�Fxvt<i�w�gBp
ø�r��HmH�Ri��kov�Ft*¼�l�jÔ�kr����k�L|QtS�.wkr�i�j�rYh}|Q~L¾�tSr.��ø�r�xvo�i�qSovxvoz��l�g2Ä�wk����r�r���ovtS½]j����H�k�HrI|QtH�&�Fwk�Ni��kov�Ft
çLoy�HovtS½�êD�Fwkn2j��H�]��Ã�Î]Î2f]g Ï�ÐMÐ]Ñ\Ò�ÓMÓ ����� ØQâMá�×M×�Ï�Ü$
�×FÙ[Ø�Ù2×]Ð2Ó�Ñ�Ü�Ñ�×]á�Ú�ØQÏ�Ð�Ö<Þ g

f�Î�g>ø��]½Fr.w8��oytH½]xvr���oytHr}i�t<�§Ä�i�mSx�¼2l�uMr+wkj��]t�g�ø�r�xvoyiFqHxyr,h}|�~�ÅÊi�j���i]��r9*�r+���Ê��wkn2j?�k�Hwk�FmS½F�
ø�r��HmH�Ri��kov�Ft�g\Ä�wk����r�r���oytH½]j��F�[È
ovtSiFtS�.o�i�x�ÅIw�l��H�k�F½FwRi��S��l}ÃFÎ]Î]Ã2g
ÏMÐMÐ]Ñ\ÒÔÓ]Ó ����� Ø�âMá�×M×FÏ2Ü$
�×FÙ\ØUÙ2×]Ð2Ó�Ñ2Ü�Ñ2×]á�Ú
ØUÏ�Ð�Ö�Þ g

fFf]gVÈH�]mStS�Si��koy�Ft��$�FwV|QtH�&�Fwk�Ni��kov�FtÌÄ
�Fxyov�.l�ø�r�j�r�i�wk�+�0g?ø�r�½FmSxyi��kov�]t7�F�W|�t2uMr�jÔ�kov½Mi��k�Fw�l�Ä[���Êr.wkj
|QtH�&�Fwk�Ni��kov�Ft�ÅWr�t���wkr]g
ÏMÐMÐ]Ñ\ÒÔÓ]Ó ����� Ø�â
��Ñ�á[Ø�ÕFáMÝ2ÓFá���Ñ�Ó g

f�Ã2g�h}ov�R�<i�r�x85Hg�ÈHwkr�r��H�NiFt0À(�\�Bovx*¼�oz��À)5F�]j���ÅÊi��kr�j�À>i�t<�`ø��]q�r.w��7h}��w�wkovj�g |Qt2��wk�2��mS��ovtH½
ÉYi�wk÷�iFt0ÀÊi7Ä\r.r.w�¾U�k�F¾QÄ\r.r.wKpLtS�Ft�lH�Bov÷�ovtH½7*Lr.���W�FwknèË9i�l�r+w�g�|�t�­Y�Ô£��R�R���F�&�2¥F��£��}¢&ïH�7¯��k¢
: �H¢Q�+�+�<�F¢ �U£F�<�]¤0;}£F�=<��ÔïH£R¡�£F�ð­��k�+�.¦U¢�£]¦&­L�k�+�D¶H F�k¢Q�>�?�@? : ­>®0­Y¶�º�ñ�A�ÀLÅÊiF�?qHwkoy�H½Fr]ÀLh,p�À
h,i�wk�+��ÃFÎ]Î]Ã2g

f�Í�g��[xvr��.��wk�FtSov��È9wk�]t��kovr.wkj(B�r��Fwk½Fo�i ! �\ÈCB
p+#+g\pLtS�Ft�lH�B�FmSj\wkr��NiFovxvr.w�ovtH�$��wk�Ni��kov�]t0g
ÏMÐMÐ]Ñ\ÒÔÓ]ÓMÜ�Ù�Õ�Ù[Ø�×]âMÝ2Ü9ØÔÕFáMÝ2Ó�D2×�Ö<Ü��FÞ]×]á�Ú]Ó g

f ô g�*Lov�+n?h,i��k�Hr.��j��]tEB�r.�Fwk½]rF�>i�tSr�÷.oyj�À]øL�F½]r.wG�
ovtS½Fxvr��HovtSr�i�t<���
i�u2oy�?çL�]���Ê���2�"g"h}oIH��BovtH¾
ov�Ft�ì��
r�j�ov½]t,���\i�ÉWl���r
|�|�|Êp�tS�Ft2l��B�FmSjÊø�r��NiFovxvr.w�Ä�wk�F�k�����Fx g�h,iFt2mHj��.wkov�H��g
ÏMÐMÐ]Ñ\ÒÔÓ]Ó�ÚF×$-�Þ9ØÔÕFáMÝ2Ó�	�ÜFá�Ö<Ü]Ó�ÖJ��Ù��FÕ�Ù
&�à2×�Ú���ÝMÙ\Ø�Ñ�Ú g

K�L�MON(MJP+Q"RTSUQWV�XZYWP[M%\^].Q"Y�_T`JMba9_Ic�_TX�dfehgjikV$_TRmlF_In=oWp^V�qJrURsMFtuX7v�w>xsyGz${=|9}�~J���)���=xs{>�s���
x�w.�
� w.���
{���xs� � ���+�
z������
���Gvb� ����� ��� M�t�e�eGe���K����$�
M
���������� � �¡�¢���£�¤$£�£�¥�¦¨§
©C¦j§�£�¡ ¦.¡�ªU«" �¬�¬�­$®�¦¨����«J¯ M

KU�
M�°$±�oZV�X0²+r�R³]._TX�d�_TQ"]UMG´(X�±�X�M µJr�X"r�n�M ¶0_T]FSURT±�].rUY�·
���������� � �¸�¸�¸�¦¨��£$§�£��h¦�¹
¢� M

K�º�MOa0V�»=`�Q"]G°�V$`�±$q"].].±$XmM�¼CR³V$].oEa9_Ic
_TX"d�M%t�Xk½^{>��~Z��� �J¾³w>�bz�¿^�����=xs{��¨����x�w.�fÀ�z$�+�"�
xs��~�Á��m½�Â���À
� ��� M"´(N�a7��K��$����M ���������� � �¡�¢���£�¤�£�£�¥�¦j§�©C¦j§�£�¡m¦.¡�ªU«Z �©�Ã�Ä"ª�Å�¤�¤�ª$§�Æ�Æ�¹
¯�Ã�¤��G¦j����«Z¯ M

KUÇ
MOa7M�a9_In=±$i�±�V�XZY�È8M�È�Q�»=±$]=V�l^V
MC´�n.n�V�S>`[É�±$»�¼CRÊV�].oËa9t�Ì[M�tuX9Íb��Î�}$~J��w>�)��~7Àh{>���Zxjz�¾Tz=Á$�8�
Í �
Ï ÍOÀ Ð�Ñ%½�ÒÔÓ
Õ�Õ�Õ�ÖC×Cv�À �ÙØ z$¾³Ú�Û ��Ü�� MJÝ
µ�»=_TX�d�r�».gjÞ�r�»=R³V$d��Zß$à$à�à�M
���������� � �¡�¢���£�¤$£�£�¥�¦¨§
©C¦j§�£�¡ ¦.¡�ªU«" $®�­�á"â�®�ãh¦j����«Z¯ M

KU�
MON6o
»=_T]�n=_ÊV�XWa9±�S�`%M6a9_Ic
ikV$]�n=r�»b]�n�V�n=]Oä¨´bQ"]�n.»=_³V�å>M
���������� � �¸�¸�¸�¦j��Ã���¢�§�ÃC¦j��¥
¢�æ�¦�Ã$�� �ç$¡�«Z �¤$��Ã$�
¤� U«Z¯�¢�¤���¬C¦j����«Z¯ M

ß�à
M�è(RIÉÙaêé±$R³RTr�»ëV�XZYíì V�X"SUrîN6±$n.n.»=rURTRsM a9_Tc
ikV�]�n=r�»ðïh»=±$n=±�SU±$Ròñ Þ�r�»=]._T±�Xóß�M è(X�g
¶"X"_T].o"rUYôY
»�V�ÉÊn��f°�V$X�QZV�».õöß$à$à�à�M ���������u � �¸�¸�¸�¦u£�¤�Ä"¢>«ZªC¦.¡�ª�«Z
ç�¥�ª�¸�÷�£$§�¸� �¡�¥�ø����� �ù�¢�ú

÷�¥�Ã$¹���û$«Zª�£�¯�¯�£�¥�û$«J¢�ú�«ZÃ�¤���£�¥�¬�û���¥�ª��
ª�¡�ª�¯�û
á�áh¦u��ú�� M

ß�K�M�´bXZY�»=rU_JÝ�r�»sü.V�X�n=±�ýJ��þb±�d�r>»�ÿ)_TX"d$R³rUY�_TX"r��
V�XZYkïhV$Q�R�Ý�õ
ý�r�»=].±$XmMm¼�»=±$i V�n.»=_TS>`�RTr(n=±OV � ±�±�Y��
´bS�n=_Tý�r�V�n.n�V$S�`
]F±$X9].rUý�r>»�V$R i�_Ic�n�õ�µJr�]UM�tuX�É�±$»=ikV�n=_³±$X0²+_³Y
_³X�d��ê±$»=`�].o"±$µËß$à$à�ß�M

ß$ß�M�pG±�qWÝ�Q"RTRT_³ý$V$X�M�¼hp6t^].±�É�nul^V�»=r�S�»�V�S>`�]FrUX"S>».õ�µ
n=_T±�Xfl^V$RTRsM�aËÝ��)p�N(M
���������� � �¸�¸�¸�¦�«J¤�§�Å�¡m¦.¡�ªU«Z �§�£$¸�¤� 	�
��á�á�Æ��C¦�Ã�¤��
��¡��%â��"â M

ß��
MOa7M�pGRÊV��Ur9þ�MGN^V$X�r�n.n=_F°�M�t�±�V$X�X"_³Y�_T]�´�M ÿ�MhÈ�r�»=±$i[õ�n=_T]�� M�´b_TrURTR³±
�6Ý%M a7M�p6rURTRT±�ý
_TX@V$X"Y
� MZþ(rU_TX�d�±�R³Y%M�°�Q�]�n�¼hV$]�n+È�r�õ
_³X�dWä¨°�¼CÈOå>M��(r�nul6±$»=`��Ù±�»=`�_³X�d0P(»=±$Q"µ��JtuX�n=r�»=X�r�n+ÿ(»�V�É�n��
Y�»�V�ÉÊn.g�_Tr�n.ÉÊgj_³µ�].rUS�gTüuÉ�`�guà���M n.c�n�M

Continuous Opinion Polls on the Internet

Filip van Laenen
f.a.vanlaenen@ieee.org

Politiek.Net

Abstract. This paper presents a scheme to run continuous opinion polls on the inter-

net. A continuous opinion poll is an opinion poll that allows voters to confirm or change

their vote regularly within the same long term opinion poll. This makes it possible to

track changes in the opinion of the voters. The proposed algorithm makes sure that

on the one hand, one cannot find out who voted what, while at the other hand voters

still can retrieve their last vote from the database and confirm it or change it after a

freezing period.

Keywords Electronic Voting Schemes, Continuous Elections

1 Introduction

Many websites on the internet run opinion polls, ranging from traditional opinion
polls about the voting intentions for the next parliamentary elections over polls
about who is the most popular politician, media figure or sports player of the
moment to polls about the next player that should leave some reality television
show. Usually these opinion polls are discrete, that is, they open at a given point
in time, and they last until they are closed. Participants are also supposed to
vote only one time, so these polls don’t accomodate for participants changing
their minds. Some websites try to correct this by running the same poll over and
over again.

The security mechanisms used by these opinion polls range from non-existing
to fairly good. Some opinion polls do not even include the simplest mechanism
to avoid that a voter votes two times. The average poll either places a cookie
on the voter’s computer to remember that a user on that computer already has
participated in the poll, or they register the IP number from which somebody
voted. The more professional websites require that a voter registers and logs on,
and remember in their database who has already voted.

This paper presents a scheme that allows to run continuous opinion polls on
the internet that has a few advantages over the opinion polls currently running on
the internet. One advantage is that it can remember the votes of its participants,
but because of security reasons, or rather as a precaution, it may be better to
let the system forget the links between the votes and the voters when those links
aren’t needed any more. If a participant changes his mind, he can change his
vote accordingly. However, in order to avoid too much turbulence in the results,
a freezing period is used so that participants cannot change their votes too often.

Another feature of the scheme is that it allows votes to age, and become invalid
after a certain period of time. Votes don’t have to become invalid immediately
after the freezing period, but they can loose their weight in the results gradually
instead. This feature works as a smooting mechanism.

An important aspect of opinion polls is the privacy of the voters. Obviously,
if certain privacy requirements aren’t met, only very few people will want to
register at a website and submit their opinion about political or other issues.
This is why the votes should be protected such that other people than the voter
himself cannot verify for whom or for which choice a voter voted. On the other
hand, the scheme should also be robust enough such that voters who pretend to
have forgotten their passwords cannot take advantage of the system and have a
much larger impact on the results than other voters. But then again, people will
forget or loose their passwords, and the scheme should allow for this to happen
and be corrected in some way.

The next section will discuss the basic requirements and assumptions that
lay at the basis of the voting scheme. The following section will take a look at
how the data will be stored in the database. Section 4 will explain how voters can
submit their votes, change their passwords, what happens when a participant
forgets his password and how the votes will be counted. After that, the security
of the scheme will be discussed by going through all the requirements that we put
forward in section 2. Finally, a few words will be said about the implementation,
including some extra security measures that are outside of the scope of this paper
but nevertheless worth mentioning.

2 Requirements and Assumptions

Bruce Schneier [3] lists the following six requirements as the basic requirements
for secure elections:
1. Only authorized voters should be allowed to vote.
2. No one can vote more than once.
3. No one can determine for whom anyone else voted.
4. No one can duplicate anyone else’s vote.
5. No one can change anyone else’s vote without being discovered.
6. Each voter can make sure that his vote has been taken into account in the

final tabulation.
For our purposes, we will relax the second requirement to the following re-

quirement:
2. There is an upper limit for how many valid votes a malicious voter can

submit.
Since this is a continuous opinion, people should be allowed to change their

mind over time, like Neville Holmes [1] described in his column. The concept
of a freezing period during which a vote cannot be changed is copied, and it
will later turn out that this helps to meet the second requirement in its relaxed
form. The dual aspect of this is that votes should not be allowed to remain valid
forever. This results in the following two additional requirements:

7. One has to be able to change his vote after a certain period.
8. Votes should become invalid after a certain period.

We can also make a few assumptions about the server that we will use to
simplify the design of the algorithm. The assumptions are the following:
1. The server can be completely trusted.
2. The server is write-protected.
3. The server is sufficiently read-protected.

These assumptions are not so unrealistic for an opinion poll on the internet.
The first assumption boils down to trusting the implementers of the opinion
poll system and the people running the server. If they cannot be trusted, all
the rest becomes worthless. The second assumption is a very basic one too: if
the server isn’t write-protected, there is general problem with the server. In the
third assumption, the term “sufficiently read-protected” should be explained
some more. In general, it should not be possible to read the raw data from
the database. However, even if the complete database would be published, it
should not be possible to break requirement 3. If it would be necessary to do
so, fulfilling requirement 6 by publishing the complete database and the relevant
implementation details should be an option. However, this should not be the
default situation, but an exceptional one. Furthermore, we want to protect our
participants against the eventuality that some entity (governmental or other)
would obtain the database and therefore be able to read who voted for what.
One could imagine that such an entity could obtain the database in a legal way,
like for example through a court warrant, or in an illegal way by hacking the
website and its database. But continuously monitoring the database should not
be possible.

3 Overview over the Data in the Database

Before we describe the functionality to vote, to change passwords and to deal
with lost passwords, this section will describe the data that has to be stored
in the database. Notice that only the basic information that is necessary to
organize a poll will be discussed here; a real implementation will probably store
more information to make the system more user friendly and/or to implement
additional security measures.

Table 1 shows the database table that stores the personal information of the
participants. It may be necessary to store more information about the partici-
pants, like for example gender, for statistical reasons. Such information can be
added to this table.

Notice that we use a hash function to store the password. We do not specify
in this paper which hash function should be used to do this, nor which hash
function should be used in the rest of the algorithm, but we leave it as an
implementation issue.

The next table, shown in table 2, stores the information about the polls. Each
poll has its own freezing and validity period, so that different polls in the same
database can have different freezing and validity periods. The length of the time

Field name Type Comment

Id ID Unique identifier
Username String Unique user name
PasswordHash String Hash of the password and a salt
FirstName String Real first name
Surname String Real surname
Email String E-mail address

Table 1. Data stored for each voter.

frames too can be set per poll, such that more popular polls could have time
frames that are shorter than less popular polls. Why we need time frames will
be explained when we discuss the time stamps in the table with the votes.

Field name Type Comment

Id ID Unique identifier
Name String Name of the poll
Question String Question of the poll
Background String Background information about the poll
TimeFrameDays Integer The number of days per time frame
FreezingPeriodDays Integer The number of days for the freezing period
ValidityPeriodDays Integer The number of days for the validity period

Table 2. Data stored for each poll.

The possible choices that the voters can select for each poll are stored in
another table, table 3, so that there is no limit on how many choices each poll
can have. The order in which the choices will be presented to the user when he
wants to vote should of course be randomized.

Field name Type Comment

Id ID Unique identifier
PollRef IDReference Reference to the poll
ChoiceText String Text for this choice

Table 3. Data stored for a choice for a poll.

When a user wants to vote for a poll, the system will create a voting letter
connecting the voter and his vote with a poll. The voting letter stores only
information about the fact that a voter has voted, and indicates when the last
vote for this voting letter was submitted, how long the vote will be valid (if it
isn’t confirmed, replaced by another vote or withdrawn in the mean time), and
when the freezing period will be over. A voter will not be allowed to vote for
the same poll again as long as the freezing period registered on his voting letter

isn’t over. The timestamps for the end of the freezing and the validity period
are stored explicitly on the voting letter, and not deduced from the freezing and
validity period of the poll and the timestamp of when the votes was cast, in
order to avoid problems when the freezing and/or the validity period of the poll
itself is changed. Table 4 describes the database table with the voting letters.

Field name Type Comment

Id ID Unique identifier
VoterRef IDReference Reference to the voter
PollRef IDReference Reference to the poll
ValidFrom Timestamp Timestamp indicating when the last vote was cast for

this voting letter
FrozenUntil Timestamp Timestamp indicating the end of the freezing period for

this voting letter
ValidUntil Timestamp Timestamp indicating the end of the validity period of

the last vote cast for this voting letter
Table 4. Data stored for each voting letter.

Table 5 finally describes the data stored for each vote that is cast. Again, the
timestamps for the end of the freezing and validity period are stored explicitly
in this table. The choice is stored in plain text, which means that the votes can
be counted with a simple database query. The connection with the voting letter
and the voter is stored in the voting letter hash, which is the result of sending
the user’s password, the user’s identifier, the poll’s identifier and the timestamp
of the voting letter through a hash function. Unless somebody has guessed a
user’s password, it should not be feasible to find out who cast this vote. Notice
that this also puts restrictions on the resolution with which the timestamps will
be created: it should not be possible to link a voting letter to a vote using the
timestamps. The timestamps should therefore not be stored using millisecond
precision, but with a precision of TimeFrameDays days, as defined for each poll.
The length of one time frame depends on how many votes there will be cast
per day: it should be so long that on average, “many” votes will be cast in
every time frame, and in general always enough such that it becomes impossible
to link votes to voting letters using the timestamps. One could also imagine a
more adaptive algorithm that closes a time frame only when a sufficiently large
amount of votes has been cast.

4 Functionality

This section describes the functionality of the system. In general, voters should
be able to do the following things:
– Log on to the system with their user name and secret password
– Check the votes that they have submitted earlier
– Confirm, change or remove votes if the freezing period is over

Field name Type Comment

Id ID Unique identifier
Poll IDReference Reference to the poll for which this a vote
Choice IDReference Reference to the choice that was made
ValidFrom Timestamp Timestamp indicating when this vote was cast
FrozenUntil Timestamp Timestamp indicating the end of the freezing period

for this vote
ValidUntil Timestamp Timestamp indication the end of the validity period

for this vote
VotingLetterHash String Hash of the user’s password, the user’s identifier, the

poll’s identifier and the timestamp as it is stored in
the voting letter indicating when the vote was cast

Table 5. Data stored for each vote cast.

– View the last results or the evolution of the results over time
– Join new polls.

When a vote leaves the freezing period, the system can send a reminder to the
voter so that he can confirm, change or remove his vote.

The following sections describe some basic scenarios in detail. First we de-
scribe how a new vote can be submitted. Then we show how a user can change
his password. The next section discusses what should be done in case a user says
he has lost his password. We conclude with a short discussion about how the
votes can be counted and a proposal for a weighting function for the votes.

4.1 Voting

Table 61 presents the algorithm to submit a vote. Now is a timestamp repre-
senting the date and time at the beginning of the current time frame. The Votes
should not be overwritten so that historic data can be retrieved. As a precaution,
the VotingLetterHashes in the Votes are nilled out when a vote becomes invalid,
so that there aren’t more hashes in the database than strictly necessary. The
drawback of this is that a voter cannot retrieve his complete history from the
database, but if that would be necessary, then the voting letters should be not
be overwritten either.

4.2 Changing a Password

Changing a password has as a consequence that all the signatures on the votes
for a user become incorrect. Therefore, when a user changes his password, all
signatures on the votes should be updated. Table 7 shows how this can be done.
1 In the description of the algorithms in this and the following tables, the symbol “|”

denotes the concatenation of strings, and “h()” represents the hash function. The
concatenation of strings is supposed to be unambiguous, which can be done e.g. by
putting a special character between the arguments.

1. Input: Username, Password, PollId, ChoiceId
2. Using the Username, fetch the correct User row
3. Check for the User that h (Username | Password) = PasswordHash
4. Given the Id of the User and the Poll, fetch the correct VotingLetter row
5. Calculate from the VotingLetter row the VotingLetterHash s:

s← h(UserPassword|User.Id|Poll.Id|VotingLetter.ValidFrom)

6. Given the signature s, fetch the correct Vote row
7. If Vote.ValidUntil > Now, then set the field Vote.ValidUntil to Now
8. Set the field Vote.VotingLetterHash to Nil
9. Create a new Vote with a new Id and the given PollId and ChoiceId

10. Set the field Vote.ValidFrom to Now
11. Set the field Vote.FrozenUntil to Now + Poll.FreezingPeriodDays days
12. Set the field Vote.ValidUntil to Now + Poll.ValidityPeriodDays days
13. Set the field VotingLetter.ValidFrom to Now
14. Set the field VotingLetter.FrozenUntil to Now + Poll.FreezingPeriodDays days
15. Set the field VotingLetter.ValidUntil to Now + Poll.ValidityPeriodDays days

Table 6. Algorithm to submit a vote.

1. Input: Username, OldPassword, NewPassword
2. Using the Username, fetch the correct User row
3. Check for the User that h (Username | OldPassword) = PasswordHash
4. Given the Id of the User, fetch all VotingLetter rows for this user
5. For each VotingLetter row do:

(a) Calculate from the VotingLetter row the VotingLetterHash s1 as follows:

s1 ← h(OldUserPassword|User.Id|Poll.Id|VotingLetter.ValidFrom)

(b) Calculate from the VotingLetter row the new VotingLetterHash s2 as fol-
lows:

s2 ← h(NewUserPassword|User.Id|Poll.Id|VotingLetter.ValidFrom)

(c) Given the signature s1, fetch the correct Vote row
(d) Update Vote.Signature to s2

6. Update User.PasswordHash to h (Username | NewPassword)

Table 7. Algorithm to update a password.

4.3 Lost Passwords

Since the passwords aren’t stored in the database in plain text, the user cannot
retrieve his password when he forgets it. However, we want to avoid that a
user can pretend to have forgotten his password so that he can cast multiple
votes for the same poll. The freezing period for each vote protects to a certain
extent against this. In section 5 an upper limit for the number of valid votes
and an upper limit of the weight of these votes will be calculated. Table 8 shows
the algorithm for setting a new password when the user has forgotten his old
password.

1. Input: Username, NewPassword
2. Using the Username, fetch the correct User row
3. Contact the user using his e-mail address, and send him a password change

key
4. When the user contacts the system again with the correct password change

key, update User.PasswordHash to h (Username | NewPassword)

Table 8. Algorithm dealing with lost passwords.

The user should be contacted before the new password is set to make sure
that the user really requested his password to be changed without giving an old
password.

4.4 Counting the Votes

The algorithm to count the votes is rather simple, since the votes are stored in
plain text. However, since all historic votes are kept in the database, the validity
period of the votes has to be considered, but it also allows to track the evolution
of the opinion of a certain poll.

One can add a weighting function to the votes depending on how long ago
they were cast. During the freezing period, the weight of a vote could be kept
at 1, but after that the weight of a vote could gradually decay to become 0 at
the end of the validity period. The following weighting function lets the weight
decay linearily from 1 to 0 from the end of the freezing period (tf) to the end of
the validity period (tv):

w(t) =


1, 0 ≤ t ≤ tf
tv−t
tv−tf , tf ≤ t ≤ tv
0, tv ≤ t

(1)

As will be shown in the next section, a weighting function may reduce the
influence of malicious voters in the system.

5 Security

This section will go through all the requirements from section 2 and verify to
which extent they are met.

Only authorized voters should be allowed to vote This requirement is rather
trivial in our scheme, since anybody can register in order to participate in the
poll. If this would not be the case, an authorization scheme should be added. A
few hints about this can be found in section 6 that discusses some implementation
issues.

There is an upper limit for how many valid votes a malicious voter can submit
As long as a user remembers his password, a user can vote only one time. There
is however a problem when a user forgets his passwords, or pretends that he has
forgotten his password. If the validity period is longer than the freezing period,
a user can cast a second or even more more votes between the end of the freezing
period and the end of the validity period. The maximum number of votes he can
cast at any time is given by the number n̂ calculated as follows:

n̂ =
⌈
tv
tf

⌉
The weight of these votes can be reduced if a weighting function like the one
defined in equation (1) is used. One can easily verify that in that case, the
maximal total weight of the votes of one user is limited to ŵ:

ŵ = 1 +
n̂

2
.

If the validity period is identical to the freezing period, only one valid vote can be
cast at the same time, even if the user forgets or pretends to forget his password.

No one can determine for whom anyone else voted If the database is read-
protected, this requirement is trivial for static situations. However, if the server
is compromised, this requirement should still be met. Determining for whom
anyone else voted is equivalent to doing one of the following things:
1. Guess from the timestamps on the votes and the voting letters which vote

corresponds to which voting letter (which in its turn has a reference to the
voter)

2. Guess the password of a user and retrieve his voting letter and then his vote
3. Guess the password and the user’s identifier from a voting letter

The first problem can be avoided by having a large resolution for the timestamps,
as was already discussed earlier. The second problem is equivalent to breaking
the hash function used in the Voter table, and the third problem is equivalent
to breaking the hash function used in the Vote table. It is therefore important
that the hash function is a secure one.

Notice that if the server can be trusted not to log who votes for whom in
another database table or a file, then not even the operators of the server would

be able to determine who voted for whom, unless they start to compare the
historical states of the database with a higher time resolution than the time
frames for a poll. This can in one term be described as a differential attack in
the time, and this is also why we assumed that the server is “sufficiently” read-
protected: it means that even though the database need not be read-protected
the whole time, protection should be good enough to thwart these differential
attacks by external people.

A differential attack in the time does not always require complete knowledge
of the database to find out what a particular person has voted. Indeed, suppose
Eve knows that Alice hasn’t joined the opinion poll yet, and she wants to find
out what Alice would vote for. She can start by checking the current results,
and write them down. Next she sends a message to Alice inviting her to join the
opinion poll. Eve could then start tracking the results of the opinion poll, and
assume that the first change that occurs is the vote that Alice just submitted.
Even though Eve cannot be completely sure that it really was Alice who sub-
mitted the new vote and that it was not one of the other voters changing his
vote, or a visitor that happened to join the opinion poll right then, it would still
be a very good guess if the opinion poll has not too many registered voters. To
circumvent this problem, two things can be done:

– Present the current results with a lower than the highest precision, such
that the changes of only a few votes within the current time frame cannot
be observed.

– Never present the results of the current time frame, but only those from time
frames that are already closed.

No one can duplicate anyone else’s vote This should be enforced by the security
on the server (write-protection). Notice that during a compromise of the server,
votes could be duplicated with false VotingLetterHashes, and that the server
will not be able to verify this unless all voters cooperate and remember their
passwords.

No one can change anyone else’s vote without being discovered This should be
enforced by the software and by the security on the server (write-protection).

Each voter can make sure that his vote has been taken into account in the final
tabulation In general, there will be no need for this requirement in a simple
opinion poll on the internet, but this requirement can, if necessary, be met by
publishing a snapshot of the database. Each voter can then verify that his vote
has been included.

One has to be able to change his vote after a certain period A voter can change
his vote when the freezing period on his voting letter is over. This has to be
enforced by the software.

Votes should become invalid after a certain period The database table with the
votes carries a field with the timestamp indicating the end of the validity period
of the vote. However, if a voter makes a new submission, which may either be a
withdrawal of his vote, a confirmation of the current vote or a change of the vote,
the timestamp should be updated to the beginning of the curren time frame, so
that the vote becomes immediately invalid. By doing so, each voter can have at
the most only one valid vote in the database at any historic point in time.

6 Implementation

The voting scheme outlined in this paper is implemented on the political website
[2], but it isn’t operational yet. The website already had a user base, and each
of the users will be offered to join the opinion polls. In addition to the security
measures mentioned above, additional security measures had to be taken.

Functionality to avoid problems with cross-site scripting Cross-site scripting
could be used to trick users that have registered on the website and that have
checked the box to remember their password on their computer in a cookie to
submit a particular vote without them knowing about it. It would probably be
even better not to use long-term cookies at all, but this would degrade the user
friendliness of the website too much.

Screening of the users that register Since all you need to join the opinion poll is an
e-mail address, one could easily use multiple e-mail addresses to vote more than
once. One of the countermeasures against this is for example to register for each
voter which IP numbers he has used to submit a vote. Other countermeasures
could involve proving your identity with a legal document, a valid social security
number or a credit card number, or sending out physical tokens. How much
energy is spent to screen the users depends on how important it is that no
person can register twice or more.

Registration of how many times a user forgets his password If a user forgets his
password too often, this could be a sign that he tries to submit more votes than
he otherwise would be allowed to do.

Limiting access to the voting results Section 5 already discussed why the current
results should not be presented at all or with a lower than highest precision
because of security reasons. An additional limitation could be the following:
Before a voter can see the results of a given poll, he has to submit a vote for
that poll first. As a result, his vote will be frozen. If a voter is not forced to
submit a vote first, he could take a look at the results before he submits his
vote, and could therefore be influenced by these results when he later decides
to submit a (new) vote. Of course, if a voter really wants to see the current
results before he votes, he could always have a look at the results the last day
before the freezing period of his vote is over and remember the results, but this

is probably much more trouble than what the average voter would be willing to
go through to become influenced by the current results. Strictly speaking, this
is not a security issue, but it’s worth mentioning how the security mechanisms
can be used to raise the quality of the voting results.

7 Conclusion

Originally, Neville Holmes described how legislative elections could be run in a
sort of continuous mode as opposed to the current discrete mode and what the
implications might be for democracy and society. This paper proposed a scheme
to run continuous opinion polls on the internet that respects the privacy of the
participants of the polls as long as the server is “sufficiently” read-protected.
Although the scheme from this paper probably would need quite some changes
before it can be used for real legislative elections, it may be very useful to start
experimenting with it in the not too serious environment of a political website on
the internet. Apart from that, it may also be useful in itself, because it has some
clear advantages over the many opinion polls currently run on the internet. One
of those advantages is that it is able to run opinion polls on a longer term while at
the same time dealing with the fact that the participants may change their mind.
This makes it possible to track the changes in the opinions of the participants
as a group as a reaction to certain events or the policy of the government.

A key factor to the success of such a continuous opinion poll on the internet
is the privacy of the participants and the security of the database. The latter
is a general problem on the internet, and for the most outside the scope of this
paper. A lot of the privacy of the participants, however, depends on how the
votes will be stored in the database. The scheme in this paper takes care of this,
while the solution remains sufficiently user-friendly.

If one day in the future a decision would be taken to go over to a more
continuous election system, then more research is needed in two fields. The
first field is that of the political sciences and sociology, because the transition
to continous elections would represent a breakpoint with the current discrete
elections. The other field is cryptography, because people will have to be able to
trust the correctness of the results coming out of the database, and at the same
time also trust that their privacy is still respected.

References

1. Neville Holmes, Computer, Representative Democracy and the Profession, IEEE,
February 2002, pages 118-120

2. Dirk Laeremans and Filip van Laenen, http://www.politiek.net, 2002, Poli-
tiek.net

3. Bruce Schneier, Applied Cryptography Second Edition: protocols, algorithms, and
source code in C, 1996, John Wiley & Sons

Privacy for Location Data in mobile networks

Alberto Escudero-Pascual1, Thijs Holleboom2, and Simone Fischer-Hübner2

1 Royal Institute of Technology, IMIT, S 166 40 Stockholm, Sweden
aep@kth.se

2 Karlstad University, Dept. Computer Science, S 651 88 Karlstad, Sweden
{Simone.Fischer-Huebner, Thijs.Holleboom}@kau.se

Abstract. The new EU Directive 2002/58/EC has introduced with its
Art. 9 special protection for location data other than traffic data. In this
paper, we argue that also location data within traffic data can contain
sensitive information about the ”relative positioning” and ”co-located
displacements” of mobile nodes and thus also requires special protection.
After a brief introduction to how mobility is supported in IP networks,
to the level of privacy protection for location data introduced in
the new European Union data protection directive, and to means of
protecting privacy by technology, we introduce the concept of co-located

displacements in MobileIP and show how the home agent will be able
to determine whether or not a set of mobile nodes move in a co-located
fashion.
Finally, we present how privacy-enhancing technologies can be used to
provide the level of privacy protection as required by Art. 9 of the EU
Directive 2002/58/EC for location data other than traffic data, also for
location information within traffic data.

Introduction

Location-based services (LBS) can be described as applications that exploit
knowledge about where an information device (user) is located. For example,
location information can be used to provide automobile drivers with optimal
routes to a geographical destination or inform a group of friends when or where
a friend is close in the neighborhood.

Traditionally security in computer networks include different aspects of
message integrity, authentication, and confidentiality. However, in wireless
networks, where users move between different networks and media types,
another issue becomes equally important: location privacy.

This paper focuses on the situation where the absolute or relative position is
computed in the infrastructure (i.e., home agent) in MobileIP-based networks.

The actual task of a home agent on a mobile node’s home network is to
tunnel datagrams for delivery to the mobile node when it is away from home (see
section I.A). In the future, however, it might become more and more common
that mobile nodes are also offering value-added services, such as LBS.

In these scenarios the user is not in full control of the location information
associated with the mobile device. The problem arises when location information

is required in order to obtain a service and at the same time the user does not
want to reveal more personal identifiable information than is strictly necessary
for the provision of a concrete service. For example, a mobile user may want to
inform to only a certain number of people for a certain period of time about his
or her position or, to learn the position of the nearest catholic church without
revealing his or her personal identity.

The paper is divided as follows:
Section 1 gives an introductory overview to mobility in IP networks, the

European Union data protection directive concerning the processing of location
data and to privacy-enhancing technologies useful for protecting location data,
such as the Platform for Privacy Preferences Protocol (P3P) and mix nets.

Section 2 describes co-located displacements in MobileIP and proposes a
formal method that allows a home agent to determine whether or not two mobile
nodes move in a co-located fashion.

Section 3 explains how mix nets can be used to anonymise location
information and how to use P3P to technically support the legal requirement
of informed consent for the processing of location data within traffic data for
value-added services.

1 Background

1.1 Mobility support in IP networks

The protocol operation defined for mobility in IP networks is known as
MobileIP[1]. MobileIP allows a mobile node to move from one link to another
in the Internet without changing the mobile node’s home IP address. With
MobileIP the mobile node can seamlessly roam among IP networks and
media types without restarting any of the ongoing connections or associated
applications. A mobile node is always addressable by its home address (HoA),
an IP address assigned to the mobile node within its home subnet, i.e., with
the network prefix of its home link.

MobileIP allows users to move between different networks, while maintaining
an addressable static identifier (home address). This is done by associating a
dynamic identifier (care-of-address, CoA) with the mobile node when it is away
from home at a foreign link. All traffic to the mobile node is intercepted in the
home network by a home agent (HA) that tunnels the data to the care-of-address
that is in use in that moment. Packets may be routed to the mobile node using
their home address regardless of the mobile node’s current point of attachment
to the Internet (CoA), and the mobile node may continue to communicate with
other nodes after moving to a new link. With MobileIP the movement of a mobile
node away from its home link is thus transparent to transport and higher-layer
protocols and applications.

MobileIPv6 shares many features with MobileIPv4, but the protocol is now
fully integrated into IPv6. As in MobileIPv4 the mobile mode is responsible for
discovering its current location. When the mobile node is attached to its home

���
�

���
�

������������

ALICE
BOB’s HOME

BOB’s COA

BINDING UPDATE

Fig. 1. Route Optimization in MobileIPv6.

link it directly receives packets and when roaming in a foreign network, it must
acquire a co-located care of address and notify its home agent of this address.

MobileIPv6 on the other hand also includes the mechanisms that allows
the mobile node to inform selected IPv6 correspondent nodes (CN) of its
care-of-address, so packets from these correspondent hosts can be redirected
straight to the mobile node instead of using the home agent as an intermediary
(route optimization) [Fig .1].

1.2 European Union Directive on privacy in electronic
communication

On July 12, 2002 the EU Directive 2002/58/EC concerning ’processing of
personal data and protection of privacy in the electronic communication sector’
[2] was officially adopted. The new Directive is part of a package of initiatives
which will form the future regulatory framework for electronic communications
networks and services. It aims to adapt and update the existing Data Protection
Telecommunications Directive (97/66/EC) [3] to take account of technological
developments.

The new EU Directive 2002/58/EC establishes a common framework for
data protection in telecommunication services and networks regardless of the
technology in use in electronic communication services and networks.

Whereas in the Directive 97/66/EC traffic data only refers to ”calls” in
so-called circuit switched connections (traditional voice telephony or plain old
telephone system aka. POTS), the new EU Directive 2002/58/EC covers all
traffic data in a technology neutral way including Internet traffic data.

Traditionally content data has had a high level of privacy protection, and it
has been acknowledged that strict privacy requirements for location data other
than for traffic data are needed, as they enable exact positioning and hence a
permanent surveillance of users.

While it is questionable if the traditional classification of the data in traffic,
content and location can be applied to the Internet [4], in contrast to the
Directive 97/66/EC, in the EU Directive 2002/58/EC in Art.5 (Confidentiality
of the communication), traffic data has been added. Hence, at least according
to the new Directive, traffic data is supposed to have the same level of
privacy protection as content data. Thus EU Directive 2002/58/EC is thereby
acknowledging that traffic data needs the same level as protection as content
data.

The EU Directive 2002/58/EC differentiates between location data other
than traffic data, allowing the exact positioning of a mobile user’s device, and
location data within traffic data, giving geographic information that is often less
precise. If used for value-added services, location data other than traffic data
has a higher protection. Whereas for traffic data informed consent is required
(Art. 6 par. 3,4), for location data other than traffic data either anonymisation
or informed consent is required (Art. 9 par.1) with the possibility for users that
have given their consent to temporarily refuse the processing for each connection
or transmission of a communication (Art.9 par.2).

In this paper, we argue that also traffic data can contain sensitive information
about the relative positioning and co-located displacements of two mobile nodes,
and thus also needs a high level of privacy protection.

According to the principle of data minimization and avoidance derived
from the principle of necessity of data collection and processing, location data,
no matter whether within traffic data or other than traffic data, should be
anonymised if the effort involved is reasonable in relation to the desired level
of protection. Also for location data within traffic data, users that have given
their consent should have the possibility to ”revoke” their consent for each
connection or transmission.

1.3 Privacy-Enhancing Technologies

There are basically two major ways of enhancing privacy in the mobile Internet
by technology.

Privacy can be protected most effectively by the first group of privacy
technologies that avoid or at least minimize personal data that are exposed
on the communication lines and at network sites, and are thus providing
anonymity, pseudonymity, unlinkability or unobservability. Mix nets are
examples for effective privacy technologies for anonymising communication.

The second way to protect privacy is by using technologies that can control
that personal data are only used according to legal provisions. P3P [5] for
example, is a technology which can provide technical support for implementing
that personal data is only forwarded to web sites with the user’s informed
consent. According to data protection legislation, informed user consent is often
required for the legitimacy of data processing.

Mix networks David Chaum described in [6] a technique based on public key
cryptography that allows an electronic mail system to hide who a participant
communicates with as well as the content of the communication.

More generally, messages are exchanged through a chain of one or
more intermediaries called “mixes”. The purpose of a mix is to hide the
correspondences between the items in its input and those in its output. The
main function of a mix is to: receive and decrypt messages, buffer messages
until a defined number of messages has been received, change the sequence
of the received messages in a random manner and encrypt and forward the
messages to the next mix or to the receiver.

Platform for Privacy Preference (P3P) Protocol The Platform for
Privacy Preferences (P3P) Protocol, which has become an official W3C
recommendation in April 2002, enables web sites to express their privacy
policies in a machine-readable XML format that can be retrieved automatically,
interpreted easily and compared with the user’s privacy preferences by user
agents. Thus, it enables users/ user agents to come to a semi-automated
agreement with web sites about the privacy practices for personal data
processing by that sites.

request P3P reference policy files

send P3P reference policy files

request P3P policy file

send P3P policy file

AgentUser WWW Server

request web page

User Preferences = Privacy Policy?

Fig. 2. P3P for informed consent

How a P3P agreement is done is described in [5] and depicted in [Fig. 2]. The
P3P user-agent will typically, when an HTTP request is made, fetch a reference
file, which is a site map, matching policy files with pages, parts of the site or
the whole site, and is typically stored at a well-known location at a website,
”/w3c/p3p.xml”. According to this reference file, the appropriate policy file will
be retrieved, and matched against the user’s preferences. If there is a match, the
page will be requested, and if not, the user-agent will take some kind of action
to warn the user.

2 Co-located displacements

As explained in [Sect. 1] the home agent of a mobile node keeps track of the
binding between the home address (HoA) and the mobile node’s care-of-address
(CoA) and is fully aware of the network prefix of the link to which a mobile node
is attached to. This prefix carries information about the geographical position
of the mobile node. Even though a prefix cannot generally be converted into
an exact geographical position it will usually confine the possible values of the
geographical position to an area that is small in comparison to the area of the
surface of the earth.

It also is conceivable that knowledge of the prefix confines the possible
positions to a limited area without being able to exactly locate that given area.
In that case, however, it will still be possible to determine for two mobile nodes
whether or not they are located in the same limited area. In other words, for
two mobile nodes that use the same home agent, that home agent is aware of
possible proximity, and hence the relative positioning, of two mobile nodes.

What is more, however, is that since the care-of address is a function of time,
the home agent is able to record at which instance of time a mobile node moves
its point of attachment from one foreign link to a new, different, foreign link.
That also means that the home agent is able to determine whether or not two
mobile nodes move in a co-located fashion. We consider that two mobile nodes
that have the same home agent move in a co-located fashion if they change to a
new care-of-address in the same foreign links a number of times simultaneously.
An example of such movement is two people traveling in the same car or train.
A sketch of how the prefixes of the care-of addresses of two such nodes change as
a function of time is given in [Fig. 3]. Note that two nodes generally not change
prefix at exactly the same time due to the nature of the events that trigger the
mobility handovers (signal/noise ratio, network latency etc).

↑
prefix

t →

Fig. 3. Sketch of prefixes of care-of addresses as a function of time. Values, i.e.,

prefixes, that fall in the same slot on the vertical axis are identical. line: CoA
(i)(t),

dashed line: CoA
(j)(t)

The care-of address as such only determines the geographical position of
a mobile node up to the area covered by the foreign link associated with that

specific care-of address. Movement of a mobile node while connected to the same
foreign link will be undetected by the home agent. The care-of addresses of two
mobile nodes will allow the home agent to determine the distance between two
mobile nodes with an accuracy of approximately the size of the area covered by
the foreign link. However, by studying the dynamics of the care-of addresses, it
is possible to obtain a more accurate picture of the actual movements of these
two mobile nodes. If two mobile nodes change their care-of addresses at almost
the same time it is likely that their actual geographical distance was small at
the time of change. If this happens a few times in a row it is likely that these
nodes were also close at intermediate times. Hence, by studying the dynamics
of the care-of addresses of two mobile nodes it is possible to extract information
about the geographical distance of these two mobile nodes.

2.1 Analysis of co-located displacements

The care-of address, as a function of time, of a mobile node i will be denoted as
CoA(i)(t). For two mobile nodes, i and j, consider the function

Γ (CoA(i)(t), CoA(j)(t)) =

{

1 prefix CoA(i)(t) = prefix CoA(j)(t)

0 otherwise

Then the integral

T =

∫ t2

t1

dtΓ (CoA(i)(t), CoA(j)(t)) (1)

gives the time, within the interval [t1, t2], that the nodes i and j were
co-located. This could equivalently be expressed as a percentage p = T ∗100/(t 2−
t1). The measure T does provide information about the duration of co-location,
irrespective of the movements of the nodes i and j. As a consequence two nodes
that are connected to the same foreign link during the whole interval [t1, t2] will
produce p = 100, like two nodes that are not static but move in a co-located
fashion, i.e., simultaneously change to the same new foreign link any number of
times. As mentioned above, two roaming nodes will in reality never change prefix
at exactly the same instance of time. Such nodes will therefore always produce
a number p slightly less than 100 %, even if they move in a fully co-located
fashion.

The function Γ (CoA(i)(t), CoA(j)(t)) implicitly depends on time through
the care-of addresses and can also be denoted Γ (t). In figure 4 this function is
sketched. The shaded area gives the duration of co-location. Small periods of
non-co-location that arise when two nodes change prefix only marginally affect
the total area, being equivalent to the integral in equation 1.

In order to be able to distinguish co-located roaming from static co-location,
i.e. non moving nodes connected to the same link, one can simply count the
number of hops where two mobile nodes simultaneously change their care-of

↑
Γ (t)

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

1

t →

Fig. 4. The area under Γ (t) as a measure of co-location

address prefixes to the same new value, again within a certain time interval
[t1, t2]. This number, H , is then a functional of the care-of addresses CoA(i)(t),
and CoA(j)(t), which in turn are functions of time, and has the following
functional form

H = h
[

CoA(i)(t), CoA(j)(t), t1, t2

]

(2)

The two explicit time arguments t1 and t2, indicate the boundaries of the
time interval under consideration. H can easily be calculated by analyzing the
functions CoA(i)(t) and CoA(j)(t), which in turn can be done by analyzing
logged data at, for example, the home agent. Since, as pointed out above, two
roaming nodes never change prefix at exactly the same time, it is necessary to
use an interval ∆t. Two nodes that change prefix of care-of-address at times t
and t′, where |t − t′| < ∆t are considered to have changed simultaneously. The
interval ∆t should be small, at least in comparison to the duration of the entire
measurement t2 − t1.

In summary, the number of simultaneous hops H , of two nodes i and j, can be
extracted from logged data by finding all instances where i and j change prefix
at times t and t′ separated by less than some predetermined amount ∆t. Only
hops where both the ’old’, and the ’new’ prefixes are the same should be counted,
since otherwise there is no co-location. More formally H can be calculated as
follows. If the care-of address CoA(i)(t) changes at times tk, k = 1 · · ·n then
define

hk =

{

1 CoA(j)(t) shows identical change at t = t′, |t′ − tk| < ∆t

0 otherwise
(3)

Now the quantity H defined in equation 2 can be expressed as the sum

H =

n
∑

k=1

hk (4)

3 Privacy-enhancing technologies for protecting location

data

In this section, we will discuss how privacy-enhancing technologies can be applied
to technically support and enforce legal privacy requirements of Art. 9 of the EU
Directive 2002/58/EC for location data, no matter whether location data other
than traffic data or within traffic data.

3.1 Mix nets for anonymisation of location data

The mix network concept was implemented as part of the Freedom System
[7,8]. Freedom is a pseudonymous IP network that provides privacy protection
by hiding the user’s real IP addresses, email addresses, and other personal
identifying information from communication partners and eavesdroppers.

The Freedom System could be seen as an overlay network composed of
globally distributed servers that runs on top of the Internet. Freedom routers or
Anonymous Internet Proxies (AIP) are the core network privacy daemons and
they are in charge of passing encapsulated packets between themselves until they
reach an exit node or AIP wormhole. When a certain AIP runs as an exit node,
it works as a traditional network address translator.

Symmetric link encryption is applied between AIP pairs and the
freedom-client and the selected AIP entry point to hide the nature and
characteristics of the traffic between them. Once the route is created from the
freedom client to the wormhole, the data packets travel toward the wormhole
over the virtual circuit, being link decrypted, telescope unwrapped and finally
link encrypted at each point. The data is routed to the next hop by use of an
Anonymous Circuit Identifier mapping table. The ACIs indicate, along with a
packet’s implicit source address and port, the next hop in a particular route.

When a freedom client communicates with a correspondent node via a
previously built virtual circuit in the Freedom System, the correspondent node
sees that the traffic as coming from the wormhole IP address instead of the
client’s real IP address.

In [9] we introduced a set of protocol extensions to the Freedom System
architecture to permit a mobile node to seamlessly roam among IP subnetworks
and media types while remaining untraceable and pseudonymous. The extensions
make it possible to support transparency above the IP layer, including the
maintenance of active connections in the same way that MobileIP does but with
the addition that the home and foreign network are unlinkable [Fig. 5].

The concept of a mix network for location based services was also introduced
in [10] where a Privacy Enhanced-Location Based Services (PE-LBS) proxy
can be configured to act as a ”mix” by buffering and changing the sequence
of the service requests. The mobile device can use a chain of PE-LBS proxies
configured as a ”mixing network” to forward a location based service request.
The architecture allows a mobile node to request location based services via a
mix-network hiding the network location of the mobile device while providing
service accountability.

[X] [X’]

<C>

<A>

aci XA

<D>

aci AB aci DB

aci X’D

aci BC

Fig. 5. Mobility extensions for the Freedom System. The virtual circuit is partially
recreated during a vertical handover [X] → [X

′

]. The exit node < C > is not aware of
any mobility.

3.2 P3P and processing of location data in MobileIP

The Platform for Privacy Preferences (P3P) Protocol can be used as a technical
means for technically supporting the privacy principle of informed consent, and
also for allowing users to later revoke their consent. Although P3P is a standard
for controlling the personal data processing by web servers, we will discuss how it
could also be used for obtaining informed consent for the processing of location
data within traffic data by home agents for value-added services, such as location
based services.

In the future, more effective solutions for automated privacy agreements
between mobile nodes and home agents could be based on compact privacy policy
or preference information included in newly to be defined extension headers for
Mobile IPv6. Such a solution, however, will first require new protocol extensions,
whereas a solution based on P3P can easily be implemented already today with
available technologies.

Often there is a close administrative relationship between the owner of a
mobile node and the owner of that mobile node’s home agent. For example, a
company that provides mobile nodes for its employees is also operating home
agents for those mobile nodes, or a home agent could even be operated by the
mobile user. If there is a trust relation between the mobile user and the owner
of the home agent, an agreement about data processing practices do not have
to be automated but can as well be done off-line. However, home agents could
also be owned by a service provider or other organizations to which no close
trust relation exists. Besides, if we demand the same level of privacy protection
for location data within traffic data as for location data other than traffic data,
mobile users should still have the possibility to revoke their consent for the
processing of location information within traffic data for each connection or
transmission of a communication (as required by Art. 9 par. 2 for location data
other than traffic data). Also for the enforcement of this requirement, an online
solution as provided by P3P is required.

For enabling P3P agreements a home agent needs to have a web server
interface and has to have a P3P privacy policy containing a statement describing
data practices that are applied to location data. In order to be compliant with
the EU Directive 2002/58/EC, location data within traffic data should only

<STATEMENT>

<PURPOSE>

<current/>

<other-purposes required = "opt-in">

Location-based-Services

</other-purpose>

</PURPOSE>

<RECIPIENT>

<ours/>

</RECIPIENT>

<RETENTION>

<no-retention/>

</RETENTION>

<DATAGROUP>

<DATA> ref="#dynamic.miscdata">

<CATEGORIES>

<location/>

</CATEGORIES>

</DATA>

</DATAGROUP>

</STATEMENT>

Fig. 6. P3P policy statement for a EU Directive 2002/58/EC compliant processing of
location data.

be processed for the transmission of a communication (Art. 6 par. 1) or for
marketing its own electronic communication services or for the provision of
value-added services, such as location-based services (Art. 6 par.3). [Fig. 6] shows
an example P3P policy statement for location data, allowing its processing for the
current purpose of transmitting a communication and for location-based services.
The opt-in requirement should be used to state that location data can only be
processed for location-based services if the user explicitly requests that service
and thus gives his/her consent for the use of location data for location-based
services. At a policy’s ”opturi” link, instructions are provided for users how
to decline from their request. Hence, the home agent could set up a web site
that allows mobile users to fill-in forms for granting or revoking their consent
for the processing of location data for the specified value-added services. This
guarantees that also Art.9 par.2 can be technically supported.

Within the P3P policy statement, the RECIPIENT element should be set to
<ours/>, meaning that the location data is only handled by the Home Agent
or possibly entities processing the data on its behalf for the completion of the
value-added service, as required by Art. 6 par.4 and Art. 9 par.3.

The RETENTION element that indicates the kind of retention policy that
applies to the data should be set to <no-retention/> or <stated-purpose/>
to state that the data are only processed for the duration necessary for the
value-added service as required by Art. 6 par.3 and Art.9 par.1.

The mobile node has to have a P3P-compliant user agent including P3P
privacy preferences defined by its user for the processing of location data. By
accessing the Home Agent’s web site, the mobile user can check the Home agent’s
privacy policy for processing of location data and can fill-in a form for requesting
a value-added service, and for thereby giving his/her informed consent for the
processing of traffic data for that service. A mobile user should evaluate the
home agent’s privacy policy at the time that she/he chooses a mobile node, and
should reevaluate it before the expiry period of the policy file has passed, or in
case that the mobile user has changed his/her preferences or wants to revoke
his/her consent.

A problem, however, is that location information is included in all messages
sent by a mobile node to its home agent. Thus, when the P3P user agent of a
mobile node is fetching the P3P reference file and the policy file, it is already
transferring location information with those requests, even though there has not
been a successful P3P agreement with that agent yet. The home agent’s web site
should hence follow the so-called safe-zone practices for communications which
take place as part of fetching a P3P policy or policy reference file, and thus should
not collect location information that is available within the safe zone. If a user
does not want to rely on the safe-zone practices, she/he should preferably initiate
P3P negotiations at times that her/his node is located in its home network. If a
mobile user does not succeed to select a home agent that fulfills her/his privacy
preferences, she/he should have the option to use anonymous communication.

P3P has been criticized by the Art.29 Data Protection Working Party [11,12]
and others, as it cannot in itself secure privacy on the Web. Hence it needs to
be applied according to a regulatory framework, such as given by EU Directive
2002/58/EC. Besides, P3P cannot ensure that web sites really follow privacy
policies as they claim to do. Third party monitoring can enhance control over
the compliance with the privacy policies published at web sites.

4 Conclusions

In this paper, we have shown that traffic data in MobileIP-based networks can
also contain sensitive information about the relative positioning and co-located
displacements of two mobile nodes, and thus also needs high level of privacy
protection. By studying the dynamics of the care-of addresses of two mobile
nodes it is possible to extract information about the geographical distance of
these two mobile nodes. The co-located displacements in MobileIP allow to the
home agent to determine whether or not a set of mobile nodes move in co-located
fashion.

Privacy-enhancing technologies should be applied to technically enforce legal
privacy requirements of Art. 9 of the EU Directive 2002/58/EC for location data,
no matter whether location data other than traffic data or within traffic data.

According to the privacy principle of data minimization and data avoidance,
location data should be anonymized if the effect involved is reasonable in relation
to the desired effect. Mix-nets based architectures (as presented in section 3.1)

provide an effective means for anonymising location data, and should preferably
be provided to mobile users in order to fulfill the requirements of Art. 9 par. 1.
We have also shown how the Platform for Privacy Preferences (P3P) Protocol
can be used as an Online mechanism for obtaining informed consent of mobile
users for the use of location data for value-added services, and also for allowing
users to later revoke their consent, as required by Art. 9 par.1 and par.2. Hence,
we have shown how existing technologies can be used to provide different levels of
location privacy, even though we strongly propose that the future developments
in the next generation Internet Protocol should also directly include features for
location privacy.

References

1. C. Perkins, IP Mobility Support, RFC 2002, October 1996.
2. Directive 2002/58/EC of the European Parliament and of the Council concerning

the processing of personal data and the protection of privacy in the electronic
communications sector, Brussels, 12 July 2002,
http://www.etsi.org/public-interest/Documents/Directives/

Standardization/Data_Privacy_Directive.pdf
3. European Union, Directive 97/66/EC of the European Parliament and of the

Council Concerning the Processing of Personal Data and the Protection of Privacy
in the Telecommunications Sector of 15 December 1997.
http://europa.eu.int/ISPO/infosoc/telecompolicy/en/9766en.pdf

4. A. Escudero, Location Privacy in mobile Internet in the context of the European
Union Data Protection Policy. Proceedings of INET2002. Washington DC. June
2002.

5. The Platform for Privacy Preferences 1.0 (P3P1.0) Specification, W3C
Recommendation, 16 April 2002, http://www.w3.org/TR/P3P/

6. D. Chaum, Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Communications of the ACM (24)2, 1981.

7. I. Goldberg, and A. Shostack, Freedom Network 1.0 Architecture and Protocols.
1999.

8. A. Escudero, M. Hedenfalk, and P. Heselius, Flying Freedom: Location Privacy in
Mobile Internetworking. INET2001. Stockholm. June 2001.

9. A. Escudero, Anonymous and Untraceable Communications: Location Privacy in
Mobile Internetworking. Licentiate Thesis ISSN 1403-5288. May 2001.

10. A. Escudero, and G. Q. Maguire Jr, Role(s) of proxy in Location Based Services.
Proceedings of 13th IEEE International Symposium IEEE on Personal, Indoors
and Mobile Radio Communications, Vol.3 pp 1252-1257, Lisbon. September 2002.

11. Working Party on the Protection of Individuals with regard to processing of
Personal Data, Opinion 1/98, Platform for Privacy Preferences (P3P) and the
Open Profiling Standard (OPS), adopted on 16 June 1998,
http://europa.eu.int/comm/internal_market/en/dataprot/wpdocs/wp11en.

htm
12. Article 29 - Data Protection Working Party, ”Privacy on the Internet - An

integrated EU approach to Online Data Protection”, adopted on 21st November
2000,
http://europa.eu.int/comm/internal_market/en/dataprot/wpdocs/wp37en.

pdf

Attitudes Towards Privacy in Conjunction with
Location Based Services

Christian Bratsberg Hauknes

Department of Informatics
University of Oslo
chrisbh@ifi.uio.no

Abstract.

Location Based Services (LBS), and many other new technologies and services have a
privacy destroying potential. As well as protecting privacy with technology and legal means,
we also need to design systems, services and interfaces that fit the user’s privacy needs and
attitudes. In this work, I look at how this can be achieved for new technologies and services in
general and LBS in particular.

The concept of privacy is investigated, and it is argued that a broader approach to privacy is
needed. A system can affect privacy in more ways than just being a new channel of
information; it can also affect privacy by changing behavior, communication and expectations.
This also has to be considered when designing privacy solutions and interfaces.

Privacy implications of a system are divided into three areas; User vs. Surroundings, User
vs. Commercial Interest and User vs. Authorities (Surveillance). The latter, although extremely
important, is not discussed here. For each area there we need to consider how a user under
‘normal’ circumstances regulates the flow of information, and how he protects his privacy. We
then have to observe how the system might affect this, and design solutions that let the user
achieve an acceptable privacy and comfort level. The importance of observing the user in
context to achieve valuable data is emphasized.

In the User vs. Surroundings area a simple system delivering LBS to students was developed
and tested, with a few services, notably a ‘Friend Finder’ service. In interviews done prior to
testing the system, users expressed the need for regulating who could access their location
information, and a ‘blocking’ function. This was found to be insufficient, as blocking was
experienced as socially unacceptable and rude. The system was also found make mobility more
structured, and change expectations of availability. Although mostly unproblematic, there were
some specific contexts where this made users feel uncomfortable.

Being able to communicate contextual information might solve some of these problems, but
there were instances where users wanted to be able to display erroneous information, and
maybe blame the system. This problem and need might be even more profound in other
contexts (not just a student setting).

In the User vs. Commercial Interest area, the ‘normal’ flow of information is quite different.
Comparisons is made to Internet surfing and online purchases. An interface was designed based
on P3P for a simulation of a Map-service. Privacy critics would pop up and warn the user if
there was a mismatch between his privacy preferences and the service provider’s privacy
policy. A case study was done, communicating with the interface screenshots on sheets.

Responses to the system were very good, with users expressing a feeling of comfort,
understanding and control. Follow-up interviews did however show low awareness and
understanding of their own privacy behavior and the privacy critics. This in general caused
little concern with the users, and did generally not change their feeling of comfort or control. It
might be beneficial to discuss what we want to achieve with the privacy interfaces.

Tracing the underlying reasons for security breaches –
A method based on cognitive interviews

Lars Westerdahl, Arne Vidström, Jonas Hallberg, Amund Hunstad and Niklas Hallberg

Swedish Defence Research Agency, Dept. of Systems Analysis and IT Security, Box 1165,
SE-581 11 Linköping, Sweden

{lars.westerdahl, arne.vidstrom, jonas.hallberg, amund.hunstad, niklas.hallberg}@foi.se

Abstract. There are numerous strategies to improve the security of information
systems. Some of those are focused on pre-operation, such as product
evaluation and risk analysis, whereas others try to improve existing systems, for
instance red teaming. To the recognitions of the authors, so far little or no effort
has been made to discover the real reasons behind security vulnerabilities.
Considering a specific security vulnerability, the important question is what is
the core reason for its occurrence? In this paper, a method for tracing the
underlying reasons for security vulnerabilities in IT systems is proposed. The
focus of the method is primarily non-technical since the interest is concentrated
to the production, operation and maintenance of existing systems. Thus the
main focus is on the people behind the decisions that affect the correctness and
level of security of the resulting systems. As a consequence, the main approach
of the method is to conduct interviews in order to discover facts usually not
documented in manuals or system logs. The proposed method is still in its
infancy and needs to be further studied and improved. However, a literature
survey discovered no similar efforts when it comes to choice of method and
focus of the problem. This may be due to that most efforts are technically
oriented since their aim is to patch existing systems, whereas the proposed
method is focused on humans and human interactions – the actors behind
important decisions.

1 Introduction

IT security breaches enabled by inadequate development, administration and
maintenance of information systems are a constant nuisance and serious threat to all
organizations depending on distributed information systems. To lessen the problem
effective methods for alleviation of system vulnerabilities are needed. There are many
ways to trace security vulnerabilities in information systems. A common strategy is to
deploy red teams1, which actively search for vulnerabilities in the systems and
propose suggestions on how to deal with the discovered problems. However, all
approaches focused on finding security vulnerabilities, such as read teaming, leaves

1 The term red team refers to a group of people who are assigned the task of finding

vulnerabilities in a system. The term tiger team is also used to describe the same occurrence.
Throughout this paper we will use the term red team.

several important questions unanswered: Why did the vulnerability occur in the first
place? Was it something that could have been avoided? If so, how and to what cost?

Considering the size and complexity of distributed information systems, it is not a
bold statement to assume that security vulnerabilities exist in all of them. Some of
these vulnerabilities exist because of well-balanced decisions since the security has to
be weighted against the cost and flexibility of the system. However, many of the
vulnerabilities present in distributed information systems remain for unspecified
reasons. Thus, a difficult question appears: How to use the limited resources available
for security-related activities in such a way that the potential damage is minimized?

In this paper, an ongoing effort to produce a method for tracing the reason behind
security vulnerabilities in IT systems is presented. We believe that the real reasons
behind security vulnerabilities are found in the processes of production, procuration,
and configuration of systems. By analyzing these processes, the proposed method
should reveal the corresponding weaknesses and be able to suggest ways to improve
the processes. That is, the method will not automatically correct flaws in existing
systems, but it will be a way to improve the processes and organizational routines
affecting the systems. The goal is a long-termed solution – not to find someone to
punish. The purpose of the method is to discover non-technical reasons to why
security vulnerabilities occur. In doing so, the focus is on problems that might not be
obvious or documented. The interest lies in or around the development process, or if
the development lies elsewhere in the procuration routines, and in the configuration of
the systems. In these processes, decisions are made that affect security-relevant events
in all system deployment processes. Even if technical issues will be discussed during
some of the phases in the method, it is still the reasoning behind each decision and the
way it was carried out that in the end forms the result.

2 Background

A common method for examining information systems and to discover vulnerabilities
is to deploy red teams. The purpose of red teaming is to find technical weaknesses in
systems that are in operation. As a result, the discoveries made by red teams allow the
owner of the systems to reconfigure or patch the systems.

Red teams are of great importance when it comes to finding vulnerabilities. Their
purpose is not only to find vulnerabilities, but also to examine how to exploit the
vulnerabilities. Reports from red teams includes: the found vulnerabilities, how to
explore them, and, the most important part, how to alleviate them. Midian [1]
describes how a red team might operate and their purpose.

Unfortunately, there is a limit to the effort of a red team. The primary interest of
red teams is technical and they do not consider why the vulnerability occurred in the
first place. As a result, the effort of a red team has a short expiration date. Moreover,
the value of red teaming is limited by the lack of proof of completeness. That is, the
fact that a certain red team cannot find vulnerabilities in a system does not mean that
there is none.

By using certified products, for instance Common Criteria [2] approved products,
the system owners are assured, although not proved, that their products are secure as

long as they are used according to the evaluation prerequisites. Still, two by
themselves evaluated and secure products may introduce vulnerabilities when put
together as a new system [3].

In order to construct secure distributed information systems, the three parameters
time, knowledge, and money have to be considered. A computer system is too
complicated for a complete comprehension, thus systems are most often divided into
subsystems or modules. Commonly, security vulnerabilities arise where these
subsystems or modules interact. Red teams will probably find those weak technical
links, but if it is not determined how they occurred in the first place, new weak links
may occur in the systems for the same reasons. This is where the method proposed in
this paper is hoped to make a difference by finding the underlying reasons for security
vulnerabilities.

3 Method development

To develop a method for systematic search for the underlying reasons for security
vulnerabilities, the following steps were considered necessary:

1. A list of possible underlying reasons has to be created. This list contains the set of
possible underlying reasons for security vulnerabilities and the result from each
application of the proposed method will be taken from this set. Thus, the quality of
the results produced by the method is to a large extent depending on the contents of
the list. An additional purpose of the list is to shape a common view of the target of
the method and thereby both focus the effort involved in the method development
and avoid subjects or parts being left out, that is, keep a broad view of the subject.
Since the completeness of the list cannot be proved, the list has to be a live
document under constant development and review. An initial list was created
during a brainstorm session involving three IT security specialists.

2. An initial version of the method has to be developed. This involves two steps: (1)
to create an overall layout of the method dividing it into a number of steps and (2)
to find or formulate the basic tools needed to perform these steps. A draft of the
overall layout was created and thereafter discussed at seminars with IT security and
system development specialists. A set of basic tools was found through a literature
study of different techniques and their deployment in different situations. Like the
overall layout of the method, these tools were analyzed and adapted during a series
of seminars.

3. A way of evaluating the method in-house needs to be determined. This is important
to tune the method before it is applied to organizations and systems in operation.

4. Evaluations of the method in working environments have to be conducted in order
to fine-tune the method and assess its usefulness.

In this paper, the effort to formulate the list of possible underlying reasons and the
systematic search method, that is step 1 and 2 in the list above, are described.

4 Categorizing the underlying reasons for security
vulnerabilities

Since the aim of the method is to find the underlying reasons, the analysis is
concentrated to the development and configuration processes of the system. Studying
these processes the focus will be on the people affecting their execution and
performance. Consequently, a graph containing “soft” elements like stress and lack of
motivation, knowledge, and time was constructed. All these elements are likely to
result in security vulnerabilities. The graph, inspired by Kaoru Ishikawa’s fishbone
diagrams [4], is not a predetermined map but rather a method of gathering thoughts
and, jointly, broaden the views on what may cause a security breach. The output of
the map will constitute the set of underlying reasons being part of the result of the
method. At a later stage, the graph was used when formulating the questionnaires
used as a basic tool in the method. A sub-tree of the graph is presented in Figure 4.1.

Fig. 1. A sub-tree of the graph of reasons.

By arranging the elements in the graph into groups, it was possible to get an
overview of the larger picture. The naming of the groups suggests where the problems
can be handled. Most of the groups span over the whole time axis of the development
and configuration processes, but either one can be the dominant force at a given time.
The groups are listed below.

Knowledge: Knowledge can refer to individual knowledge of group members, the
ability to understand the difficulty of a problem and solving it.

It can also refer to tradition within an organization. Problems solved “the way we
always have done it” may introduce or conserve well-known difficulties.
Time: Refers to the utilization of the amount of time provided for a specific task.

Laziness Lack of motivation

Easier to have the vulnerability than to deal with it

Temporary – later forgotten and becomes permanent

Security vulnerability

Difficult problems: The task itself may contain difficulties beyond the scope of the
development process. It is possible that the task may include the use of functionality
that is not entirely secure. In such cases the interest lays in discovering if the team
was competent enough to take necessary precautions to prevent known vulnerabilities.
Difficult events: When planning a project, it is important to make a risk-analysis.
Even if such an analysis is conducted, it is possible that events that are very difficult
to foresee may occur. The interest in this case is to determine how such an event was
handled.
Leadership/management: Leadership refers to the ability of a manager to guide and
encourage the staff in order for them to perform assigned tasks.

Closely related to leadership is management, i.e. how resources are made available
and handled within the scope of the responsibilities of managers.
Planning: A crucial component for a successful result is a well-set timeframe and
organization of the task. This group traverses over multiple levels, from the top of the
organization in a more broad view as well as on the lower levels with more hands-on
duties.

The Time-group is closely related to this group.
Equipment: Even if the team is competent and properly managed, lack of efficient or
specialized equipment may cause unwanted effects on the result.

Since some of the groups are not limited to a certain time or event in the process, it
may be wise to differ between actual reason and the consequence of such. For
instance, lack of time can be a consequence of poor planning, thus planning becomes
the actual reason for the security vulnerability.

5 A method to find underlying reasons

With the graph in mind, the problem is to map security breaches into underlying
reasons. To achieve this, information on the development, configuration and operation
of the system has to be extracted from the organization. For this purpose a method is
proposed. The method contains the following steps.

1. Select a security vulnerability.
2. Investigate technical details of the vulnerability.
3. Create a common understanding of the problem.
4. Select key persons to interview in order to extract relevant information.
5. Carry out the interviews.
6. Analyze the results of the interviews to build a common view of the underlying

reasons to the existence of the vulnerability.

In the remainder of this chapter, the six steps of the method are discussed.

5.1 Selection of security vulnerability to study

A study using the proposed method is likely to start from a security incident [5] or
possibly as a result of red teaming. It is important to stress that the method is first to
be used when an incident has occurred, or a vulnerability has been discovered. The
method is neither meant to replace red teams nor to be deployed for random searches.
Thus, the first task is to derive one or more security vulnerabilities from that an
incident. Vulnerabilities can, for instance, be found in the reports produced by red
teams and vulnerability scanners as well as in incident reports describing actual
intrusions.

For a vulnerability to be of interest to study, it has to meet some criteria. These
criteria are designed so that they point at a discovered or occurred dangerous
situation, which needs to be avoided in the future.

• It has to occur in an operational environment important to the organization.
• It should be possible for an attacker to create some actual damage, either by

exploiting the vulnerability itself or in conjunction with other vulnerabilities.
• The vulnerability should not exist as a calculated risk in a risk analysis, i.e. it

should not be a legal operation.

Naturally other properties can be addressed, but these are the basic statements. An
incident meeting these criteria’s is a candidate for further investigation. To confirm
that these criteria are met, a deeper analysis is necessary. It is quite possible that the
search has to proceed a few steps before it can be stated that all criteria are fully met.
The following should be documented regarding the criteria at this step:

• A brief description of the vulnerability on a concrete level.
• The role of the vulnerability in the running environment.
• How is it possible for an attacker to utilize the vulnerability to cause real damage?
• Why it should not exist if a correct operation had been carried out, in regard to a

correct risk analysis.

By documenting the vulnerability, it is possible to focus on the effort.

5.2 Investigation of technical details

To fully understand the vulnerability and in what way it can cause damage, it is
necessary to learn as much as possible about the system it operates in. It is mainly
technical details that are of interest at this point, considering both the system and the
vulnerability.

Interesting questions that needs to be answered and documented at this stage are:

1. What is the typical usage of the system?
2. Define the role of the system in the context of other interacting systems.
3. How does the system work, and what components does it incorporate?
4. What is the technical description of the vulnerability?

5. Is there a technical solution that would render the vulnerability harmless? (Note
that there can be more than one answer to this question. An adequate red team
report should be able to answer this question.)

Already at this state it is possible to find some underlying reasons to the vulnerability.
If the issuing organization cannot answer the questions above, it is quite possible that
they do not fully understand their own system.

5.3 Selection of interviewees

An important step is to decide which roles, e.g. system administrators, project
managers, system developers, and security officers, in the organization that would be
of interest to interview. Key criteria for these people are their role in different
processes, but most of all their ability to affect the security of the system during
development and operation. The final selection of interviewees (most likely several)
depends on the studied breach and the organization. A top-down approach should be
suitable, starting with managers and continuing with the developers and
administrators, thus moving from decision makers to implementers and maintenance.
However, an alternative approach is to reverse the approach described above and
make a bottom-up search for suitable candidates. Again, the decision of which
approach to be used should be based on the studied vulnerability and the organization.

5.4 The interviews

Since the goal of the search is to find the non-technical reasons behind a security
vulnerability, the main tool used in the method is interviews. The interviews provide a
mechanism for reaching the people behind the decisions and implementations of
systems. This is important since documentation produced during development and
configuration usually is technically oriented.

As a preparatory step questionnaires are used before the interviews. Questionnaires
provide a simple way of starting up the searching by focusing the persons to be
interviewed on the precise situation and helping them to remember the role they had
in the process. The interviews allows for a more unstructured follow-up of the
questionnaires, and the ability to explore a certain event that may arise during the
interview. Together interviews and questionnaires form a focused method of
exploring the reason behind security vulnerabilities.

When setting up interviews some choices have to be made. Common for all
interview methods is that they are indirect ways of gathering information, as opposed
to observations and field-tests. It is the level of structure that differs between different
interview strategies. Highly structured interviews are conducted with a predetermined
question sheet and the interviewers are not allowed to follow up questions in other
ways than to clarify questions. In short, it is basically like a verbal question sheet. The
downside of structure is the lack of ability to penetrate a specific subject. By allowing
a more unstructured approach, a deeper understanding of the situation is possible. [6].

For the systematic search method an unstructured interview approach was selected
called the cognitive interview method [7]. The core of the method is the free report
from the person that is being interviewed. Allowing the interviewees to recite freely
from their memory, non-obvious aspects can be explored. Such non-obvious aspects
would not be captured by a structured interview.

A cognitive interview scheme is divided into five sections:

1. Introduction
2. Spontaneous recapitulation
3. Guided recapitulation
4. Verification and completion
5. Conclusion

The introduction sets the frame for the interview. This is where the interviewer
establishes the climate and explains what is going to be discussed. A good
introduction makes the interviewee feel comfortable and willing to share what they
know.

When the frame is set and the field of interest is defined, the interviewees are
encouraged to describe how they have experienced the given situation with their own
words. It is important that the interviewer only interrupts if it becomes necessary to
change the perspective or to the discussed topic. The most important tool for the
interviewer at this phase is silence. By using silence correctly, it is possible to make
the interviewees continue their story a bit further even if they first considered it done.

Eventually the spontaneous recapitulation will end and the interviewer can start the
guided recapitulation. The interviewer selects an event from the spontaneous
recapitulation and asks for additional information. The questions are formulated to
penetrate the issue from the outside and to the core of the event. As the guided
recapitulation proceeds, the interviewees are encouraged to complement the story or
continue where they stopped earlier.

During the verification and completion, the interviewer summarizes the story and
asks respondent to confirm the conclusions. Even in this phase, the interviewees are
encouraged to continue or start new recapitulations.

The interviewer concludes the interview by thanking the interviewee and to
encourage them to take contact if something else comes into mind. This marks the end
of the interview from the perspective of the interviewee, but for the interviewer the
interview is still on. As long as the interviewer and the interviewee are talking the
interview is continuing. It is not unusual that key information is given after the
official interview is over when the interviewees are more relaxed.

An important consideration during the whole event is to make the interviewees feel
comfortable. They should feel that the delivered presentation is important for the task
at hand, but at the same time know that they do not defame themselves or anyone
else. A positive feeling after the interview is necessary if further contact is to be
possible in the future.

5.5 Analysis of the results

An analysis of the collected data will be conducted after each interview. The purpose
of the analysis is to determine whether one or several underlying reasons to a security
vulnerability can be deducted, if additional interviews are needed, and, if more
interviews are needed, the corresponding interviewees. Obviously this constitutes a
fairly blunt decision tool, but as the method matures a more precise description of the
analysis criteria will evolve.

During each individual interview, the main considerations are of technical and
organizational character. However, one or more common underlying reasons should
be possible to detected and verify as the interviewing proceeds.

6 Discussion

In this paper, an effort to produce a method for the search for the underlying reasons
for security breaches in distributed information systems is presented. The method
approaches the problem by analyzing the processes of development, procurement,
configuration, and operation. In order to initiate the method, a well-defined security
vulnerability has to be selected. It is not assumed that the method will be a panacea
solving all the problems of IT security or even the problem of prioritizing the security
needs of organizations. However, the method can constitute a powerful tool for
understanding the underlying mechanisms of why security vulnerabilities exist and
why they remain, despite the effort put into securing the systems.

In order to make the method suitable for a variety of organizations, it has to be
general enough to be able to adapt to different organizations and security breaches.
Thus, the method is not a step-by-step manual to follow but more of a guideline of
how to find the underlying reasons for security vulnerabilities. Consequently, it has to
be adapted to the specific circumstances of the studied security vulnerability and
organization. However, the adaptation should be neither difficult nor time consuming.
In a cognitive interview, the main player is not the interviewer but the interviewee.
Thus, few specific questions have to be altered. The same applies to the
questionnaires. In the questionnaire, the questions regard how the interviewees
experienced the situation and how they made, or could have made, a difference.

A potential problem is opinions about the use of such a method. It is not a tool to
alleviate discovered breaches in existing systems. The effort is much more long
termed. The purpose is to help an organization to avoid making the same mistakes
again. It is a follow-up tool aimed at providing knowledge of where the weak links
are and all in all to raise the security awareness within the organization.

How well the method will work depends on the openness of the studied
organization. If the method is used internally, a higher level of openness can be
assumed. A group from the outside may encounter some resistance, albeit
unintentionally, mainly due to fear of unwanted exposure of their internal routines and
situation. This should not constitute a major problem, since one of the goals of the
project is to present a method that can be used on and by any organization.

There are of course different aspects to consider when deciding who should
conduct the search. In the case of an internal investigation, the confidentiality of the
information should not be a problem. On the other hand, conducting an interview is a
role-play. The power balance between the actors is sensitive and should be as equal as
possible. With this in mind, the interviewer cannot be a supervisor or any other
position with the power to affect the future within the company for the interviewed
persons. If external contractors are being used, the company should have considered
the security risk when hiring them and, thus, taken the necessary legal precautions.

Most organizations do not use internally developed hardware or software. Most of
the applications are commercial products or, when a unique application is needed,
specially ordered products. This can make an examination of the development process
hard. It is possible that an examination cannot proceed further than the acquisition of
some application. This does not necessarily mean a limitation of the method for the
corresponding organization. In order to conduct a purchase, a list of demands should
be produced stating the needs and restrictions of the application. This process is, like
the development process, both interesting and error prone and, thus, important to
study.

References

1. Midian, P.: Perspectives on Penetration Testing. Computer Fraud & Security. Issue.
6. (2002) 15-17

2. Common Criteria. Available at www.commoncriteria.org. 2002-09-27.
3. Gritzalis, S., Spinellis, D.: The cascade vulnerability problem: The detection problem

and a simulated annealing approach for its correction. Microprocessors and
Microsystems. Vol. 21. No. 10. (1998) 621-628

4. Ishikawa, K.: Guide to quality control. Quality resources/A division. (1974)
5. Levin, C.: Net security reawakening. PC Magazine. June (1995) 31
6. Kvale, S.: Interviews: An introduction to qualitative research. Sage. (1996)
7. Christianson, S-Å., Engelberg, E., Holmberg, U.: Avancerad förhörs- och

intervjumetodik. Natur och kultur. Bokförlaget. (1998)

A Proposed Taxonomy for IT Weapons

Martin Karresand

FOI
Swedish Defence Research Agency, Division of Command and Control Systems,

Department of Systems Analysis and IT Security
Box 1165, S-581 11 Linköping, Sweden

martin.karresand@foi.se

Abstract This report presents a proposal for a taxonomy of IT weapons,
limited to computer software. Because of this limitation the term soft-
ware weapons is used instead of IT weapons. A de�nition of software
weapons is also formulated. No other taxonomy with the above scope
is known to exist today. This taxonomy therefore o�ers a theoretical
base for the uni�cation of the nomenclature for classi�cation of software
weapons
The taxonomy contains 15 categories of general properties of a software
weapon. It has been adapted to international standards through a con-
nection to the CVE list (Common Vulnerabilities and Exposures), which
is maintained by MITRE.
The problem of how to make unambiguous classi�cations of combined
software weapons is discussed and a solution is proposed. Each category
of the taxonomy is explained in a separate paragraph. Thereafter the
taxonomy is used to classify two well known software weapons.

Keywords: computer security, information warfare, IT weapon, IW, malware,
software weapon, taxonomy, virus, worm.

1 Introduction

The terminology used in the IT security area is not yet fully standardised and the
situation is getting worse [1,2,3] because of the continuous in�ux of new members
to the research community, who all have their own preferred vocabulary. Hence
there is an increasing need for a standardisation of the used terms.

On top of that the research being done so far has been concentrated on the
pragmatic, technical side of the spectrum, i.e. ways of detecting the increasing
amount of malware (malicious software) being written. The classi�cation and
grouping of the malware has been given less attention and the area is therefore
hard to take in.

To enable the development of e�cient countermeasures there is a need for
an unambiguous classi�cation of the software used to cause harm to individuals
and organisations via computer systems. Also the users of the computer systems
need to have a general understanding of the threats posed by di�erent types of

malware. This would lead to a higher degree of awareness of possible malware
attacks and in that way higher security. One step towards this goal is to have
commonly acknowledged names for the separate types of malware. Consequently
these types must be well de�ned too.

Furthermore, the education of IT security personnel would bene�t from a
structured classi�cation of the malware area. A common vocabulary would for
example decrease the risk of misunderstandings.

Whether a speci�c tool would be classi�ed as a weapon or not is often judged
from the context of the situation where the tool is used. This is the juridical point
of view, the tool a murderer used is to be regarded as a weapon, because he or
she used it with the intent to kill. Consequently, anything can be a weapon.

The sentence `He used a pillow as a weapon' gives that the pillow was a
weapon in that speci�c situation. But by disregarding the context and just con-
centrate on the `as a weapon' part of the sentence, we see that a tool must have
certain properties to be a weapon.1 These properties are in some way measur-
able; they do harm (why else would they be used for �ghting and attacking?). If
the line of argument is transferred to the world of computers, the result is that
a certain class of software has a speci�c set of properties, which are measurable,
and those properties de�ne the software as weapons.

The advantage of this approach is the much lesser degree of ambiguity. A
weapon is a weapon because of its properties and as long as the purpose is to
study it technically, that is enough. With a deeper knowledge of the technical
details of software weapons (malware) as a group, they can be classi�ed, properly
named, etc. This in turn leads to a more structured knowledge of the area and
thus a possibility to develop better defences, maybe even in advance. Or as Sun
Tzu once wrote in his book The Art of War [5, chapter VI]:

Whoever is �rst in the �eld and awaits the coming of the enemy, will
be fresh for the �ght; whoever is second in the �eld and has to hasten to
battle will arrive exhausted.

1.1 Background

This is an updated version of a report [6] written in Swedish. The amendments
were mostly related to preparing the report for international publishing. Some
parts have also been rewritten because new background material has been found.

In an attempt to somewhat lessen the emotional charge in the used vocab-
ulary, the term software weapon will be used throughout the text. Something
malicious can be nothing but evil, but a weapon is simply a tool that has the
ability to cause harm and that can be used in both o�ensive and defensive situ-
ations.

Regarding the area of malware, several de�nitions and classi�cation schemes
exist for di�erent parts of the area (see for example [7,8,9]). Most of them deal

1 One de�nition is `an object such as a knife, gun, bomb, etc. that is used for �ghting
or attacking sb'. [4]

with viruses and worms, and only casually mention other types of malicious
software. They all give their own way of measuring, or quantifying, maliciousness
and at the same time conclude that this cannot be done objectively.

No de�nition or taxonomy2 covering the complete set of software-based IT
weapons has yet been found by the author.

1.2 Purpose

The purpose of the report is to present a taxonomy of software weapons, and
also give a de�nition supporting the taxonomy. The taxonomy and de�nition are
not meant to be complete in any way, but merely suggestions for future work.

The purpose of the taxonomy is to �ll the needs stated in the introduction,
or at least lay the foundation for a future ful�lment of them.

1.3 Scope

The taxonomy only handles software based (IT) weapons from a technical point
of view. Chipping3 is considered to be hardware based and is therefore not
discussed.

1.4 Method

The study has been done with a broad technical base. Several di�erent types of
material have been studied. Most of the material has been taken from the Inter-
net to give up to date information. It has mostly been descriptions of tools and
methods used by hackers. Also technical reports, dissertations, and taxonomies
focused on IT security and malware have been used.

2 A Taxonomy of Software Weapons

My own hypothesis of why no other taxonomy of software weapons has yet been
found can be summarised in the following points:

� The set of all software weapons is (at least in theory) in�nite, because new
combinations and strains are constantly evolving. Compared to the biological
world, new mutations can be generated at light speed.

� It is hard to draw a line between administrative tools and software weapons.
Thus it is hard to strictly de�ne what a software weapon is.

� Often software weapons are a combination of other, atomic, software weapons.
It is therefore di�cult to unambiguously classify such a combined weapon.

2 The word originates from the two Greek words taxis, arrangement, order, and nomos,
distribution.

3 Malicious alterations of computer hardware.

� There is no unanimously accepted theoretical foundation to build a tax-
onomy on. For instance there are (at least) �ve di�erent de�nitions of the
term worm [10] and seven of trojan [11].

� By using the emotionally charged word malicious together with intent, the
de�nitions have been crippled by the discussion whether to judge the pro-
grammer's or the user's intentions.

2.1 Theory

As a consequence of some of the problems mentioned above, the set of software
weapons will grow continuously. Therefore it can be regarded as always new and
unexplored. The fact that software weapons can be created from combinations of
other software weapons, without limitations, gives that a traditional taxonomy
based on relationships would not work very well. The rules for classi�cation
would grow inde�nitely complex and soon get out of hand. A better solution
would be to base the taxonomy on technical characteristics. With a proper se-
lection of characteristics, such a taxonomy would have the potential to work for
more than a few years.

It is not enough to �nd a working set of characteristics to get a good tax-
onomy, though. It must ful�l a few more requirements to be useful. Daniel Lough
has created a list of 18 properties from 5 di�erent taxonomies of IT security,
which he presents in his dissertation [12]. I consider the following properties
taken from two of those taxonomies [13,14] to be the most important. The cat-
egories of the taxonomy should:

� Bemutually exclusive and exhaustive so that the taxonomy completely covers
the intended area, i.e. be a partitioning of the area

� Be unambiguous to prevent subjective interpretations
� Usable through the use of well known and consistent terminology.

To minimise the risk of subjective interpretations when classifying objects, the
alternatives in each category should be based on measurable or observable char-
acteristics [15]. In the case of software these characteristics are the instructions
and algorithms constituting the software [16]. This will guarantee that the clas-
si�cation of a software weapon will be the same, regardless of who is classifying.

How the characteristics of the software weapon shall be found is a separate
problem. It can be done by either having access to the source code of the weapon,
or by re-engineering the source code from a binary version of the weapon. A third
way is to have some sort of automatic analysis software; a virtual environment
where the software weapon could be scienti�cally studied in a controlled manner.
Such an environment already exists for worms and viruses [10].

2.2 De�nition

In this section a de�nition of software weapons is presented, together with the
reasons for developing it. To avoid in�uences from the de�nitions of malware
mentioned earlier, the new de�nition has been constructed with information
warfare as a base.

Background. There are several de�nitions of IT and cyber warfare. Of course
they cover a much larger area than just software weapons, but they do give a
hint of what the important things are. The US Department of Defense has the
following de�nition of the military part of information warfare [17]:

Information Warfare - Actions taken to achieve information superi-
ority in support of national military strategy by a�ecting adversary in-
formation and information systems while leveraging and defending our
information and systems.

Dr. John Alger, MITRE Corporation, Enterprise Security Solutions Depart-
ment, gives the following de�nition of information warfare in a book by Winn
Schwartau [18, p. 12]:

Information Warfare consists of those actions intended to protect,
exploit, corrupt, deny, or destroy information or information resources
in order to achieve a signi�cant advantage, objective, or victory over an
adversary.

A similar de�nition is given by Ivan Goldberg [19], head of IASIW (US Institute
for the Advanced Study of Information Warfare):

Information warfare is the o�ensive and defensive use of information
and information systems to deny, exploit, corrupt, or destroy, an ad-
versary's information, information-based processes, information systems
and computer-based networks while protecting one's own. Such actions
are designed to achieve advantages over military or business adversaries.

All the above de�nitions mentions that an advantage over an adversary should
be achieved and this should be done by in�uencing the adversary's information
systems. An advantage in the software context would correspond to a breach in
the security of the adversary's computer system. The in�uencing part would then
be the instructions of the tool(s) used for the attack. Thus a software weapon
should have such properties.

The de�nitions mentioned above are all very much alike, which might indicate
that they all have the same source. If so, three renowned institutions has adopted
it, which in that case strengthens its importance. I therefore think that the
de�nitions above carry such weight that they can be used as a basis for the
de�nition of software weapons used in this report.

Preliminary De�nition. The preliminary de�nition of software weapons4 used
at FOI5 has the following wording (translated from Swedish):

[. . .] software for logically in�uencing information and/or processes
in IT systems in order to cause damage.6

4 The term IT weapon is used in the report FOI report.
5 Swedish Defence Research Agency
6 In Swedish: `[. . .] programvara för att logiskt påverka information och/eller processer
i IT-system för att åstadkomma skada.'

This de�nition satis�es the conditions mentioned earlier in the text. One thing
worth mentioning is that tools without any logical in�uence on information or
processes are not classi�ed as software weapons by this de�nition. This means
that for instance a sni�er is not a software weapon. Even a denial of service
weapon might not be regarded as a weapon depending on the interpretation of
`logically in�uencing . . . processes'. A web browser on the other hand falls into
the software weapon category, because it can be used in a dot-dot7 attack on a
web server and thus a�ect the attacked system logically.

Furthermore, the de�nition does not specify if it is the intention of the user or
the programmer, that should constitute the (logical) in�uence causing damage.
If it is the situation where the tool is used that decides whether the tool is a
software weapon or not, theoretically all software ever produced can be classi�ed
as software weapons.

If instead it is the programmer's intentions that are decisive, the de�nition
gives that the set of software weapons is a subset (if yet in�nite) of the set of all
possible software. But in this case we have to trust the programmer to give an
honest answer (if we can �gure out whom to ask) on what his or her intentions
was.

A practical example of this dilemma is the software tool SATAN, which ac-
cording to the creators was intended as a help for system administrators [20,21].
SATAN is also regarded as a useful tool for penetrating computer systems [22].
Whether SATAN should be classi�ed as a software weapon or not when using
the FOI de�nition is therefore left to the reader to subjectively decide.

New De�nition. When a computer system is attacked, the attacker uses all op-
tions available to get the intended result. This implies that even tools made only
for administration of the computer system can be used. In other words there is a
grey area with powerful administrative tools, which are hard to decide whether
they should be classi�ed as software weapons or not. Hence a good de�nition of
software weapons is hard to make, but it might be done by using a mathematical
wording and building from a foundation of measurable characteristics.

With the help of the conclusions drawn from the de�nitions of information
warfare the following suggestion for a de�nition of software weapons was formu-
lated:

A software weapon is software containing instructions that are ne-
cessary and su�cient for a successful attack on a computer system.

Even if the aim was to keep the de�nition as mathematical as possible, the
natural language format might induce ambiguities. Therefore a few of the terms
used will be further discussed in separate paragraphs.

7 A dot-dot attack is performed by adding two dots directly after a URL in the address
�eld of the web browser. If the attacked web server is not properly con�gured, this
might give the attacker access to a higher level in the �le structure on the server and
in that way non-authorised rights in the system.

Since it is a de�nition of software weapons, manual input of instructions is
excluded.

Instructions. It is the instructions and algorithms the software is made of that
should be evaluated, not the programmer's or the user's intentions. The instruc-
tions constituting a software weapon must also be of such dignity that they
together actually will allow a breakage of the security of an attacked system.

Successful. There must be at least one computer system that is vulnerable to
the tool used for an attack, for the tool to be classi�ed as a software weapon. It
is rather obvious that a weapon must have the ability to do harm (to break the
computer security) to be called a weapon. Even if the vulnerability used by the
tool might not yet exist in any working computer system, the weapon can still
be regarded as a weapon, as long as there is a theoretically proved vulnerability
that can be exploited.

Attack. An attack implies that a computer program in some way a�ects the
con�dentiality8, integrity9 or availability10 of the attacked computer system.
These three terms form the core of the continually discussed formulation of
computer security. Until any of the suggested alternatives is generally accepted,
the de�nition of attack will adhere to the core.

The security breach can for example be achieved through taking advantage
of �aws in the attacked computer system, or by neutralising or circumventing
its security functions in any way.

The term �aw used above is not unambiguously de�ned in the �eld of IT
security. Carl E Landwehr gives the following de�nition [24, p. 2]:

[. . .] a security �aw is a part of a program that can cause the system
to violate its security requirements.

Another rather general, but yet functional, de�nition of ways of attacking com-
puter systems is the de�nition of vulnerability and exposure [25] made by the
CVE11 Editorial Board.

Computer System. The term computer system embraces all kinds of (elec-
tronic)12 machines that are programmable and all software and data they con-
tain. It can be everything from integrated circuits to civil and military systems
(including the networks connecting them).

8 `[P]revention of unauthorised disclosure of information.'[23, p. 5]
9 `[P]revention of unauthorised modi�cation of information.'[23, p. 5]
10 `[P]revention of unauthorised withholding of information or resources.'[23, p. 5]
11 `[CVE is a] list of standardized names for vulnerabilities and other information se-

curity exposures � CVE aims to standardize the names for all publicly known vul-
nerabilities and security exposures. [. . .] The goal of CVE is to make it easier to
share data across separate vulnerability databases and security weapons.' [26]. The
list is maintained by MITRE [27].

12 This term might be to restrictive. Already advanced research is done in for example
the areas of biological and quantum computers.

Evaluation. To test if the new de�nition has the intended extent, it is applied
to a selection of common hacker tools. First �ve classes of tools chosen from a
list made by David Icove [28, pp. 29�60] is used, then two tools not commonly
regarded as software weapons, a web browser and a word processor.

To get as relevant a test as possible, tools that have a high ambiguity with
respect to whether they should be regarded as software weapons or not are
selected.

Denial of Service. Tools that in some way degrade the service of a computer
system exist in several versions. The instructions of such a tool is both necessary
and su�cient to successfully degrade the availability of the attacked system and
it is thus a software weapon.

Data Diddling. A tool performing unauthorised manipulation of data on the
attacked system can for instance be a log eraser. The de�nition states that this
is a software weapon, because the tool a�ects the integrity of the attacked system.

Port Scanning. A port scan can be compared to going round a house (in full
daylight) trying all the doors and windows to see if any of them is open [29].
Such knowledge can then be used for intrusion.

On the other hand, merely studying the visual characteristics of an object
does not a�ect its con�dentiality. Something clearly visible cannot be regarded
as secret. Thus, such a simple port scanner as the one described above is not suf-
�cient enough to a�ect the con�dentiality of the scanned system and is therefore
not a software weapon.

However, what today commonly is known as a security scanner is more power-
ful than the tool described above. A few examples are SATAN, Nessus, and NSS.
They can for instance search for speci�c vulnerabilities and perform port map-
ping for di�erent applications. Such a tool contains instructions both necessary
and su�cient to a�ect the con�dentiality of the attacked system.

Password Sni�ng. By analysing the content of packets sent over a network
passwords can be found, without interrupting the network tra�c. If the sni�ed
passwords are unencrypted (or can be decrypted by the sni�er), the password
sni�ng is necessary and su�cient to violate the con�dentiality of the attacked
system and the sni�er is therefore a software weapon.

On the other hand, if the sni�er tool itself does merely send the encrypted
passwords to another tool for decryption, its instructions is not su�cient for a
successful attack. In other words, a sni�er is a good example of a tool that reside
in the grey area.

Tra�c Analysis. Tools performing tra�c analysis work in a similar way to pass-
word sni�ers, but instead they use the address �eld of the data packet. In that
way they can be used for mapping the topology of a network. The information
can be used to identify speci�c servers and security functions. These can then
be circumvented or attacked.

The situation can be compared to a reconnaissance device collecting data
on the positions of enemy troops on a battle �eld. Such data is most likely
con�dential and might be necessary and su�cient for a successful attack on the
enemy, i.e. a tra�c analysis tool is a software weapon [30,29]

However, many tra�c analysis tools are manually operated, i.e. the user gives
the parameters that control the operation. These parameters can then be viewed
as the instructions that perform the actual attack. Thus in this case the tra�c
analysis tool itself cannot be regarded as being a software weapon. Instead it
should be compared to a terminal program.

From the above we can see that a tra�c analyser occupies the grey area
mentioned before. Each tra�c analyser therefore has to be inspected separately
to determine whether it should be classi�ed as a software weapon or not.

Web Browser. Using a web browser a hacker can make a dot-dot attack on a
computer system. In this case the actual instructions representing the attack
are given by the user, not the web browser. Thus the instructions constituting
a web browser are not su�cient to successfully attack a computer system and
consequently the browser is not a software weapon. Instead it can be regarded
as a manually operated terminal program.

Word Processor. Through the built-in macro language, a word processor can be
utilised to perform unauthorised actions on an attacked system. The instructions
used for the attack are given by the macro, the word processor only interprets
them. In other words the word processor does not in itself contain the instructions
that perform the attack. Thus a word processor is not a software weapon (but
the macro is).

Summary of Evaluation. The tools that challenged the de�nition the most were
the tra�c analyser and the port scanner. Both tools can very well be used
by a system administrator for totally legitimate purposes. For example a tra�c
analyser can be used by an administrator to continuously monitor the tra�c in a
network and in that way detect anomalies signalling an intrusion. A port scanner
can be used to test the security con�guration of the system and especially the
�rewall set-up.

It is therefore important to remember that it is the code constituting the
software that should contain instructions that are necessary and su�cient be
used for a successful attack. If a port scanner does more than just scan for
open ports in a �rewall, it might very well perform actions successfully a�ecting
the con�dentiality of the scanned system and as a result be a software weapon,
regardless of the context.

2.3 A Draft for a Taxonomy

The categories of the taxonomy are independent and the alternatives of each
category together form a partition of the category. It is possible to use several
alternatives (where applicable) in a category at the same time. In this way even

combined software weapons can be unambiguously classi�ed. This model, called
characteristics structure, is suggested by Daniel Lough [12, p. 152].

In Table 1 the 15 categories and their alternatives are presented. The altern-
atives are then explained in separate paragraphs.

Table 1. The taxonomic categories and their alternatives

Category Alternative 1 Alternative 2 Alternative 3

Type atomic combined
A�ects con�dentiality integrity availability
Duration of e�ect temporary permanent
Targeting manual autonomous
Attack immediate conditional
Functional area local remote
Sphere of operation host-based network-based
Used vulnerability CVE/CAN other method none
Topology single source distributed source
Target of attack single multiple
Platform dependency dependent independent
Signature of code monomorphic polymorphic
Signature of attack monomorphic polymorphic
Signature when passive visible stealth
Signature when active visible stealth

Type. This category is used to distinguish an atomic software weapon from a
combined and the alternatives therefore cannot be used together.

A combined software weapon is built of more than one stand-alone (atomic
or combined) weapon. Such a weapon can utilise more than one alternative of a
category. Usage of only one alternative from each category does not necessarily
implicate an atomic weapon. In those circumstances this category indicates what
type of weapon it is.

A�ects. At least one of the three elements con�dentiality, integrity and avail-
ability has to be a�ected by a tool to make the tool a software weapon.

These three elements together form the core of most of the de�nitions of IT
security that exist today. Many of the schemes propose extensions to the core,
but few of them abandon it completely.

Duration of e�ect. This category states for how long the software weapon is
a�ecting the attacked system. It is only the e�ect(s) the software weapon has on
the system during the weapon's active phase that should be taken into account.
If the e�ect of the software weapon ceases when the active phase is over, the
duration of the e�ect is temporary, otherwise it is permanent.

Regarding an e�ect on the con�dentiality of the attacked system, it can
be temporary. If for example a software weapon e-mails con�dential data to the
attacker (or another unauthorised party), the duration of the e�ect is temporary.
On the other hand, if the software weapon opens a back door into the system
(and leaves it open), the e�ect is permanent.

Targeting. The target of an attack can either be selected manual [ly] by the
user, or autonomous[ly] (usually randomly) by the software weapon. Typical
examples of autonomously targeting software weapons are worms and viruses.

Attack. The attack can be done immediate[ly] or conditional [ly]. If the timing
of the attack is not governed by any conditions in the software, the software
weapon uses immediate attack.

Functional Area. If the weapon attacks its host computer, i.e. hardware dir-
ectly connected to the processor running its instructions, it is a local weapon. If
instead another physical entity is attacked, the weapon is remote.

The placement of the weapon on the host computer can be done either
with the help of another, separate tool (including manual placement), or by
the weapon itself. If the weapon establishes itself on the host computer (i.e.
breaks the host computer's security) it certainly is local, but can still be remote
at the same time. A weapon which is placed on the host computer manually (or
by another tool) need not be local.

Sphere of Operation. A weapon a�ecting network tra�c in some way, for
instance a tra�c analyser, has a network-based operational area. A weapon af-
fecting stationary data, for instance a weapon used to read password �les, is
host-based, even if the �les are read over a network connection.

The de�nition of stationary data is data stored on a hard disk, in memory
or on another type of physical storage media.

Used Vulnerability. The alternatives of this category are CVE/CAN 13, other
method and none. When a weapon uses a vulnerability or exposure [25] stated
in the CVE, the CVE/CAN name of the vulnerability should be given14 as the
alternative (if several, give all of them).

13 The term CAN (Candidate Number) indicates that the vulnerability or exposure is
being investigated by the CVE Editorial Board for eventually receiving a CVE name
[31].

14 NIST (US National Institute of Standards and Technology) has initiated a meta-base
called ICAT [32] based on the CVE list. This meta-base can be used to search for
CVE/CAN names when classifying a software weapon.

The meta-base is described like this: `ICAT is a �ne-grained searchable index of
standardized vulnerabilities that links users into publicly available vulnerability and
patch information'. [33]

The alternative other method should be used with great discrimination and
only if the �aw is not listed in the CVE, which then regularly must be checked
to see if it has been updated with the new method. If so, the classi�cation of the
software weapon should be changed to the proper CVE/CAN name.

Topology. An attack can be done from one single source or several concurrent
distributed sources. In other words, the category de�nes the number of concurrent
processes used for the attack. The processes should be mutually coordinated and
running on separate and independent computers. If the computers are clustered
or in another way connected as to make them simulate a single entity, they
should be regarded as one.

Target of Attack. This category is closely related to the category topology and
has the alternatives single and multiple. As for the category topology, it is the
number of involved entities that is important. A software weapon concurrently
attacking several targets is consequently of the type multiple.

Platform Dependency. The category states whether the software weapon (the
executable code) can run on one or several platforms and the alternatives are
consequently dependent and independent.

Signature of Code. If a software weapon has functions for changing the sig-
nature of its code, it is polymorphic, otherwise it is monomorphic. The category
should not be confused with Signature when passive.

Signature of Attack. A software weapon can sometimes vary the way an
attack is carried out, for example perform an attack of a speci�c type, but in
di�erent ways, or use di�erent attacks depending on the status of the attacked
system. For instance a dot-dot attack can be done either by using two dots, or
by using the sequence %2e%2e. If the weapon has the ability to vary the attack,
the type of attack is polymorphic, otherwise it is monomorphic.

Signature When Passive. This category speci�es whether the weapon is vis-
ible or uses any type of stealth when in a passive phase15. The stealth can for
example be achieved by catching system interrupts, manipulating checksums or
marking hard disk sectors as bad in the FAT (File Allocation Table).

Signature When Active. A software weapon can be using instructions to
provide stealth during its active phase. The stealth can be achieved in di�erent
ways, but the purpose is to conceal the e�ect and execution of the weapon. For

15 A passive phase is a part of the code constituting the software weapon where no
functions performing an actual attack are executed.

example man-in-the-middle or spoo�ng weapons use stealth techniques in their
active phases through simulating uninterrupted network connections.

If the weapon is not using any stealth techniques, the weapon is visible.

3 Examples

In this section, as a test, two software weapons are classi�ed using the tax-
onomy. The weapons used are the distributed denial of service (DDoS) weapon
Stacheldraht and the worm CodeRed. They were chosen for being well docu-
mented and well known.

The test is in no way exhaustive. It is only meant to function as a demon-
stration of what a classi�cation can look like for a particular software weapon.

3.1 Stacheldraht.

The classi�cation of the DDoS weapon Stacheldraht was made with the help of
[34,35] and looks like this:

Type: combined
A�ects: availability
Duration of e�ect: temporary. The agents used to get the distributed charac-

teristic of the weapon are installed permanently in the computers they reside
on. To get them in place other tools are used [34], so the placing of the agents
is to be considered as a separate attack not done with Stacheldraht.
The actual denial of service attack a�ects the attacked system until the
attacker decides to quit.

Targeting: manual
Attack: conditional
Functional area: remote. As stated above, the placement of the agents is not

considered an attack performed by Stacheldraht.
Sphere of operation: network based
Used vulnerability: none
Topology: distributed source
Target of attack: multiple
Platform dependency: dependent
Signature of code: monomorphic
Signature of attack: monomorphic The weapon can use ICMP �ood, SYN

�ood, UDP �ood, and Smurf style attacks, which are separate types of at-
tacks.

Signature when passive: visible
Signature when active: visible, stealth The stealth is used in the communic-

ation between the di�erent parts of the weapon (client, handler, and agent).
This is done through using ICMP_ECHOREPLY packets and encrypted TCP
[34].

3.2 CodeRed.

The classi�cation of the worm CodeRed was made with the help of [36,37,38]
and looks like this:

Type: combined
A�ects: integrity, availability
Duration of e�ect: temporary. The documentation states that nothing is writ-

ten to disk [37]. However, the weapon is also said to look for a �le named
`NOTWORM' in the root of C:. How that �le ends up there is not mentioned.
Regarding the defacing of the server it is done in memory by hooking and
redirecting incoming request to the worm code during 10 hours [36], i.e. a
temporary e�ect. The DoS attack is also limited in extent and therefore a
temporary e�ect.

Targeting: autonomous
Attack: conditional
Functional area: local, remote. The weapon (in version 1) defaces the server

it has infected and also performs a DoS attack on a speci�c IP address.
Therefore it is both local and remote.

Sphere of operation: host based, network based. See the previous category.
Used vulnerability: CVE-2001-0500 (idq.dll),

CVE-2001-0506 (SSI)
Topology: single source
Target of attack: single, multiple. The weapon executes a DoS attack on a

single IP address. It is also divided into several (99 + 1) threads, which
all concurrently tries to infect (attack) randomly chosen IP addresses. This
makes it both a single and multiple target attacking weapon.

Platform dependency: dependent
Signature of code: monomorphic
Signature of attack: monomorphic There are both a DoS attack and an in-

fection mechanism, but each type of those two attacks are always executed
in the same way.

Signature when passive: visible. The weapon is put to sleep when certain
conditions are met. This cannot be regarded as using any stealth technique.

Signature when active: visible

4 Summary

The report has outlined a suggestion for a taxonomy, i.e. a classi�cation scheme
and a de�nition of software weapons. The de�nition part has been given much
weight, because a classi�cation scheme must have a solid base to work properly.
To enable an unambiguous de�nition the emphasis was moved from the use of
the weapon, to the technical (measurable) characteristics of the weapon. This
gave the following formulation:

A software weapon is software containing instructions that are ne-
cessary and su�cient for a successful attack on a computer system.

The classi�cation part is meant to be used at a rather abstract level and
for that reason the categories (and their alternatives) are chosen to be general
properties held by all software weapons. A classi�cation of a weapon must contain
at least one alternative from each category.

By incorporating CVE names the taxonomy o�ers a connection to a global
standard for naming vulnerabilities and exposures in software. This means that
a meta-base of software weapons can be built, which can o�er a global stand-
ardisation of the area.

The work done so far has been mainly theoretical. The next thing to do is
to test the taxonomy empirically. Each category and its alternatives must be
thoroughly tested to see if any of them needs to be changed.

Also the quality of the classi�cation scheme needs to be tested. Software
weapons related by common sense shall also have fairly similar classi�cations
and unrelated weapons more or less be orthogonally classi�ed.

References

1. Ford, R.: (Malware) http://www.malware.org/malware.htm, accessed 17 July
2002.

2. Helenius, M.: Problems, advantages and disadvantages of malware testing. In: EI-
CAR 1999 Best Paper Proceedings. (1999) http://conference.eicar.org/past_
conferences/1999/other/Helenius.pdf, accessed 18 July 2002.

3. Kaminski, J., O'Dea, H.: (How to smell a RAT - remote administration
tools vs backdoor Trojans) http://www.virusbtn.com/conference/this_year/
abstracts/remote_administration.xml, accessed 22 July 2002.
Only the abstract of the paper was available and therefore no references are made
to the body of the document.

4. Hornby, A.S.: Oxford advanced learner's dictionary of current English. 6 edn.
Oxford University Press, Oxford (2000)

5. Tzu, S.: The Art of War. (500 B.C.) http://all.net/books/tzu/tzu.html, ac-
cessed 12 June 2002.
Translation by Lionel Giles, 1910.

6. Karresand, M.: Tebit � teknisk beskrivningsmodell för it-vapen. Technical re-
port, Command and Control Warfare Technology, FOI - Swedish Defence Research
Agency (2001)

7. Brunnstein, K.: From AntiVirus to AntiMalware Software and Beyond: Another
Approach to the Protection of Customers from Dysfunctional System Behaviour,
Faculty for Informatics, University of Hamburg, Germany. (1999) http://csrc.
nist.gov/nissc/1999/proceeding/papers/p12.pdf, accessed 22 July 2002.

8. Helenius, M.: A System to Support the Analysis of Antivirus Products' Virus
Detection Capabilities. PhD thesis, University of Tampere, Finland (2002) http:
//acta.uta.fi/pdf/951-44-5394-8.pdf, accessed 22 July 2002.

9. Swimmer, M.: (Malware) http://www.swimmer.org/morton/malware.html, ac-
cessed 18 July 2002.

10. Whalley, I., Arnold, B., Chess, D., Morar, J., Segal, A., Swimmer, M.: An Environ-
ment for Controlled Worm Replication and Analysis or: Internet-inna-Box. (2000)
http://www.research.ibm.com/antivirus/SciPapers/VB2000INW.htm, accessed
18 July 2002.

11. Whalley, I.: Testing Times for Trojans. (1999) http://www.research.ibm.com/
antivirus/SciPapers/Whalley/inwVB99.html, accessed 18 July 2002.

12. Lough, D.L.: A Taxonomy of Computer Attacks with Applications to Wire-
less Networks. PhD thesis, Virgina Polytechnic Institute and State University
(2001) http://scholar.lib.vt.edu/theses/available/etd-04252001-234145/
unrestricted/lough.dissertation.pdf, accessed 13 June 2002.

13. Howard, J.D.: An Analysis of Security Incidents on the Internet 1989-1995.
PhD thesis, Carnegie Mellon University, Pittsburg (1997) http://www.cert.org/
research/JHThesis/Word6/, accessed 12 June 2002.

14. Lindqvist, U., Jonsson, E.: How to systematically classify computer security in-
trusions. In: Proceedings of the 1997 IEEE Symposium on Security & Privacy,
Oakland, CA, IEEE Computer Society Press (1997) 154�163 http://www.ce.
chalmers.se/staff/ulfl/pubs/sp97ul.pdf, accessed 12 June 2002.

15. Krsul, I.V.: Software Vulnerability Analysis. PhD thesis, Purdue University (1998)
http://www.acis.ufl.edu/~ivan/articles/main.pdf, accessed 13 June 2002.

16. Bagnall, R.J., French, G.: The Malware Rating System (MRS)TM . (2001) http://
www.dodccrp.org/6thICCRTS/Cd/Tracks/Papers/Track7/105_tr7.pdf, accessed
22 July 2002.

17. Haeni, R.: What is Information Warfare. (1996) http://tangle.seas.gwu.edu/
~reto/infowar/what.htm, accessed 27 June 2001.

18. Schwartau, W.: Information Warfare � Cyberterrorism: Protecting Your Personal
Security in the Electronic Age. 2 edn. Thunder's Mouth Press, New York, NY
(1996)

19. Goldberg, I. (2001) http://www.psycom.net/iwar.1.html, accessed 26 June 2002.
20. CERT (Computer Emergency Response Team): CERT Advisory CA-1995-06

Security Administrator Tool for Analyzing Networks (SATAN). (1995) http:
//www.cert.org/advisories/CA-1995-06.html, accessed 12 June 2002.

21. Gordon, S.: Devil's Advocate. (1995) http://www.commandsoftware.com/virus/
satan.html, accessed 23 July 2002.

22. CIAC (Computer Incidents Advisory Center): Information Bulletin F-20: Security
Administrator Tool for Analyzing Networks (SATAN). (1995) http://www.ciac.
org/ciac/bulletins/f-20.shtml, accessed 12 June 2002.

23. Gollmann, D.: Computer Security. John Wiley & Sons (1999)
24. Landwehr, C.E., Bull, A.R., McDermott, J.P., Choi, W.S.: A taxonomy of

computer security �aws. ACM Computing Surveys 26 (1994) http://chacs.
nrl.navy.mil/publications/CHACS/1994/1994landwehr-acmcs.pdf, accessed 12
June 2002.
A note taken from the text published on the web: `As revised for publication in
ACM Computing Surveys 26, 3 (Sept., 1994). This version, prepared for electronic
distribution, re�ects �nal revisions by the authors but does not incorporate Com-
puting Surveys� copy editing. It therefore resembles, but di�ers in minor details,
from the published version. The �gures, which have been redrawn for electronic dis-
tribution are slightly less precise, pagination di�ers, and Table 1 has been adjusted
to re�ect this'.

25. (CVE) http://cve.mitre.org/about/terminology.html, accessed 4 July 2002.
26. (CVE) http://cve.mitre.org/about/index.html, accessed 24 June 2002.
27. MITRE: (The Early Years) http://www.mitre.org/about/history.shtml, ac-

cessed 12 June 2002.
28. Icove, D., Seger, K., VonStorch, W.: Computer Crime: A Crime�ghter's Handbook.

O�Reilley & Associates Inc, Sebastopol, CA (1995)

29. Anonymous: Maximum Security � A Hacker's Guide to Protecting Your Internet
Site and Network. 2 edn. Sams Publishing (1998)

30. Stallings, W.: Cryptography and Network Security, Principles and Practice. 2 edn.
Prentice Hall (1999)

31. (CVE) http://cve.mitre.org/docs/docs2000/naming_process.html, accessed
12 June 2002.

32. (ICAT) http://icat.nist.gov/icat.cfm, accessed 12 June 2002.
33. (ICAT) http://icat.nist.gov/icat_documentation.htm, accessed 27 September

2002.
34. Dittrich, D.: The "stacheldraht" distributed denial of service attack tool.

(1999) http://staff.washington.edu/dittrich/misc/stacheldraht.analysis,
accessed 24 July 2002.

35. Dittrich, D.: The DoS Project's "trinoo" distributed denial of service attack
tool. (1999) http://staff.washington.edu/dittrich/misc/trinoo.analysis,
accessed 24 July 2002.

36. eEye Digital Security: .ida �Code Red� Worm. (2001) http://www.eeye.com/html/
Research/Advisories/AL20010717.html, accessed 13 September 2002.

37. Chien, E.: CodeRed Worm, Symantec. (2002) http://securityresponse.
symantec.com/avcenter/venc/data/codered.worm.html, accessed 18 July 2002.

38. Trend Micro: CODERED.A. (2001) http://www.trendmicro.com/vinfo/
virusencyclo/default5.asp?VName=CODERED.A&VSect=T, accessed 24 July 2002.

A Step towards Quantification of IT Security
Extended abstract

Amund Hunstad <amund@foi.se> Jonas Hallberg Anna Stjerneby

Dept. of Systems Analysis and IT Security
Swedish Defence Research Agency

The concept of a networked society by default results in widely distributed
information systems that are difficult to control or even comprehend. To be able to
comprehend these widely distributed information systems, efficient modeling
techniques are needed. The evaluation of the IT-security ability of systems requires
quantitative efficiency measures for the security-enabling mechanisms. Efficient
evaluation enables novel design methods and design support tools.

Thus, the identification of security-related system characteristics is required: 1) to
support the formulation of the security requirements of systems and the
transformation of them into a policy; 2) as a base and support for the design process,
system modeling, implementation, and evaluation; and 3) to facilitate development of
quantitative security measures of systems and subsystems.

To identify a set of relevant characteristics four tasks were carried out. These tasks
are: 1) a literature study, to detect what the state of the art is; 2) a structured analysis,
to obtain a suitable structure for further analysis and detect additional characteristics;
3) a brainstorm session, to obtain material for extension of the set of characteristics;
and 4) a cross checking, to verify the suitability of the whole structure and its
contents. The structured analysis used a tree structure as illustrated by Figure 1. The
whole process resulted in a structure with 55 distinct characteristics1.

Confidentiality Integrity Availability

Figure 1: Security characteristics in a tree structure.

In a fully developed tree, all the leaves should be attributes that can be assigned a
value. This has not been fully accomplished within the scope of this work. Thus,
further refinement of characteristics is necessary. However, the development of the
tree should be a continuous process where some branches grow while others are cut
off to accommodate the dynamics of system development and IT security. The current
graph can be used for all the purposes listed above, i.e. it can serve as a base for (1)
the formulation of security requirements, (2) system modeling techniques and design
methods and tools, and (3) the refinement of security characteristics to reach levels
where quantifiable characteristics appear.

1 Stjerneby, A. (2002). Identification of security relevant characteristics in distributed

information systems. Master’s Thesis. LiTH-ISY-EX-3278-2002. Linköpings universitet.

Using Computer Games in
IT Security Education

Analyses and Continuation

Kjell Näckros

Department of Computer and Systems Sciences,
Stockholm University and Royal Institute of Technology, Sweden

email: kjellna@dsv.su.se
Url: http://www.dsv.su.se/~kjellna

Abstract. A general holistic understanding of information security and
privacy issues is vital for the individual as well as for the society. Am-
biguities concerning user’s privacy, integrity and confidentiality are ma-
jor obstacles towards a sound and functional electronic society. System
designers ought to pay more attention to these threats in order to sup-
port the creation of reliable trust between consumers/users/producers.
To empower the average computer user to gain control of their infor-
mation and communication technologies (ICT) they need to have the
necessary ICT security knowledge. Since new user groups, with different
kind of learning capabilities are emerging, in conjunction with an over-
load of information there is a need for alternative approaches to offer
the necessary knowledge. This article discusses an ongoing research on
visualising security aspects using computer games as a complement to
the conventional linear instruction. Based on the findings from a series
of experiments evaluating a computer game’s impact on learning ICT
security1,2, the continuation towards an applicable instructional frame-
work of general ICT security understanding is discussed. The findings
show that many computer users understand ICT security more thor-
oughly when a non-linear computer game is used than when reading a
linear text. Additional experiments, investigating the applicability of the
knowledge acquired from the non-linear instruction, will be conducted
during 2002-2003. The ICT-Sec instruction will also be more generalis-
able, scaleable and adaptable towards mobile computing.

1 This research and the result from the preliminary study were presented at Nord-
sec2000 [Näckros, K. (2000). Using Computer Games in IT Security Education - pre-
liminary results of a study. pp.251-258] and discussed at Wise2 [Näckros, K. (2001).
Game-Based Learning within IT Security Education. Wise2: IFIP TC11 WG11.8
pp.243-260].

2 The research is part of a Licentiate thesis presented in December 2001 [Näckros,
K. (2001). Game-Based Instruction within IT Security Education. Department of
Computer and Systems Sciences(DSV), Report Series: No-01-018-DSV-SU. Kista,
Sweden, Stockholm University (SU)/ Royal Institute of Technology(KTH)].

